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Abstract
Aims The combined effects of nitrogen (N) deposition
and management practices on fine root decomposition
remain unknown. The objective of this study was to
investigate the effects of the two factors on fine root
decay in Moso bamboo plantations.
Methods This study was performed over a three-year
period and included three nitrogen treatments (30, 60,
and 90 kg N ha−1 yr.−1) and two management practices
(conventional and intensive).
Results Fine root decomposition was significantly af-
fected by N inputs and management practices both
separately and in combination (P < 0.01). N inputs had
a stronger effect than management practices. The low-N
input (30 kg N ha−1 yr.−1) accelerated fine root decom-
position and nutrient release, whereas high-N inputs (≥
60 kg N ha−1 yr.−1) inhibited decomposition and nutrient
release. Moreover, intensive management practices
strengthened the inhibitory effects of the high-N inputs.

Conclusions Moderate N deposition (< 60 kg N ha−1

yr.−1) may decrease soil carbon storage but increase
Moso bamboo productivity, while excessive N deposition
(≥ 90 kg N ha−1 yr.−1) may have opposing effects.
The combined effects of management practices and
nitrogen amendment should be considered when
estimating the effects of increasing atmospheric N
deposition on plantation ecosystems.
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Introduction

Fine roots (≤2 mm in diameter) account for 33 % of the
annual terrestrial net primary production (NPP)
(Jackson et al. 1997). Fine root decomposition is the
key process by which root nutrients are mineralized and
carbon (C) is lost. Carbon and nitrogen (N) fluxes
through fine root turnover may exceed those for above-
ground C and N fluxes (Nadelhoffer and Raich 1992).
Fine root decomposition across different forest ecosys-
tems has been previously studied (Ostertag and Hobbie
1999; Silver and Miya 2001; Yang et al. 2004; Lin et al.
2011; Sun et al. 2013). Root chemistry, including the
C:N ratio and the concentrations of N and lignin, plays a
greater role than climatic factors in controlling decom-
position rates on a global scale (Silver and Miya 2001;
Zhang et al. 2008).
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Atmospheric N input to terrestrial ecosystems has
sharply increased in the last three decades (Galloway
et al. 2008; Reay et al. 2008). The largest increases
occurred in East Asia and South Asia and are predicted
to continue (Reay et al. 2008; Tian et al. 2015), partic-
ularly in subtropical China (Liu et al. 2013). Nitrogen
deposition can have positive, negative, or no effects on
surface leaf litter decomposition by changing soil N
availability, and the diversity and activity of soil mi-
crobes (Knorr et al. 2005; Fang et al. 2007; Hobbie
2008; Keeler et al. 2009; Song et al. 2014, 2015).
However, little information is available on the effects
of N deposition on underground fine root decomposition
(Tu et al. 2015).

Moso bamboo (Phyllostachys edulis) is widely dis-
tributed in southern China and neighboring countries (Li
et al. 2000). The Moso bamboo forest in China has an
area of 3.87 million ha, which comprises 70 % of the
total bamboo forest area in China and 80 % of the Moso
bamboo forest area worldwide (Li and Lei 2010; Song
et al. 2011). In recent decades, farmers have increasingly
adopted intensive management (IM) practices such as
fertilization, plowing, and cleaning understory vegeta-
tion, none of which was practiced in the conventional
management (CM) of Moso bamboo forest (Zhou et al.
2010; Song et al. 2011, 2015). IM practices have in-
creased bamboo production and soil organic carbon
(SOC) mineralization (Zhou et al. 2006; Jiang et al.
2009) but have also decreased soil microbe diversity
(Xu et al. 2008; Li et al. 2016).

In subtropical China, the Moso bamboo planta-
tion region receives 30–37 kg N ha−1 yr.−1 from the
atmosphere (Xie et al. 2008; Cui et al. 2014; Jia
et al. 2014). The combined effects of increasing N
deposition and anthropogenic management practices
on Moso bamboo plantation ecosystems have been
receiving much attention (Song et al. 2015, 2016).
Our previous study showed that simulated low-N
addition (30 kg ha−1 yr.−1) had significant positive
effects on leaf litter decomposition in a Moso bam-
boo plantation, while excessive N addition
(90 kg ha−1 yr.−1) had the opposite effect and was
also significant (P < 0.05). IM alone did not signif-
icantly affect leaf litter decomposition but it ampli-
fied both the positive effects oflow-N addition and
the negative effects of high-N addition (Song et al.
2015). Moso bamboo roots account for 19.2 % of
the biomass and 19.8 % of the carbon storage within
the whole plant. These proportions are much higher

than those of the leaves (5.3 % and 4.9 %, respec-
tively) (Zhou and Jiang 2004). The roots play im-
portant roles in carbon- and nutrient inputs to the
soil. Nevertheless, the combined effects of N depo-
sition and management practices on Moso bamboo
f ine roo t decompos i t ion remains unc lea r.
Consequently, our understanding of the complex
response of the Moso bamboo forest to atmospheric
N depositions is limited.

In the present study, fine root decomposition in a
Moso bamboo forest was investigated for 36 months.
A 24-month leaf litter decomposition experiment had
just been completed there (Song et al. 2015). The ob-
jectives of the study were to (1) determine how fine root
decomposition responds to management practices; (2)
how fine root decomposition responds to increasing
atmospheric N deposition; and (3) whether management
practices influence the effects of N deposition on fine
root decomposition.

Materials and methods

Study site

The details of study site can be found in Song et al.
(2015). Briefly, this study site receives a mean annual
precipitation of 1420 mm and has a mean annual tem-
perature of 15.6 °C. CM and IM Moso bamboo planta-
tions were established in the late 1970s and in 2001,
respectively.

Experimental design and measurement

In November 2012, we established 12 CM plots and 12
IM plots of 20 m × 20 m and each one was surrounded
by a 20-m buffer zone. The initial characteristics of both
the CM and IM are summarized in the literature (Song
et al. 2015). The local background atmospheric N de-
position rate is 30–37 kg N ha−1 yr.−1 (Xie et al. 2008;
Cui et al. 2014; Jia et al. 2014). Liu et al. (2016) reported
that NH4

+ and NO3
− accounted for 56.1 % and 43.9 %

of the wet N deposition in China, respectively. The
average NH4

+:NO3
− was 1.28. Based on atmospheric

N deposition and simulation methods used in similar
studies (Mo et al. 2007; Fang et al. 2007), we used
NH4NO3 as the nitrogen source for a low-N
(30 kg ha−1 yr.−1) treatment (N30), a medium-N
(60 kg ha−1 yr.−1) treatment (N60), and a high-N
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(90 kg ha−1 yr.−1) treatment (N90). Three replicate plots
per treatment and the control (N-free addition) were
randomized in each management type.

Beginning in January 2013 and each month thereaf-
ter, NH4NO3 was quantitatively dissolved in 10 L water
and sprayed evenly onto the forest floor of each plot.
Each control plot received 10 L of N-free water to
control for the effects of water added in the form of
0.3 mm rainfall/year (Song et al. 2015).

Fine root litter collection, decomposition and chemical
analysis

It has been reported that >80 % of the Moso bamboo
roots are localized in the top 30 cm of soil (Zhou and Fu
2004). Fine roots in the top 40 cm of soil were collected
outside the treatment plots in July 2012. At that time, the
fine root biomass was at its annual maximum (Zhou and
Fu 2008). In the laboratory, the roots were cleaned, air-
dried to a constant weight, then cut into approximately
5-cm-long pieces. Subsamples were oven dried at 65 °C
to determine the water, carbon, N, phosphorus (P), and
lignin content of the air-dried samples (Table 1).

The fine root decomposition rate was determined
using the litterbag method (Bloomfield et al. 1993; Lin
et al. 2011). Litterbags were made of polypropylene
10 cm × 10 cm in size and with a 0.1 mm mesh. Five
grams air-dried fine roots were placed in each litter-
bag. In December 2012, eighteen litterbags were
spaced equally in three blocks per plot. In each block
(0.5 m × 1.5 m), the soil was sliced at a 45° angle
down to the mineral horizon at a depth of 15 cm. Six
connected litterbags were inserted at 20-cm intervals
into each incision. There were 432 litterbags used in
the 24 treatment plots.

Three replicate litterbags were retrieved from each
plot (one from each block) after 4, 8, 12, 18, 24, and
36 months. The litterbags were air dried. Soil and other
materials adhering to them were removed from them
with a fine brush and tongs. Fine roots were oven-dried
at 65 °C to a constant weight. Standard methods were
used to determine total carbon, N, P, and lignin concen-
trations. Details can be found in Song et al. (2015).

Data and statistical analysis

The remaining fine root mass in each sample was
expressed as a percentage of the initial fine root dry
weight. We applied first-order exponential decay model
Xt/X0 = e-kt to fit the decomposition data (Olson 1963).
Xt is the net oven-dried weight remaining at time t; X0 is
the initial oven-dried weight; and k is the annual decom-
position rate constant (yr−1).

The amounts of nutrients released from decomposing
fine roots were expressed as percentages of the initial
nutrient content, and were calculated by the eq.
E = [(Mt × Ct)/(M0 × C0)] × 100, where E is the amount
of nutrients released (%); M0 is the initial oven-dried
mass (g); C0 is the initial nutrient concentration (mg g−1);
Mt. is the oven-dried mass at time t; and Ct is the nutrient
concentration at time t. E > 100 indicates nutrient im-
mobilization; and E < 100 indicates nutrient release
(Brandt et al. 2010; Song et al. 2014).

A one-way analysis of variance (ANOVA) and
posthoc multiple comparisons were performed using
the Bonferroni method to determine the statistical sig-
nificance of the differences among the annual decom-
position rates. A two-way ANOVA was applied to de-
termine the effect of combining N deposition and man-
agement practices on the decomposition rates. The data
satisfied the assumption of homogeneity of variance.
Statistical analyses were conducted using SPSS
(Statistical Package for the Social Sciences) 18.0 for
Windows (SPSS Inc., Chicago, Illinois).

Results

Fine root mass loss and annual decomposition rate

In the CM plots (Fig. 1, Table 2), fine root mass was
rapidly lost (48.4–61.8 %) in the first twelve months.
The rate of mass loss then slowed down (eventually to
zero) within the final twelve months. Maximum fine
root mass loss and annual decomposition rate occurred
in the N30 treatment. The decay rate was 10.2 % greater
than that in the control (P < 0.05). The minimum decay

Table 1 Initial fine root chemistry (mean ± SD, n = 6) of Phyllostachys edulis

C (mg g−1) N (mg g−1) P (mg g−1) Lignin (mg g−1) C:N Lignin:N C:P

475.8 ± 19.0 4.1 ± 0.2 0.3 ± 0.01 291.0 ± 8.3 110.7 ± 7.9 70.8 ± 4.2 1568.2 ± 42.6
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rate occurred in the N90 treatment and was 18.4 % less
than that in the control (P < 0.05). No significant differ-
ences were found between the N60 treatment and the
control or the N30 treatment (P > 0.05). In the IM plots,
the fine root mass loss pattern resembled that of the CM
plots. The highest decomposition rate occurred in the
N30 treatment and the lowest in the N90 treatment
(Fig. 1, Table 2).

No significant differences in the fine root decompo-
sition rates were found between the CM and IM plots for
the control and N30 treatments (P > 0.05). The rates
were significantly higher in the CM plots than the IM
plots for the N60 and N90 treatments (P < 0.05)
(Table 2). A two-way ANOVA showed that the N addi-
tion treatments and management practices had signifi-
cant effects both separately and in combination on the
fine root decomposition rates (P < 0.01) (Table 3).

N and P loss dynamics

In the CM plots (Fig. 2), for all four treatments, N was
immobilized within the first eight months of decompo-
sition. The maximum immobilization rate was 143.7 %
and occurred in the N90 treatment. The net N loss was
rapid for twenty-four months, then the rate decreased
thereafter. The fastest fine root N losses occurred under
the N30 and N60 treatments. In the IM plots, N was
immobilized mainly within the first four months. The
maximum immobilization rate was 171.2 % and oc-
curred in the N90 treatment. The net N loss was rapid
for eighteen months, then the rate decreased thereafter.
N loss was fastest for the N30 treatment and the control.

The immobilization rate of P resembled that of N in
the first four months, in both the CM and IM plots, and
under all four treatments. Maximum immobilization
rates of 138.3 % and 173.3 % were found in the CM
and IM plots, respectively (Fig. 3). After the first four
months, the net loss of P was rapid but tended to slow
after eighteen months. In both the CM and IM plots, P
loss was fastest under the N30 treatment and slowest
under the N90 treatment.

Discussion

Fine root decomposition

Although the fine root decay rate was 8.2 % higher in
IM than CM for the N-free treatment, this difference was
not significant (Table 2). Similar effects on leaf litter
decomposition were observed at the same site (Song
et al. 2015). IM practices can increase soil microbe
and enzyme activity, thereby facilitating SOC minerali-
zation (Balesdent et al. 1998; Xu et al. 1998). Our results
indicate that these beneficial effects did not significantly
contribute to differences in fine root degradation.

The low-N treatment (30 kg N ha−1 yr.−1) in-
creased the fine root decomposition rate, particularly
in the CM plots (Table 2). This effect may be attrib-
uted to the N inputs, which improved soil enzyme
activity and N availability (Knorr et al. 2005;
Manning et al. 2008). Nevertheless, high-N inputs
(90 kg N ha−1 yr.−1) significantly decreased fine root
decomposition rates (Table 2). This result is

Fig. 1 Mean and standard deviation (n = 3) of the remaining fine
root mass as a percentage of the initial mass over the 36-monthfine
root decomposition analysis of Phyllostachys edulis in a Moso
bamboo forest under conventional management (CM) and

intensive management (IM) and four treatments: low-N treatment
(N30, 30 kg ha−1 yr.−1), medium-N treatment (N60,
60 kg ha−1 yr.−1), high-N treatment (N90, 90 kg ha−1 yr.−1), and
the control treatment
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consistent with the inhibitory effect of high-N treat-
ment on aboveground leaf litter decomposition
(Song et al. 2015). It was caused mainly by the
suppression of lignin degradation. Excessive N in-
puts inhibit ligninolytic enzyme activity (Fog 1988;
Carreiro et al. 2000; Thirukkumaran and Parkinson
2000; Hobbie et al. 2012). Inorganic N reacts with
lignin and phenolic substances during decomposi-
tion and forms new polymers that are resistant to
degradation (Axelsson and Berg 1988; Berg et al.
2001; Hobbie et al. 2012). In the early stages of
decomposition, soluble- and low molecular weight
compounds are rapidly lost. Thereafter, lignin deg-
radation predominates in the litter decomposition
process (Berg and McClaugherty 2008; Austin and
Ballaré 2010; Manzoni et al. 2010). Thus, the inhi-
bition of lignin degradation by excessive N signifi-
cantly contributes to the negative effects of high-N
inputs on fine root decomposition (Fig. 1). In fact,
the fine roots of Moso bamboo have a high lignin

content (Table 1). Tu et al. (2015) demonstrated the
same decomposition mechanism in Pleioblastus
amarus (Amarus bamboo) fine root.

Two-way ANOVA showed that, individually, N in-
puts and management practices separately altered fine
root decomposition rates significantly. The combination
of the two factors had even stronger effects (Table 3).
The medium-N treatment (60 kg ha−1 yr.−1) significantly
decreased the fine root decomposition rate in the IM
plots but not in the CM plots. One possible explanation
is that the IM plot received high N inputs
(67.5 kg ha−1 yr.−1) from annual fertilization. This extra
N, combined with the medium-N treatment and back-
ground atmospheric N deposition (30–37 kg ha−1 yr.−1)
resul ted in an ini t ia l excessive N input (>
150 kg ha−1 yr.−1) and greater inhibition of fine root
decomposition in the IM plots than the CM plots. The
inhibitory effect in the CM plot only occurred under
high-N treatment (90 kg ha−1 yr.−1). Tu et al. (2015)
reported that simulated N addition (≥ 50 kg ha−1 yr.−1)
combined with high background atmospheric N depo-
sition (95 kg ha−1 yr.−1) significantly decreased fine root
decay in Pleioblastus amarus.

Excessive N inputs can greatly increase soil TN,
losses of NO3

− and cations from the soil solution, and
soil H+ via the NH4

+ nitration reaction (Matson et al.
1999; Xu 2013). These changes resulted in significant
reduction in soil pH in Moso bamboo plantations (Song
et al. 2016), ligninolytic activity (Sinsabaugh 2010; Tu
et al. 2015), soil C availability for microbial decom-
posers (Thirukkumaran and Parkinson 2000), and fine
root decomposition rates.

Fine root nutrient losses

The immobilization or mineralization of N and P de-
rived from decomposing litter generally occur simulta-
neously and are determined primarily by the litter

Table 2 Annual decomposition rate (k-value) calculated using the
first-order exponential decay model (Xt/X0 = e−kt) and correlation
coefficient (R2) for the fine root litter of Phyllostachys edulis under
four treatments and conventional and intensive management in a
Moso bamboo forest

Treatment CM IM

k-value R2 k-value R2

Control 0.49 ± 0.03Ab 0.90 0.53 ± 0.02Aa 0.89

N30 0.54 ± 0.01Aa 0.87 0.56 ± 0.02Aa 0.87

N60 0.52 ± 0.02Aab 0.89 0.45 ± 0.02Bb 0.90

N90 0.40 ± 0.01Ac 0.90 0.34 ± 0.02Bc 0.85

Values represent the means ± SD (n = 3). Different lowercase
letters in the same column indicate significant differences
(P < 0.05) among the N addition treatments. Different capital
letters in the same row indicate significant differences between
management type under the same N addition treatment (P < 0.05)

Table 3 Two-way ANOVA of the effects of N addition and management type on the fine root decomposition of Phyllostachys edulis

Source of variation SS df MS F P-value

N addition 0.1094 3 0.0365 121.537 <0.00001

Management type 0.0028 1 0.0028 9.3889 0.007

Interaction 0.0146 3 0.0049 16.2037 0.00004

Within 0.0048 16 0.0003

Total 0.1316 23
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substrate quality and the microbial decomposer stoichio-
metric requirements (Manzoni et al. 2008, 2010; Xu and
Hirata 2005). A net N or P loss occurs when the
decomposing litter C:N ratio falls below the critical
threshold of 5–15 (Manzoni et al. 2008; Parton et al.
2007) or the C:P falls below 200–480 (Gosz et al. 1973;
Manzoni et al. 2010). When N and P are insufficient in
decomposing litter, microbial decomposers usually
immobilized them from the environment to maintain
stoichiometric homeostasis (Manzoni et al. 2010;
Mary et al. 1996).

In the present study, both the fine root C:N ratio
(110.7) and C:P ratio (1568.2) (Table 1) far exceeded
the critical thresholds, so both N and P were mineral-
ized in the initial stage of root decomposition.

Moreover, in the IM plots, annual fertilization provid-
ed large amounts of N and P, increasing the availabil-
ity of immobilized N and P to microbial decomposers
and resulting in greater N and P mineralization than in
the CM plots. The extra inputs from the high-N treat-
ment also resulted in stronger immobilization than that
observed with the low-N treatment (Figs. 2, 3). With
the immobilization of N and P and the loss of C in the
decomposing roots, the ratios of C:N and C:P declined
and met the stoichiometric requirements of the micro-
bial decomposers. Consequently, a net loss of nutrients
occurred after several months. In the later stages of
decomposition, cumulative N inputs may decrease the
availability of C to microbial decomposers (Andersson
et al. 2004; Thirukkumaran and Parkinson 2000).

Fig. 2 Mean root nitrogen (N, % of initial) and standard deviation
over time in the fine root decomposition of Phyllostachys edulis in
a Moso bamboo forest under conventional management (CM) and
intensive management (IM) and four treatments: low-N treatment

(N30, 30 kg ha−1 yr.−1), medium-N treatment (N60,
60 kg ha−1 yr.−1), high-N treatment (N90, 90 kg ha−1 yr.−1), and
the control treatment

Fig. 3 Mean root phosphorus (P, % of initial) and standard devi-
ation over time in the fine root decomposition of Phyllostachys
edulis in a Moso bamboo forest under conventional management
(CM) and intensive management (IM) and four treatments: low-N

treatment (N30, 30 kg ha−1 yr.−1), medium-N treatment (N60,
60 kg ha−1 yr.−1), high-N treatment (N90, 90 kg ha−1 yr.−1), and
the control treatment
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Moreover, the polymers generated from lignin degra-
dation during excessive N input (Axelsson and Berg
1988; Berg et al. 2001; Hobbie et al. 2012) also limit
N and P losses.

Fine roots and leaf litter are the main plant residue
inputs to forest soil (Van Groenigen et al. 2006). In
Moso bamboo plantations, the roots have much greater
biomass and store far more carbon than do the leaves
(Zhou and Jiang 2004). Therefore, the roots contribute
more carbon and nutrient to the soil than the leaves. Our
previous study in the same site found that Moso bamboo
plantations were still deficient in N and P (Song et al.
2016). Our results suggest that moderate atmospheric N
deposition (<60 kg ha−1 yr.−1, of which <30 kg ha−1 yr.−1

is simulated N addition and <30 kg ha−1 yr.−1 is atmo-
spheric N deposition) may decrease soil C storage but
increaseMoso bamboo productivity by accelerating fine
root and leaf litter decomposition. Excessive atmospher-
ic N deposition (≥90 kg ha−1 yr.−1, of which
60 kg ha−1 yr.−1 is simulated N addition and
30 kg ha−1 yr.−1 is atmospheric N deposition) may
increase soil C storage but decrease Moso bamboo
productivity by inhibiting decomposition. Moreover,
current IM practices will enhance these effects.
Therefore, it is necessary to estimate the impact of
increasing atmospheric N deposition on C sequestration
in Moso bamboo plantations. The combined effects of
anthropogenic management practices and N inputs
should also be considered.

Fine roots were collected only in July when their
annual biomass was the maximum. It is not known
exactly when fine roots start to senesce inMoso bamboo
plantations. The chemistry of the sampled roots may
differ from that of naturally shed roots. To some degree,
this difference might have affected the results of the
present study.
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