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Abstract
Aims Fungi play a central role in litter decomposition, a
key process controlling the terrestrial carbon cycle and
nutrient availability for plants and microorganisms.
Climate change and elevated CO2 affect soil fungi, but
the relative importance of the global change variables
for litter decomposition is still uncertain. The main
objective was therefore to assess the short-term litter
decomposition and associated fungal community in a
global change manipulated temperate heath ecosystem.
Methods The heath had been exposed to 6 years of
warming, elevated atmospheric CO2 and an extended

pre-summer drought. Litterbags with litter from heather
(Calluna vulgaris) and wavy-hair grass (Deschampsia
flexuosa) were incubated in the litter layer for 6 months,
where after we analyzed the litter-associated fungal
community, litter loss, CO2 respiration, and total content
of carbon, nitrogen and phosphorus.
Results Elevated temperature tended to increase litter
decomposition rates, whereas elevated CO2 had no ef-
fect on the process. The pre-summer drought treatment
had a positive impact on litter decomposition, CO2

respiration and fungal abundance in the litterbags, al-
though we observed no major changes in fungal com-
munity composition.
Conclusions The drought treatment during pre-summer
had a legacy effect on litter decomposition as decompo-
sition rates were positively affected later in the year. The
community structure of litter-decomposing fungi was
not affected by the drought treatment. Hence, the legacy
effect was not mediated by a change in the fungal
community structure.
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.
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Introduction

Litter decomposition is a key process in the terrestrial
ecosystem carbon cycle and controls nutrient availabil-
ity for plants and microorganisms. In terrestrial ecosys-
tems, fungi play a central role in litter decomposition
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due to their abilities to produce a wide range of extra-
cellular enzymes that attack complex organic com-
pounds such as lignin, which other organisms are unable
to decompose (Kjøller and Struwe 1982; de Boer et al.
2005). Since the composition of fungal communities are
known to shift due to climate change (Zhang et al. 2005;
Yuste et al. 2011) and elevated atmospheric CO2 (Drigo
et al. 2008; Anderson et al. 2013), these global change
factors can potentially alter litter decomposition and
thereby ecosystem carbon and nutrient turnover
(Couteaux et al. 1995; Aerts 1997).

Although previous studies have investigated factors
controlling litter decomposition, the relative importance
of global change variables on decomposition remain
uncertain. For example although increased temperature
can stimulate litter mass loss (van Meeteren et al. 2008;
Andresen et al. 2010; Incerti et al. 2011) possibly as a
result of increased microbial activity (van Meeteren
et al. 2008), the positive effect of warming is reduced
when soil moisture becomes limiting for microbial ac-
tivity (Bontti et al. 2009; Butenschoen et al. 2011).
Similarly, interactive effects of soil moisture and
warming can reduce fungal abundance and activity
(Allison and Treseder 2008). In connection with these
observations, periodic drought has been shown to de-
crease litter decomposition (van Meeteren et al. 2008;
Andresen et al. 2010; Sanaullah et al. 2012) probably
due to reduced microbial activity (Jensen et al. 2003;
Emmett et al. 2004; Selsted et al. 2012) and reduced
enzyme activity (Toberman et al. 2008). Furthermore,
drought can shift the microbial community towards a
higher fungal dominance compared to bacteria (Yuste
et al. 2011; Haugwitz et al. 2014).

The impact of elevated CO2 on litter decomposition
and litter respiration rate does not show consistent pat-
terns (Norby et al. 2001; Liu et al. 2009), but the effect is
considered to be plant-mediated through the general
nutrient status of the plants and for example the lignin
to N ratio of the plant litter (Cotrufo et al. 1998; Norby
and Cotrufo 1998). In addition, elevated CO2 can alter
soil fungal community composition and increase fungal
abundance, which also has a potential to change litter
decomposition (Drigo et al. 2008; Anderson et al. 2013).
Taken together, the global change effects on litter de-
composition are complex with no emerging, consistent
patterns, when considering the interactions between
global change factors.

Here, we investigated the short-term litter decompo-
sition and the associated fungal community in a heath

ecosystem that had been subjected to 6 years of
warming, elevated CO2 and pre-summer drought.
Litterbags with litter of two dominant temperate heath
plants, Calluna vulgaris and Deschampsia flexuosa,
were incubated in the litter layer for 6 months followed
by analyzing the decomposed litter with a combination
of a molecular description of the litter-associated fungal
community, litter loss, microbial CO2 respiration, and
total carbon (C), nitrogen (N) and phosphorus (P) con-
tent of the litter. Increased temperature can directly
affect microorganisms and stimulate activity (van
Meeteren et al. 2008), whereas positive effects of ele-
vated atmospheric CO2 on microorganisms are mostly
mediated through plant roots (Drigo et al. 2008;
Anderson et al. 2013). Consequently, we hypothesized
that (H1) warming would stimulate the litter
decomposing fungal community most strongly, that
(H2) the positive effects of elevated CO2 on litter de-
composition would be less pronounced and (H3) that the
pre-summer drought treatment has a legacy effect on
litter decomposition in autumn and early winter due to
drought mediated changes in the composition of the
litter-degrading fungal communities. Taken together,
this experiment enabled us to investigate single-factor
and interactive effects of increased temperature, elevat-
ed CO2 and pre-summer drought periods on litter de-
composition in a mixed grass- and shrubland.

Materials and methods

Site description and experimental setup

The CLIMAITE experiment is a temperate mixed grass-
and shrubland on nutrient poor, sandy soil located in
Denmark (55°53′N, 11°58′E). The mean annual temper-
ature at the site is 8.5 °C and the annual precipitation
averages 600 mm. The soil consists of 71.5 % sand,
20.5 % coarse sand and 2.2 % clay (Nielsen et al. 2009)
and the average pH in the top soil (0–5 cm) is 4.9. The
perennial grass Deschampsia flexuosa (L.) and the ev-
ergreen dwarf shrub Calluna vulgaris (L.) dominate the
dense vegetation, which also includes a scattered distri-
bution of mosses and herbs.

The climate change experiment was initiated in
October 2005 with the intent to simulate the climate
change scenario for Denmark within the next 70 years.
The global change treatments were elevated atmospher-
ic CO2 (CO2), increased temperature (T) and extended
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drought (D). All treatment combinations were included
in the experiment: CO2 and drought (DCO2), CO2 and
temperature (TCO2), temperature and drought (TD) as
well as CO2, temperature and drought (TDCO2). This
resulted in seven treatments and an ambient untreated
reference plot (A) all with six replicates, giving a total of
48 plots (Fig. S1a).

The experimental setup and climate change manipu-
lations have previously been described by Mikkelsen
et al. (2008). In brief, the atmospheric CO2 was elevated
by Bfree air CO2 enrichment^ (FACE ) technique
from 380 ppm to 510 ppm, whereas temperature
was increased by passive night-time warming by
0.60 ± 0.01 °C at the soil surface (Fig. S2b). The
experimental drought period was induced by curtains
to exclude all precipitation during late spring and early
summer each year since 2006 (Mikkelsen et al. 2008)
and was continued for four to 5 weeks until the soil
water content was below 0.05 m3 m−3 in the top 20 cm
(Fig. S2a). In 2011, the drought period was from the 2nd
of May to 3rd of June (Fig. S2b).

Litterbag experiment

Dead standing litter ofC. vulgaris (leaves and branches)
andD. flexuosa (leaves) were collected at the field site in
early spring, but outside of the treated areas in order to
provide similar litter to all litter bags. The litter was
dried at 70 °C, put in a sieve and dipped in 70% ethanol
(2–5 s) to surface sterilize the litter. The sterilization
enables us to test if differences in the fungal communi-
ties under the different treatments will influence litter
decomposition rates. Immediately thereafter the litter
was washed four times in double demineralized water
(ddH2O) and finally re-dried at 70 °C. Because the
relative mass of C. vulgaris is higher than that of
D. flexuosa due to e.g. lignified branches, the litter was
mixed based on volume in a 1:1 ratio, which
corresponded to the even distribution of the plants at
the experimental site, using two 5 L glass jars. After
mixing, the litter was fragmented to fit into litterbags of
13 × 13 cm. The mesh size of the bags was 50 μm,
which allowed in-growth of fungal hyphae, but not of
plant roots and each litterbag consisted of 4–5 g dry
litter. Because it rained 18.2 mm previously the same
day as the litterbag incubation started (Fig. S2a), the
litterbags were rewetted before they were placed in the
litter layer to reduce the moisture gradient between the
litter inside the litterbags and the litter in the plots. Three

litterbags were incubated in each plot for 6 months (July
2011 to January 2012) underneath a mixed plant com-
munity of the two dominant species C. vulgaris and
D. flexuosa where we presume UV radiation to have a
negligible effect on litter degradation rates (Fig. S1b).
Also, since the litterbags were incubated in the litter
layer on top of the soil, the litterbags had not been
exposed to the mineral soil and did not contain visible
soil particles, we did not use ash-correction of the col-
lected litter (Harmon et al. 1999).

After collecting the litterbags, the litter was weighed,
and put into 119 ml air tight glass flasks, which were
stored in a cooling room at 5 °C overnight, where after
the CO2 respiration wasmeasured to assess the microbial
activity in the litterbag after 6 months incubation. The
CO2 respiration measurements were done at 5 °C which
corresponded to the air temperature in the field at the
sampling day. Headspace samples (3ml) were takenwith
a syringe from each flask at 0 h, 3 h and 6 h and
transferred to 3-ml vials (Exetainer, Labco, Ceredigion,
UK) from which the CO2 concentration was measured
within 5 days on a gas chromatograph (HP 5890,
Agilent, Santa Clara, CA, USA). Afterwards the contents
of the three litterbags from each plot were combined and
homogenized and subsamples were taken for water con-
tent determination, DNA analyses, and nutrient analyses.

Litter analyses

Total litter C and N were determined on freeze-dried
litter using a LECO TrueSpec™ CN analyzer (LECO
Corporation, St. Joseph, MI, USA). Total soil P was
analyzed by digesting 100 mg freeze-dried litter in
H2SO4 with Se as catalyst and then analyze the samples
by the molybdenum blue method on a FIAstar 5000
(Jonasson et al. 1996).

A subsample of 5 g fresh litter was extracted for 1 h
in 25 ml demineralised water to recover dissolved or-
ganic C (DOC). All extracts were filtered through
Whatman GF-D filters and frozen until DOC was ana-
lyzed using a Shimadzu TOC-5000A total organic C
analyser (Shimadzu, Kyoto, Japan).

DNA extraction, PCR and sequencing of fungal ITS

DNAwas extracted from 0.5 g freeze dried litter, using a
genomic mini spin kit for universal DNA isolation
(A&A biotechnology, Gdynia, Poland) with a standard
protocol (Yu and Mohn 1999).
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The primers gITS7 (Ihrmark et al. 2012) and ITS4
(White et al. 1990) were used to amplify the ITS2 region
of the fungal rDNA, and the PCR amplifications were
performed in two steps. The first step was done using
illustra™ puReTaq Ready-To-Go PCR Beads (GE
Healthcare, United Kingdom) only added primers (300
nM gITS7 and ITS4) and template DNA (1 μl). The
PCR conditions for the fungal ITS primers were 95 °C
for 2 min; 30 cycles of 95 °C for 30 s, 56 °C for 30 s,
72 °C for 30 s, followed by 72 °C for 5 min. After the
PCR amplifications, the samples were kept at 70 °C for
3 min and then placed on ice. Thereafter the PCR
products were separated on a 1 % agarose gel followed
by gel purification by the Montage Gel extraction kit
(Millipore, Billerica, MA, USA). The second PCR step
was done using primers with tags and adapters and each
30 μl reaction contained 5 μl of 5 × Phusion HF Buffer,
1 μl of dNTP mix, tagged ITS4 primer (final concentra-
tion 600 nM), gIT7 primer (final concentration 300 nM),
0.25 μl DNA polymerase (Phusion Hot Start DNA
polymerase (Finnzymes Oy, Espoo, Finland)) and 1 μl
template DNA. The conditions for this PCR were 98 °C
for 30 s; 12 cycles of 98 °C for 5 s, 56 °C for 20 s, 72 °C
for 20 s followed by 72 °C for 5 min.

After separating the tagged PCR products on a gel
and purifying them as above, the concentration of PCR
products from all tagged samples were measured by
Qubit® Fluorometer (Thermo Fisher Scientific,
Waltham, MA, USA) and pooled for sequencing on a
GS FLX titanium platform (Roche).

Real-time quantitative PCR

Fungal abundance in the litterbags was quantified using
20 μL SYBR Green reactions on Mx 3000 (Stratagene,
Cedar Creek, Texas) and the quantitative PCR (qPCR)
targeted the ITS2 region by the fungal primers fITS9
(Ihrmark et al. 2012) and ITS4 (White et al. 1990). All
qPCR reactions were run in technical duplicates and
contained 10 μL of Brilliant SYBR Green III QPCR
Master Mix (Stratagene, Cedar Creek, TX, USA), 1 μL
forward primer (final concentration 385 nM), 1 μL re-
verse primer (final concentration 385 nM), 1 μL template
DNA, and 7 μL ddH2O. The qPCR program combined
the annealing and extension step (Fierer et al. 2005):
95 °C for 3 min followed by 40 cycles of 95 °C for
10 s, 60 °C for 20 s, and a final dissociation curve. The
standard curve was generated from a plasmid containing
ITS amplified from Pilidium concavum (Desm.) Hoehm.

DNA sequence analyses

The fungal ITS-sequences were processed using the
bioinformatic pipeline SCATA (http://scata.mykopat.
slu.se). Sequences were trimmed and filtered based on
an average read quality of 20 and a minimum sequence
length of 150 bp, and sequences missing one of the ITS
primers were removed. The sequences were clustered
into operational taxonomic units (OTUs) corresponding
to species level (1.5 % distance in single-linkage
clustering) and all singletons were removed, be-
cause they have been shown to contain a high
number of technical artefacts (Unterseher et al.
2011). Afterwards an evenly sampled OTU table
was generated by randomly picking 930 sequences
from each sample, which was the highest subsam-
ple size in which all samples could still be present.
The final data set consists of 321 fungal OTUs.
For identification of the OTUs, representative se-
quences from each cluster were compared to ref-
erence databases; the UNITE database (Abarenkov
et al. 2010) and NCBI’s DNA sequence database using
the BLASTn algorithm.

Statistical analyses

All data distributions were visually checked for variance
homogeneity based on residual plots and where needed
the data were log-transformed. We used the PROC
MIXED procedure (a mixed analysis of variance
(ANOVA)) in SAS 9.3 (SAS Institute Inc., Cary, North
Carolina, USA) to test the effects of elevated CO2,
temperature and drought and their interactions (all
assigned as fixed effects) on litter, CO2 respiration and
fungi. Block and octagon (Fig. S1a) were set as random
factors to account for the spatial variation at the
experimental site. All non-significant terms with P-
values above 0.25 were successively removed from
the models, starting with the terms with the
highest P-value, to the extent that it improved the
model. All significant (P < 0.05) values are reported in
figures and tables.

The treatment effects on the fungal community com-
position were analyzed by principal component analysis
(PCA) of the relative abundance of fungal species
(OTUs) in the litterbags after incubation. The PCA
was performed in CANOCO (Microcomputer Power,
Ithaca, New York, USA) and included all 48 plots and
351 fungal OTUs.
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Accession numbers

The fungal ITS sequences have been deposited in MG-
RASTwith accession number 9969.

Results

The litterbags were incubated from July to January and
therefore not during the period of the experimental pre-
summer drought treatment (Fig. S2a) and at the time of
sampling, there was no significant difference in the
volumetric water content in the litterbags between the
global change manipulations (Table 1).

Litter decomposition and microbial CO2 respiration

After incubation for 6 months the percentage of litter
mass loss was 47.7 ± 1.2 % in ambient plots (Table 1).
Litter mass loss was highest in litterbags that were
incubated in drought plots (F = 4.94, P < 0.05), but less
pronounced when combined with elevated CO2 (D x
CO2 interaction F = 8.36, P < 0.01). In accordance,
litterbags from the drought plots had the highest CO2

release (F = 8.93, P < 0.01) (Table 1), thus showing that
the largest respiration was from litterbags with the
highest decomposition (Fig. 1). Increased temperature
and elevated CO2 did not affect litter decomposition and
microbial CO2 respiration (Table 1).

Litter C, N and P content

The concentrations of total C and dissolved organic C in
litter after 6 months of incubation were not affected by
the global change manipulations (Table 1). Likewise,
there was no change in the concentration of total N and
the C:N ratio of the remaining litter did not differ be-
tween the global change manipulations (Fig. 2c and d).
The total P concentration (mg P g−1 litter) tended to
decrease when litterbags were incubated in drought
plots (F = 4.03, P < 0.05), and this effect was even more
pronounced when drought and elevated CO2 were com-
bined (F = 9.72, P < 0.01) (Fig. 2b).

Fungal community

In agreement with litter loss andmicrobial CO2 respiration
the abundance of fungal ITS sequences were higher in
litterbags incubated in drought plots (F = 5.45, P < 0.05, T
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Fig. 2a), although there was no significant correlation
between fungal ITS copy number and litter mass loss
(Fig. S3). Furthermore, the fungal community composi-
tion in litterbags from the drought plots was not

distinguishable from other treatments (Fig. 3) and taken
together, the principal component analysis (PCA) did not
show any clear correlation between overall fungal species
composition and the global changemanipulations (Fig. 3).

After the litterbag incubation, the fungal community
was largely dominated by Ascomycetes followed by
Basidiomycetes and Zygomycetes (Table 2). Elevated
CO2 further decreased the relative abundance of
Basidiomycetes (F = 4.69, P < 0.05) relative to
Ascomycetes (F = 6.34, P < 0.05) in the litterbags
(Table 2), which was likely a result of a higher relative
abundance of especially Hypocreales (F = 9.57,
P < 0.01, Table 2), an order mostly dominated by
Trichoderma and Fusarium species (Table S1).
Litterbags incubated in the drought plots had an in-
creased relative abundance of Sphaerobolus species
(Geastrales) (F = 4.13, P < 0.05, Table 2) (Table S1),
whereas Coniochaetales species decreased (F = 5.70,
P < 0.05, Table 2).

Fig. 1 Relationship between CO2 respiration rates and litter loss
(%) after 6 months of incubation of litterbags at these global
change treatments: A ambient, CO2 elevated CO2 concentration,
T increased temperature,D extended drought, and combinations in
a complete factorial design. Error bars indicate standard error of
the mean (n = 6)

a b

c d

Fig. 2 Abundance of fungal ITS copies (a), total litter content of
phosphorus (b), nitrogen (c) and the litter C to N ratio (d) in
litterbags after 6 months of incubation at the following global
change treatments: A ambient, CO2 elevated CO2 concentration,

T increased temperature,D extended drought, and combinations in
a complete factorial design. The columns are mean ± SE and the
statistical significant effects of the treatments (mixed ANOVA) are
indicated: *P < 0.05; **P < 0.01
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Discussion

Climate effects on litter decomposition

In this field experiment, we investigated effects on
short-term litter decomposition rates and the associated
fungal community following 6 years of global change
treatments. We were surprised to find that the legacy
effects of pre-summer drought were more pronounced
than either warming or elevated CO2 treatments. The
increased litter decomposition rates (except when com-
bined with elevated CO2) and higher CO2 respiration
rates from the litterbags in plots previously subjected to
the drought treatment contrasted direct drought effects
on litter decomposition in similar ecosystems (Emmett
et al. 2004; van Meeteren et al. 2008).

Extended pre-summer drought has previously been
shown to reduce litter decomposition at our experimen-
tal site (Andresen et al. 2010). In that study, litterbags
were incubated for six and 12 months after the global
change manipulations had been running for 2 years,
whereas after 5 years of treatments significantly more

ITS copies in drought treated soils compared to soils in
the ambient control plots (Haugwitz et al. 2014). This
was further supported by the present study, where we
found an increased abundance of fungal ITS copies in
the incubated litterbags from the drought plots. Also,
van Meeteren et al. (2008) found an increased microbial
biomass C in litterbags in drought treated plots at a
Dutch heathland, but that was concurrent with a de-
crease in litter decomposition rates.

Our litterbags exclude animals larger than 50 μm.
Thus, degradation of the litter is related to the activity of
fungi and microfauna (and maybe to a small extent to
bacteria) and not to the enchytraeids, mites and spring-
tails present in the belowground food web at the study
site (Andresen et al. 2011). Springtails and mites are
important grazers of fungi and enhance litter degrada-
tion by contributing to fragmentation of the litter
(Seastedt 1984; Faber 1991). However, arthropods are
not prone to desiccation (Manzoni et al. 2012;
Holmstrup et al. 2013). In contrast drought has been
found to decrease the adundance of enchytraeids at our
study site (Maraldo et al. 2010), although the
enchytraeid communities recovered within 2 months of
the pre-summer treatment (Maraldo and Holmstrup
2009). Thus, the higher litter degradation rates caused
by a higher abundance of fungi in the litterbags in the
drought plots are not likely due to a decreased grazing of
the fungal biomass.

Increased temperature did not significantly affect
litter decomposition, which was in contrast with our
initial expectations (H1) and with previous studies
where litter decomposition is stimulated by warming
(van Meeteren et al. 2008; Bontti et al. 2009;
Butenschoen et al. 2011; Incerti et al. 2011). Similar to
this result, there was no effect of elevated CO2 on litter
decomposition and H2 was therefore rejected.

Global change effects on litter-associated fungal
community

In contrast to litter decomposition rates, the community
structure of fungal species (OTUs) remained unchanged
after 6 years of global change treatments compared to
the ambient plots thus rejecting H3 (Fig. 3). Since the
litter quality in the litterbags is the same in all plots, the
faster litter decomposition rates in drought-treated
plots suggest that the litter colonizing fungi have
adapted to drier conditions. Even though litter-associated
microorganisms in general have a lower water-stress
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The first axis (12.2 %) and the second axis (9.9 %) explained
22.1 % of the variation in the abundance of fungal OTUs
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threshold compared to soil microorganisms (Manzoni
et al. 2012), drought-resistant fungi have been found to
control organic matter decomposition in Mediterranean
ecosystems with experimental exclusion of precipitation
(Yuste et al. 2011), thus supporting our suggestion.

Despite no clear changes in the fungal community
composition were evident as a result of global change
manipulations, we did find a higher overall abundance
of the order Geatrales in the litterbags from the drought-
treated plots (Table 2). The order consisted of
Sphaerobolus species and the most dominant of these
species was identified as Sphaerobolus stellatus, which
has been shown to decompose lignin (Robinson et al.
1993). Thus, the increased abundance of S. stellatus
could explain the higher decomposition in the litterbags
in the drought-treated plots, although the species was
not big enough to show clear treatment effects on the
overall community structure.

At phylum level, the fungal community composition
in the litterbags was not affected by drought or increased
temperature, but by elevated CO2 resulting in a relative
higher abundance of Ascomycetes compared to
Basidiomycetes (Table 2). It is generally accepted that
the early stages of litter decomposition are dominated by
Ascomycetes with Basidiomycetes dominating later
(Frankland 1998) and this finding could thus indicate
that elevated CO2 may have changed the rate of
succession of litter-degrading fungi. A change that
could have long-term effects on litter decomposition in
the ecosystem, since Ascomycetes have a lower litter-
decomposing capacity compared to Basidiomycetes
(Osono and Takeda 2002).

Consequences of future climate on litter decomposition

Fungi are the main contributor to decomposition in this
ecosystem (Haugwitz et al. 2014), both because fungi
are better adapted to low soil pH and they cope better
with extended drought periods than, for example, bac-
teria (Frey et al. 1999; Khalvati et al. 2005; Yuste et al.
2011; de Vries et al. 2012; Manzoni et al. 2012; Barnard
et al. 2013). In this study, 6 years of extended pre-
summer drought increased the short-term litter decom-
position after the drought treatment ended, although the
community structure of litter-decomposing fungi
remained intact. Hence, we suggest that the legacy effect
of drought was mediated by drought-adaptation of the
fungal community or smaller changes in the distribution
of less frequent fungal species.

Grass- and shrub-dominated ecosystems are wide-
spread and a large fraction of these is expected to expe-
rience decreased precipitation and possibly more intense
drought periods in the future (Christensen and
Christensen 2007; IPCC 2007; Gonzalez et al. 2010;
Trenberth et al. 2014), which can reduce plant produc-
tivity (Penuelas et al. 2004). Since these ecosystems are
nutrient limited, drought-induced changes in turnover of
organic material to periods, where plants are less active,
could potentially decrease nutrient availability during
the growing season and increase the risk of nutrient loss
by leaching in the winter period. Although we only
analyzed the short-term litter decomposition, these find-
ings are a valid contribution to understanding the impli-
cations of global change for grass- and shrub dominated
ecosystems.
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