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Abstract
Aims The objectives of this study were to determine the
spatial structure of soil respiration (Rs) in a naturally-
regenerated longleaf pine forest and to assess the ecologi-
cal factors affecting the spatial variability in Rs.
Methods Soil respiration, soil temperature (Ts), and soil
moisture were repeatedly measured over 6 days in sum-
mer 2012 in 3 semi-independent plots. Edaphic, forest
floor, and root variables were measured. Diameters of
338 trees were mapped. Spatial analysis and regression
were applied.
Results Soil respiration was spatially autocorrelated
across plots (66—92 m), but not within plots (6—
34 m). Spatial distributions of Rs were relatively stable

frommorning through early evening and were decoupled
from temporal variation of Ts. Ecological covariates (e.g.,
soil moisture, bulk density and carbon, litter mass, un-
derstory cover, roots, nearby trees) related to the spatial
variability in Rs; however, models varied between plots.
Conclusions This study shows the importance of sta-
tionary plant and soil factors in determining the spatial,
temperature-independent distribution of Rs in a
heterogeneous forest. We suggest the need for a better
understanding of the complex interactions between the
heterotrophic, autotrophic, and physical processes driv-
ing Rs in order to better model forest carbon budgets.

Keywords Pinus palustris . Soil CO2 efflux . Residual
kriging . Soil carbon . Root biomass . Litter

Introduction

Soil respiration (Rs) is the sum evolution of CO2 re-
spired from the activity of roots, mycorrhizae, and mi-
croorganisms within both the root-affected rhizosphere
and the bulk soil (Raich and Nadelhoffer 1989; Bahn
et al. 2010). Autotrophic and heterotrophic activity are
affected by biotic and abiotic factors to varying degrees,
thus causing temporal and spatial variability in Rs
(Lavigne et al. 2003; Ruehr and Buchmann 2010;
Chen et al. 2011). Soil temperature (Ts) is generally
the most important factor influencing the seasonal
changes in Rs as it increases both heterotrophic and
autotrophic activity during the warmer growing seasons
(Fang et al. 1998; Maier and Kress 2000; Davidson et al.
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2006; DeForest et al. 2006; Ruehr and Buchmann
2010), but Ts often fails to explain the spatial variation
in Rs within forests (Søe and Buchmann 2005; Vande
Walle et al. 2007; Geng et al. 2012). Soil temperature
and Rs have also been found to be related on a diel basis.
As examples, over a 24-h period, Ts and Rs were related
in a Canadian boreal forest (Rayment and Jarvix 2000),
in a Zimbabwemiombo forest (Merbold et al. 2011), and
in a Siberian Scots pine (Pinus sylvestris L.) forest
(Shibistova et al. 2002).

Plant and soil factors, on the other hand, can directly
affect the spatial variability of Rs within a forest. The
allocation of photosynthates to roots increases autotro-
phic respiration; root exudates increase heterotrophic
respiration within the rhizosphere; and litterfall quantity
and quality increases heterotrophic respiration in surface
soil layers (Bahn et al. 2010; Metcalfe et al. 2011).
Belowground edaphic factors also exert spatial influ-
ence upon Rs, such as soil moisture, pH, bulk density,
and soil carbon (Vande Walle et al. 2007; Luan et al.
2012; Fóti et al. 2014), and these edaphic variables are
not independent of plant, root, and litter distribution in
forests. For instance, the interaction between precipita-
tion and trees, specifically throughfall and stemflow,
affects the spatial variability of soil moisture in forests
(Bryant et al. 2005). Trees can also affect soil nutrients,
soil microbial community composition, and soil proper-
ties such as pH and bulk density (Zinke 1962; Vetaas
1992; Weber and Bardgett 2011; Lavoie et al. 2012).
Suchewaboripont et al. (2015) found that spatial pat-
terns in Rs were related to both edaphic and plant factors
in an old-growth beech-oak forest in Japan, highlighting
the interplay between autotrophic and heterotrophic
mechanisms. In contrast, Ferré et al. (2015) concluded
that tree growth maps alone may be enough to accurate-
ly stratify the spatial variability in Rs in plantations, and
Fang et al. (1998) suggested that heterotrophic respira-
tion alone was the most important factor in predicting
spatial distribution of Rs in a slash pine (Pinus elliottii
Engelm.) plantation.

After historical degradation from logging, turpentine
extraction, grazing and fire suppression (Noss 1988),
longleaf pine (Pinus palustrisMill.) ecosystems are now
being restored throughout the southeastern United
States to provide ecosystem services, such as rare spe-
cies habitat and biodiversity conservation (Jose et al.
2006; Mitchell et al. 2006). These restoration efforts
have given rise to an impetus for research into the
environmental and ecological controls of forest and soil

carbon dynamics in longleaf pine forests (e.g.,
Samuelson et al. 2014; ArchMiller and Samuelson
2016). Naturally-regenerated longleaf pine forests are
characterized by a spatially heterogeneous structure of
the canopy, understory, and soils (Noss 1988; Battaglia
et al. 2002; Lavoie et al. 2012). Longleaf pine forests
depend upon prescribed fire to reduce succession by
other trees, maintain herbaceous understory niches,
and expose mineral soil to facilitate seedling regenera-
tion (Noss 1988; Brockway and Lewis 1997). The
frequency and intensity of fire can affect the spatial
structure and chemistry of soil (e.g., higher soil nutrient
loads in relation to tree trunks) and the composition of
midstory and understory plant species (Lavoie et al.
2012; Lashley et al. 2014). Canopy gaps in longleaf
pine forests affect light availability to the forest floor
and results in spatial variability in above- and below-
ground biomass of understory plants (McGuire et al.
2001). Longleaf pine rooting zones extend well beyond
the extent of the canopy (Heyward 1933; Hodgkins and
Nichols 1977), which creates a mosaic of woody and
herbaceous roots throughout longleaf pine forests.
Furthermore, the spatial distribution of lateral roots is
related to the competitive position of trees within the
forest, and the shape of the rooting zone outward from
the stem is influenced by the presence of other trees
(Hodgkins and Nichols 1977). Additionally, nitrogen-
fixing legumes, which are common in longleaf pine
forests, affect the spatial distribution of soil nitrogen
and decomposition rates of litter (Vetaas 1992). Thus,
spatial variability of Rs in naturally-regenerated longleaf
pine forests may be greater than expected based on Rs
studies of southeastern conifer plantations (e.g., Fang
et al. 1998).

The objectives of this study were to first quantify the
spatial structure of Rs in a longleaf pine forest and
second explore which ecological factors (Table 1) are
key determinants of spatial variability in Rs. The study
was conducted in a 64-year-old, naturally-regenerated
longleaf pine forest and designed to isolate the temper-
ature-independent, spatial variability in Rs. Soil respira-
tion and related covariates were systematically mea-
sured in 75 regularly spaced locations split between
3 semi-independent plots 3 times per day during 6 days.
It was expected that Rs would exhibit positive spatial
autocorrelation because of the heterogeneous distribu-
tion of trees, whichwas shown to be positively related to
Rs in longleaf pine forests (ArchMiller and Samuelson
2016). We tested the hypothesis that multiple linear
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regression using a comprehensive set of biophysical
parameters would be sufficient to explain the spatial
variability in Rs. Alternatively, if regression was insuf-
ficient, thus leaving spatially autocorrelated residuals
and violating linear regression assumptions (Wheeler
and Tiefelsdorf 2005), residual kriging, which

incorporates spatially autocorrelated residuals with an
empirical residual variogram model, would be applied
to incorporate the spatial dependence of Rs (e.g., Wu
and Li 2013). Furthermore, because the spatial distribu-
tion of plant and soil factors influence the autotrophic
and heterotrophic components of Rs (e.g., Vande Walle
et al. 2007; Luan et al. 2012; Fóti et al. 2014), we
hypothesized that stationary ecological factors (e.g.,
litter mass, root biomass, understory vegetation cover,
nearby trees) would positively relate to spatial patterns
of Rs within the forest, while daily fluctuating factors
(i.e., Ts and soil moisture) would influence the temporal
variability in longleaf pine Rs.

Methods

Site description

The study site was located at Fort Benning Military
Base near Columbus, Georgia (Fig. 1). The climate in
this area has a meanmaximum temperature of 24.6 °C, a
mean minimum temperature of 18.7 °C, and a mean
annual precipitation of 1187 mm (1981–2010 Normals)
(National Climatic Data 2015a). The stand used for this
study was in a naturally-regenerated, even-age 64-year-
old longleaf pine forest located on the Alabama property
of Fort Benning (32° 19.142’ N, −85° 0.514’ W, 97 m
A.S.L.), and was previously described in Samuelson
et al. (2014). Soils at this stand were classified by the
United States Department of Agriculture as complexes
of loamy, kaolinitic, thermic Grossarenic Kandiudults;
fine, mixed, semiactive, thermic Typic Hapludults; and
fine-loamy, kaolinitic, thermic Typic Kanhapludults
(i.e., Troup-Springhill-Luverne complexes) (Soil
Survey Staff 2014). These complexes are typically very
deep, well to excessively drained loamy fine sand or
loamy sand soils on side slopes (10–30 % slopes) (Soil
Survey Staff 2014). Soil texture consisted of 79 % sand,
8.5 % silt, and 12.5 % clay (Samuelson et al. 2014), and
associated wilting point, field capacity, and saturation
were 9.8, 18.2, and 41.5 % volumetric soil moisture,
respectively (Oram and Nelson 2014). The stand was
last burned in the winter of 2010 and was maintained on
an approximately 3-year burning cycle.

The experimental design consisted of three 24 m by
24m plots positioned over a gradual 10m topographical
gradient (Fig. 1). Within each plot, 25 1 m2 Rs sampling
subplots (hereafter Bsubplots^) were laid out evenly in a

Table 1 Abbreviations and units of all measured ecological var-
iables by category

Variable Units Abbreviation

Edaphic variables

Soil respiration μmol m−2 s−1 Rs

Soil temperature °C Ts

Soil moisture % θ

pH – pH

Soil bulk density g cm−3 BD

Carbon Mg ha−1 C

Organic matter Mg ha−1 OM

Nitrogen Mg ha−1 N

Phosphorus Mg ha−1 P

Calcium Mg ha−1 Ca

Potassium Mg ha−1 K

Magnesium Mg ha−1 Mg

Aluminum Mg ha−1 Al

Forest floor variables

Litter mass Mg ha−1 LM

Total cover % TC

Woody cover % Woody

Forb cover % Forb

Legume cover % Legume

Vine cover % Vine

Graminoid cover % Grass

Root variables

Live very fine root biomass Mg ha−1 VF Root

Live fine root biomass Mg ha−1 F Root

Live coarse root biomass Mg ha−1 C Root

Live very coarse root biomass Mg ha−1 VC Root

Dead coarse root biomass Mg ha−1 CD Root

Dead very coarse root biomass Mg ha−1 VCD Root

Buried coarse woody debris Mg ha−1 BCWD

Stand structural variables

Total DBH within r-radius cm tDBH-r

Mean DBH within r-radius cm mDBH-r

Number of trees within r-radius – tNum-r

Tree basal area of Rs collar m2 ha−1 BAcollar

Distance to nearest tree m NNdist
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5 by 5 grid with 6 m spacing between subplot centroids.
At the center of each subplot, an Rs collar (PVC, 10 cm
diameter, 4.5 cm depth) was installed into the ground
through the standing litter and to a consistent 2.5 cm
depth of mineral soil. In July 2012, all trees taller than
2 m height with diameter at breast height (DBH, 1.37m)
greater than 1 cm were inventoried within 8 m of each
Rs collar and classified as mature (DBH ≥10 cm) or
saplings (DBH <10 cm; Fig. 1). The three plots ranged
in mature longleaf pine basal area from 8.0 to 10.3 m2

ha−1, sapling longleaf pine basal area from 0.2 to 0.7 m2

ha−1, and in total basal area from 11.5 to 15.1 m2 ha−1

(Table 2). Density of mature and sapling longleaf pine
trees ranged from 79 to 125 trees ha−1 and 85 to 373
trees ha−1, respectively, among plots (Table 2). Mean
DBH of mature longleaf pine trees ranged from 19.0 to
36.1 cm among plots and mean plot-level DBH of
sapling longleaf pine trees ranged from 4.5 to 5.0 cm
(Table 2). Other pine species present in these stands
included mature and sapling loblolly pine (P. taeda L.)

Fig. 1 (Left) Plots established within a 64-year-old longleaf pine
in eastern Alabama (inset map). Each plot contained a 5 by 5 grid
of 25 Rs collars spaced 6 m apart. (Right) The location and
diameter classes of longleaf pine (LLP), other pine (OP), and

hardwood tree species (HWD) within each tree survey extent. Tree
diameters are not to scale. Aerial imagery from Bing Maps and
10 m DEM contour lines downloaded from Geospatial Data
Gateway (January 16, 2015; www.datagateway.nrcs.usda.gov)
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Table 2 Basal area (m2 ha−1), tree density (trees ha−1), and mean diameter at breast height (DBH; cm) of longleaf pine (LLP), other pine
(OP), and hardwood (HWD) tree species by diameter class measured in a 64-year-old longleaf pine forest

Plot 1 Plot 2 Plot 3

Species Size BA Density DBH BA Density DBH BA Density DBH

LLP Mature 10.3 85 19.0 8.0 79 35.1 13.2 125 36.1

Sapling 0.4 203 5.0 0.7 373 4.6 0.2 85 4.5

OP Mature 4.1 66 26.4 2.7 33 29.8 – 0 –

Sapling 0.1 33 4.7 0.1 52 4.0 – 0 –

HWD Mature – 0 – – 0 – – 0 –

Sapling 0.2 662 1.9 <0.1 79 2.0 0.1 341 1.9

Total – 15.1 1049 7.0 11.5 616 9.5 13.5 551 10.0

Inventoried trees were taller than 2 m in height with DBH > 1 cm. Diameter classes include mature (DBH ≥ 10 cm) and saplings (DBH
< 10 cm)

http://www.datagateway.nrcs.usda.gov/


and shortleaf pine (P. echinata Mill.), and hardwood
sapling species included oaks (Quercus spp.), hickories
(Carya spp.), and sweetgum (Liquidambar styraciflua
L.). Nomature hardwood trees were observedwithin the
tree survey extents.

Soil respiration measurements

Soil respiration measurements were repeated on all
75 Rs collars in the morning (830—1100 h), midday
(1130—1400 h), and afternoon (1430—1700 h) on
6 days in 2012 (July 14, July 24, July 26, August 2,
August 14, and August 17). Soil respiration was
measured consistently and systematically in each
plot, beginning with subplot 1 and ending with sub-
plot 25 before moving to the next plot, and each plot
took approximately 45 min to complete. Soil respira-
tion was measured using a LI-6400-09 Soil CO2 Flux
Chamber attached to a LI-6400 portable infrared gas
analyzer (LI-COR Biosciences, Lincoln, NE, USA).
To reduce the temporal variability between measure-
ments within a plot, ambient atmospheric CO2 con-
centration was measured at the first Rs collar in each
plot and used as target CO2 concentration for all 25
subplots within that plot. Within approximately
10 cm of each Rs collar, Ts was measured with a
15-cm depth soil temperature thermocouple (6000–
09, LI-COR Biosciences) and soil moisture was mea-
sured with a 20-cm depth soil moisture time domain
reflectometry probe (Hydrosense II, Campbell
Scientific, Logan, UT, USA).

Ecological covariate measurements

Prior to the installation of Rs collars, total percent live
understory vegetation cover (<1 m height) was ocularly
estimated within the subplots, as well as by plant func-
tional group (woody, forb, legume, vine, and
graminoid). Subsequent to all of the Rs measurements
on August 17, 2012, standing litter mass was collected
from within the Rs collars, dried to a constant weight at
70 °C, and weighed. Standing litter included fallen tree
leaf litter, understory leaf litter, and fine woody debris.
After litter collection, the Rs collars were removed, and
soil samples (10 cm diameter, 15 cm depth) were col-
lected from below the Rs collars, bagged, and kept cool
until processing. Processing the soil samples consisted
of dry sifting the soil through a 2 mm mesh sieve to
retrieve roots. Roots were washed, sorted by type and

size, dried to constant weight at 70 °C, and weighed.
Roots were sorted into very fine (diameter ≤1 mm), fine
(1 mm> diameter ≤2 mm), coarse (2 mm >diameter
≤5 mm), and very coarse (diameter >5 mm) categories
and by live or dead based on texture, resiliency to
bending, and coloration.

Air-dried soil samples were sent to the Auburn
University Soil Testing Laboratory (Auburn, AL,
USA) for measurement of pH and concentrations of
carbon (C), organic matter (OM), and soil elements
including nitrogen (N), phosphorus (P), calcium (Ca),
potassium (K), magnesium (Mg), and aluminum (Al).
Soil pHwas measured in a water to soil ratio of 1:1 (Hue
and Evans 1979). Total soil C and N were analyzed by
combustion with an Elementar Vario Macro CNS
Analyzer (Elementar Analysensysteme, Germany), and
OM was calculated as total C multiplied by 1.72. The
concentrations of other soil elements other than N were
determined simultaneously with a Varian-MPX Radial
Spectrometer (Varian Analytical Instruments, Australia)
(Odom and Kone 1997).

Within 10 cm of each Rs collar in undisturbed soil,
bulk density samples were taken from 1 to 10 cm depth
with a 5.7 cm diameter soil sampler (0200 Soil Core
Sampler, Soil Moisture Equipment Corp., Goleta, GA,
USA). Bulk density was calculated following the pro-
cedure of Law et al. (2008). Briefly, soil was oven-dried
(96 h at 105 °C) and sifted, and then rocks and roots
were removed, soil was weighed, and rock volume was
determined through water displacement. Root volume
was negligible. Bulk density was calculated as the rock
and root-free soil mass divided by the rock-free soil
volume. Soil nutrient concentrations were converted to
a per area basis (Mg ha−1) based on soil bulk density.

Data analysis

The locations of the plots and Rs collars were collected
with a handheld, decimeter-accurate global positioning
system (Trimble GeoXH, Trimble Navigation Limited,
Sunnyvale, CA, USA) and downloaded to ArcGIS
(Environmental Systems Research Institute, Inc.,
Redlands, CA, USA). The tree inventory data was dig-
itized in ArcGIS and used to calculate the mean DBH,
total DBH, and number of trees within 8 m, 6 m, 4 m,
2 m, and 1 m of each Rs collar, as well as the distance to
the nearest tree from each Rs collar. The tree basal area
of each Rs collar was calculated using a modified prism
technique with a 10-factor prism (Šálek and Zahradník
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2008). All spatial analysis was completed in the
Universal Transverse Mercator projected coordinate
system (Zone 16 N) with the World Geodetic System
1984 geographic coordinate system (ArcGIS projection
file WGS_1984_UTM_Zone_16N).

Repeated measures analysis with an autoregressive
moving average covariance structure was used to test for
plot differences in Rs, Ts, and soil moisture within a
mixed-model framework for each time period (i.e.,
morning, midday, or afternoon) with SAS (version 9.3,
SAS Institute Inc., Cary, NC, USA). Then, five mea-
surement days were used for model building with one
randomly selected measurement day (August 2, 2012)
used for model validation. Soil respiration, Ts, and soil
moisture were averaged across the other five measure-
ment days by time period and subplot for geospatial and
regression analysis. To explore the temporal variability
in Rs, the daily coefficient of variation of Rs (dCVRs)
was calculated for each Rs collar. Contour graphs of Rs
were created in SigmaPlot (version 13.0, Systet
Software Inc., Richmond, VA, USA) with five minor
lines, linear scaling, and a consistent scale of Rs from
2.0 to 8.6 μmol m−2 s−1 across graphs.

Spatial analysis, correlation, and regression were
conducted independently by time period and for the
subplots within each plot (n=25) and across all three
plots (n=75). First, spatial autocorrelation of Rs was
determined withMoran’s I andGeary’s C indices at anα
level of 0.05 with PROC VARIOGRAM in SAS (Wu
and Li 2013). While these indices are related,Moran’s I
provides an evaluation of global spatial autocorrelation
while Geary’s C provides an evaluation of local spatial
autocorrelation (Moran 1950; Geary 1954). Then, the
relationships between Rs and ecological covariates were
evaluated with Pearson’s correlation coefficients at
α=0.05. Because of high multicollinearity between
stand structural variables, the relationship between Rs
and stand structural covariates was examined with prin-
cipal components analysis following Søe and
Buchmann (2005). Multiple linear regression models
were built through stepwise model selection with entry
and exit α values of 0.15 (default for PROC REG in
SAS). Regression analysis between ecological factors
and the spatial variability in Rs was conducted with
morning Rs measurements only because of the redun-
dancy of the spatial variability in Rs between time
periods. Variance inflation factors (VIFs) were used to
reduce the impact of multicollinearity (i.e., parameter
VIFs were <2.0), and residuals were visually examined

to check for homoscedasticity. Residuals were also
checked for spatial dependency with Moran’s I and
Geary’s C. If regression model residuals were spatially
autocorrelated, residuals kriging analysis was conducted
by applying empirical semivariogram models to the
residuals (Wu and Li 2013).

Semivariogram analysis was conducted with statisti-
cal program R (package gstat; R Foundation for
Statistical Computing, Vienna, Austria). Semivariance
(γ) measures the spatial relationship of Rs at two loca-
tions (x and x + h) separated by a lag distance h:

γ hð Þ ¼ 1

2n hð Þ
Xn hð Þ

x¼1

zx−zxþhð Þ2

where n(h) is the number of pairs at distance h and z is
the value of residuals at each location (Stoyan et al.
2000; Mitra et al. 2014). Semivariance was graphed
versus h in a semivariogram and fit with empirical
models (linear, exponential, or spherical). The final
semivariogram model was chosen by minimizing the
residual error sum of squares (SSE).

Model validation was conducted by comparing the
multiple linear regression residuals (hereafter Bmodel
residuals^) and the differences between August 2 Rs and
model-predicted Rs (hereafter BAugust 2 residuals^).
Residuals were compared with a paired t-test to deter-
mine the differences between August 2-observed and
model-predicted Rs. Graphs of the spatial structure of
the model-predicted Rs values were visually compared
with plots of Rs averaged across the five measurement
days. Mean absolute error (MAE) was calculated to
determine the magnitude of error difference between
August 2 Rs and model-predicted Rs, mean biased error
(MBE) was calculated to determine error bias, and root
mean squared error (RMSE) was calculated to evaluate
overall model performance (Wu and Li 2013).

Results

Daily maximum air temperature varied from 27.8 to
38.3 °C during the measurement period from July 14,
2012 through August 17, 2012 at Columbus
Metropolitan Airport Weather Station (Fig. 2). Daily
minimum air temperature ranged from 26.7 to
17.8 °C and daily precipitation ranged from 0.0 to
25.7 mm day−1 (Fig. 2). Mean soil temperature was
different between plots during the morning but not
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during the midday (F2,7 = 4.18, p = 0.0638 and
F2,7 = 2.05, p= 0.1991, respectively; Table 3). Mean
soil moisture was different between plots during both
the morning and the midday (F2,7 = 31.59, p= 0.0003

and F2,7 = 31.59, p= 0.0003, respectively; Table 3).
Coefficients of variation (CV) for Ts and soil mois-
ture ranged from 2 to 6 % and 31 to 91 %, respec-
tively (Table 3).

Fig. 2 Daily maximum and minimum temperatures and total daily precipitation (National Climatic Data 2015b). Triangles represent dates
of soil respiration (Rs), soil temperature, and soil moisture sampling

Table 3 Plot means, standard errors (SE), and coefficient of variations (CV, %) of soil respiration (Rs, μmol m−2 s−1), soil temperature (Ts,
°C), and soil moisture (θ, %) during morning, midday, and afternoon as measured in a 64-year-old longleaf pine forest

Plot 1 Plot 2 Plot 3 All plots

Mean ± SE CV Mean ± SE CV Mean ± SE CV Mean ± SE CV r v. Ts r v θ

Morning

Rs 5.16 ± 0.31a 30 3.72 ± 0.27b 36 3.98 ± 0.22b 28 4.29 ± 0.17 34 −0.16 −0.35
Ts 25.89 ± 0.10ab 2 26.38 ± 0.16a 3 25.82 ± 0.10b 2 26.03 ± 0.08 3 1.00 0.00

θ 6.00 ± 0.38a 32 9.11 ± 0.81b 45 8.15 ± 0.55c 34 7.75 ± 0.38 42 0.00 1.00

Midday

Rs 4.97 ± 0.29a 29 3.77 ± 0.25b 33 3.83 ± 0.23b 31 4.19 ± 0.16 33 −0.15 −0.30
Ts 26.40 ± 0.12 2 26.81 ± 0.19 4 26.87 ± 0.2 4 26.70 ± 0.10 3 1.00 0.08

θ 6.06 ± 0.38a 31 10.91 ± 0.95b 44 8.18 ± 0.61a 35 8.58 ± 0.45 46 0.08 1.00

Afternoona

Rs 5.02 ± 0.34 34 3.20 ± 0.27 42 3.27 ± 0.20 30 3.83 ± 0.18 42 −0.10 0.17

Ts 30.04 ± 0.14 2 29.79 ± 0.38 6 29.58 ± 0.33 6 29.80 ± 0.17 5 1.00 −0.08
θ 6.17 ± 0.38 31 5.28 ± 0.84 80 3.21 ± 0.59 91 4.89 ± 0.38 69 −0.08 1.00

Pearson correlation coefficients (r) versus Ts and θ were calculated across all three plots by time period and are bold when significant at
p< 0.05. Different lowercase letters indicate significant plot differences at p< 0.05 based on repeated measure mixed model analysis
a Not enough afternoon time periods were sampled for cross-plot comparisons
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Spatial patterns of soil respiration

Across the five measurement days, mean morning Rs
was 5.16, 3.72, and 3.98 μmol m−2 s−1 in Plots 1, 2, and
3, respectively, and was significantly different between
plots (F2,7 = 154.23, p<0.0001; Fig. 3, Table 3). Mean
midday Rs ranged from 3.77 to 4.97 μmol m−2 s−1 and
was significantly different between plots (F2,7 = 32.29,
p=0.0003; Fig. 3, Table 3). Mean afternoon Rs ranged
from 3.20 to 5.02 μmol m−2 s−1, but not enough

afternoon time periods were measured for cross-plot
comparisons (Fig. 3, Table 3). Plot-wise CVs for Rs
ranged from 28 to 42 % (Table 3).

Soil respiration was not significantly spatially
autocorrelated during any time period in any individ-
ual plot (Table 4). Across all three plots, Rs was
significantly, positively spatially autocorrelated dur-
ing each time period, based on both Moran’s I and
Geary’s C indices (Table 4). The ranges of Rs auto-
correlation were 91.6 m, 67.4 m, and 66.1 m in the

Fig. 3 The spatial distribution of mean soil respiration (Rs) within Plots 1, 2, and 3 in the morning, midday, and afternoon as measured over
5 days in a 64-year-old longleaf pine forest
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morning, midday, and afternoon time periods, respec-
tively (Fig. 4).

The spatial pattern of Rs did not vary greatly between
time periods (Fig. 3). Mean dCVRs was 22.0±2.4 %,
25.0±1.3 %, and 26.0±2.5 % in plots 1, 2, and 3,
respectively, and across plots, mean dCVRs was 24.4
±1.2 %. Pairwise correlations between morning and
midday Rs, midday and afternoon Rs, and morning
and afternoon Rs were r=0.94 (p<0.0001), r=0.90
(p<0.0001), and r=0.89 (p<0.0001), respectively.

Relationships between covariates and spatial variability
in Rs

Due to the relatively consistent spatial structure of Rs
between time periods, the spatial variability in Rs was
modeled using the morning Rs data only to prevent
redundant analyses across time periods. In Plot 1, morn-
ing Rs was significantly and negatively related to bulk
density and the total number of trees within 6 m, and
positively related to C, woody and graminoid cover, and
the mean DBH of trees within 2 m of the Rs collars

(Table 5). The models for morning Rs accounted for
58 % of the variation in Rs (Table 5), and linear regres-
sion model residuals for Plot 1 were not spatially
autocorrelated (Table 4).

In Plot 2, morning Rs was significantly and negative-
ly related to soil moisture, soil bulk density, P, and very
coarse root biomass, and positively related to N and
litter mass (Table 5). The multiple linear regression
model for Plot 2 Rs accounted for 73 % of the variation
in Rs (Table 5), and the residuals from this model were
not spatially autocorrelated (Table 4).

Soil respiration was significantly and negatively re-
lated to soil moisture, and positively related to Al,
buried coarse woody debris, and the tree basal area of
the Rs collars in Plot 3 (Table 5). The multiple linear
regression model accounted for 52 % of the variation in
Plot 3 Rs. The residuals from the Plot 3 multiple linear
regression model were not spatially autocorrelated
(Table 4).

In the morning and across all three plots, Rs was
significantly, negatively correlated with soil moisture,
Al, and coarse dead root biomass, and positively related

Table 4 Spatial autocorrelation tests including Moran’s I and
Geary’s C indexes for soil respiration (Rs) in each plot and across
all three plots during morning, midday, and afternoon time periods

and for the residuals from multiple linear regression models of
morning Rs in a 64-year-old longleaf pine forest

Plot 1 Plot 2 Plot 3 All plots

Value p-value Value p-value Value p-value Value p-value

Rs observations

Morning

Moran’s I* 0.07 0.4333 −0.03 0.9358 0.15 0.2064 0.23 0.0071

Geary’s C** 0.84 0.2927 1.03 0.8508 0.89 0.4647 0.76 0.0147

Midday

Moran’s I 0.02 0.6539 −0.09 0.9776 0.07 0.0852 0.28 0.0190

Geary’s C 0.98 0.4570 1.13 0.7774 0.94 0.2799 0.76 0.0311

Afternoon

Moran’s I 0.02 0.6790 −0.05 0.7520 0.21 0.4509 0.20 0.0010

Geary’s C 0.89 0.9872 1.04 0.4407 0.84 0.7095 0.80 0.0171

Rs residuals

Morning

Moran’s I −0.16 0.4270 −0.02 0.9010 −0.08 0.8311 −0.05 0.6963

Geary’s C 0.99 0.9411 0.95 0.7507 1.03 0.8507 1.09 0.3702

Bold p-values are significant at p < 0.05

* Moran’s I provides an evaluation of global spatial autocorrelation with values of −1 and 1 representing negative and positive spatial
autocorrelation, respectively, whereas a value of 0 indicates no significant autocorrelation (Moran 1950)

** Geary’s C provides an evaluation of the local spatial autocorrelation with a value of 1 indicating no spatial autocorrelation, a values
greater than 1 and less than 1 indicate negative and positive autocorrelation, respectively (Geary 1954)
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to litter mass, forb cover, and fine live root biomass
(Tables 3 and 6). Principal components analysis with
Rs and forest structural variables indicated that spatial
variability in Rs across plots was most closely related to
the DBH of trees within 1 or 2 m of the Rs collar
(Fig. 5). The multiple linear regression model built
across plots for morning Rs included negative

relationships with soil moisture, soil bulk density, very
coarse root biomass, and the number of trees within 4 m
of the Rs collars, and positive relationships with woody
cover and the total DBH of trees within 8 m of the Rs
collars (Table 5). This model accounted for 24 % of the
variability in Rs (Table 5), and the residuals from this
model were not spatially autocorrelated (Table 4).

Spatial Rs model validation

Spatial patterns in Rs on August 2, 2012, which was
used as a validation dataset, were similar to the patterns
averaged across the five other days as indicated both
graphically (Fig. 3 and Supplementary Material, Fig. S1)
and with pairwise correlations between August 2, 2012 Rs
and Rs from the other 5 days (r=0.94, p<0.0001).
Mean absolute error, MBE, and RMSE calculated with
the August 2 validation dataset did not show consistent
patterns between plots (Table 5). Mean absolute error
ranged from 0.8 to 1.0 μmol m−2 s−1, MBE ranged from
0.1 to 0.2 μmol m−2 s−1, and RMSE ranged from 1.0 to
1.4 μmol m−2 s−1. When compared graphically, the
model-predicted Rs from plot-specific multiple linear
regression models (Supplementary Material, Fig. S2)
better captured spatial variability in Rs than the multiple
linear regression models built across all three plots
(Supplementary Material, Fig. S3). Finally, based on
descriptive statistics and t-tests, the August 2 residuals
(i.e., difference between August 2 Rs and model-
p red i c t ed Rs ) we re a lways more pos i t i ve
(underestimated) than the model residuals, and the mod-
el residuals had a smaller range than the August 2
residuals (Supplementary Material, Table S1).

Discussion

Capturing spatial-dependent variability in Rs in new
ecosystems is difficult without a priori knowledge of
spatial patterns of Rs and related covariates in that
specific ecosystem, and in this case no a priori informa-
tion was available on which to base the Rs collar loca-
tions or sampling density. Techniques to capture the
spatial-dependent variability with chamber-based sam-
pling have been proposed by others (e.g., Rodeghiero
and Cescatti 2008; Dore et al. 2014; Ferré et al. 2015);
however, in most cases a previous field-based measure-
ment campaign is needed to correctly stratify samples to
fully capture the spatial variability in Rs. For example,

a

b

c

Fig. 4 Semivariance (γ) of soil respiration versus lag distance
measured across all three plots in the morning (a), midday (b), and
afternoon (c) within a 64-year-old longleaf pine forest. Observed
data points (white dots) are scaled to the number of pairs at each
lag distance from 23 pairs (smallest) to 366 pairs (largest). In a, the
regression line represents the linear empirical fit with a nugget (y-
intercept) of 1.62 (μmol m−2 s−1)2, a partial sill of 0.99 (μmol m−2

s−1)2, and a range of 91.6 m (SSE= 0.10). In b, the regression line
represents a spherical empirical fit with a nugget of 1.37 (μmol
m−2 s−1)2, a partial sill of 0.73 (μmol m−2 s−1)2, and a range of
67.4 m (SSE= 0.04). In c, the regression line represents a linear
empirical fit with a nugget of 1.63 (μmol m−2 s−1)2, a partial sill of
1.31 (μmol m−2 s−1)2, and a range of 66.08 m (SSE= 0.12)
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Rodeghiero and Cescatti (2008) recommend taking
high-density Rs samples for three periods spaced
15 days apart in order to determine how to spatially
sample Rs based on stratifying the range in measured
Rs values. Without a priori knowledge in this study, Rs
collars were spaced 6 m apart and spatial autocorrelation
was not detected at the plot scale (from 6 to 34 m) scale.
Because of a large semivariogram nugget, Søe and
Buchmann (2005) inferred that Rs was spatially
autocorrelated at scales less than 6 m in a mixed
broad-leaf German forest, and we suggest that the large
nugget (y-intercept) indicates that Rs may have been
spatially autocorrelated at smaller scales than we
measured (i.e., less than 6 m). Soil respiration can be
spatially autocorrelated at the sub-meter scale due to
variability in plant-driven autotrophic respiration
(Stoyan et al. 2000). For example, Rs was spatially

autocorrelated at scales less than 1 m in black spruce
(Picea mariana (Mill.) Britton) forests (Rayment and
Jarvix 2000) and up to 3 m in sandy grasslands (Fóti
et al. 2014). On the other hand, Rs did exhibit spatial
autocorrelation at the larger, across-plot scale with
semivariogram ranges from 66 to 92m, which may have
been caused by the influence of large-scale edaphic or
topographic gradients on heterotrophic respiration, as
reported by La Scala, Jr. et al. (2000) who measured
spatial autocorrelation in CO2 emissions resultant of
heterotrophic activity (i.e., bare soil) at scales from 29
to 58 m, and Herbst et al. (2012) who detected spatial
autocorrelation in heterotrophic respiration at scales of
35 m in agricultural bare soil. Because the scales of
spatial autocorrelation of Rs appear to be ecosystem
and species-specific, nested sampling designs (i.e.,
two or more sampling intervals) in situations such

Table 5 Multiple linear regression models for soil respiration (Rs; μmol m−2 s−1) in a 64-year-old longleaf pine forests by plot

Plot 1 Plot 2 Plot 3 All plots

Estimate Partial R2 Estimate Partial R2 Estimate Partial R2 Estimate Partial R2

Intercept 6.69 6.46 2.11 7.40

θ −0.19 0.11 −0.16 0.12 −0.17 0.14

BD −3.84 0.25 −5.69 0.22 −1.17 0.17

C 0.11 0.31

N 3.31 0.39

P −103.12 0.41

Al 3.41 0.17

LM 0.34 0.66

Woody 0.04 0.41 0.02 0.18

Grass 0.02 0.42

VC Root −0.15 0.80 −0.13 0.24

BCWD 0.87 0.42

tDBH-8 0.01 0.26

tNum-6 −0.05 0.58

tNum-4 −0.11 0.30

mDBH-2 0.04 0.68

BAcollar 0.04 0.61

F-value 6.41 12.08 7.05 4.80

p-value 0.0010 <0.0001 0.0013 0.0004

Adjusted R2 0.58 0.73 0.52 0.24

Validation 0.8/0.1/1.1 0.8/0.2/1.0 0.8/0.2/1.0 1.0/0.2/1.4

Coefficient estimates and cumulative partial R2 are given for each model parameter, and model summaries include model F-values, p-
values, adjusted R2 , and validation statistics (mean absolute error/ mean bias error/ root mean squared error in μmol m−2 s−1 ). Soil
respiration measured on August 2 was used as the validation dataset for the validation statistics. Variable abbreviations and units are
described in Table 1
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as this one with no a priori expectation of the scale of
spatial dependence in Rs (Fox et al. 2015) are rec-
ommended, although the scales that spatial autocor-
relation was measured and inferred (less than 6 m) in
this study may be used as a guide to stratify future
sampling schemes in longleaf pine forests or similar
low-density pine forests.

Spatial variability in Rs was isolated by limiting the
temporal influence of Ts and the substrate-induced influ-
ence of phenological changes on Rs, and Ts exhibited
low spatial variability compared to Rs. Similarly, Ohashi
et al. (2008) found that Rs measurements in a tropical
dripterocarp forest were correlated between consecutive
days in November and December, but not between the
2 months. Soil respiration measured on 3 days in
November from bare soil in Brazil was found to exhibit
varying spatial structures depending on the day and
proximity to rainfall events (La Scala et al. 2000), and
Rs spatial autocorrelation ranged from 2.5 to 8.8 m in a
sagebrush-steppe inWyoming whenmeasured on 4 days

in June and July (Mitra et al. 2014). Although the overall
range in Rs measurements varied seasonally, the spatial
patterns of Rs were found to remain stable regardless of
measurement date in deciduous forests (Martin and
Bolstad 2009). The relationships illustrated with this
study advance our understanding of the ecological vari-
ables that affect spatial patterns of Rs within a forest,
which is necessary for enhancing mechanistic Rs models
that include plant-soil interactive effects (Martin and
Bolstad 2009; Bahn et al. 2010; Chen et al. 2011;
Martin et al. 2012; Mitra et al. 2014).

As hypothesized, spatial relationships were found
between Rs and edaphic, forest floor, root, and forest
structural variables, but models were not identical across
plots, suggesting that the autotrophic and heterotrophic
components of Rs may have responded to ecological
covariates at varying spatial and temporal scales, creat-
ing a complex pattern of Rs not easily modeled. The
edaphic properties of soil can directly influence the
heterotrophic component of Rs. For instance, saturated
soil conditions can cause anaerobic conditions and de-
crease heterotrophic respiration (Moyano et al. 2013),
and high bulk density correlates with low C and OM
rates, which can limit substrate supply for soil microor-
ganisms and decrease heterotrophic activity (Verlinden
et al. 2013). Soil substrate availability was reported to be
more important than microbial community composition
in explaining spatial variability in heterotrophic respira-
tion across four subtropical forests in China (Wei et al.
2015). Rodeghiero and Cescatti (2005) observed that
soil C content was positively related to spatial variability
in Rs between sites along an elevation gradient in the
Italian Alps. Similarly, soil C was the only measured
ecological variable that could account for within-plot
spatial variability in Rs in Zambabwe miombo forests
(Merbold et al. 2011). Edaphic characteristics such as
bulk density and soil moisture can also influence the
physical drivers of Rs. For instance, high bulk density or
saturated soil conditions can limit the diffusion rate of
CO2 through soil (Raich and Schlesinger 1992). As
observed in this study, bulk density was inversely relat-
ed to Rs in burned mixed-conifer forests in California
(Dore et al. 2014), in naturally regenerated oak forests
and monoculture pine plantations in China (Luan et al.
2012), and in Sitka spruce stands varying in age (Saiz
et al. 2006). Soil moisture, which is influenced by
topography, soil depth, transpiration, and tree basal area
(Tromp-van Meerveld and McDonnell 2006), has been
shown to moderate the spatial structure of Rs by

Fig. 5 The first rotated principal component (PCA 1) versus the
second rotated principal component (PCA 2) from principal com-
ponents analysis for stand structural variables and morning soil
respiration (Rs) across all three plots measured in a 64-year-old
longleaf pine forest (n= 75). These two components account for
53 % of the variability in the dataset. Stand structural variables
included the total diameter at breast height of trees at radius r (tD-
r), mean diameter at breast height of trees at radius r (mD-r), and
the total number of trees at radius r (tN-r). Inventoried trees were
taller than 2 m in height with diameter at breast height (DBH)
greater than 1 cm
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reducing CO2 diffusion. Specifically, high soil moisture
conditions have low spatial variability (Tromp-van
Meerveld and McDonnell 2006), which can cause a
concomitant homogenizing effect on Rs. For instance,
high soil moisture reduced the spatial variability in Rs in
sandy grasslands (Fóti et al. 2014), and heavy rainfall
resulted in spatially independent Rs measured on bare
soil compared to highly autocorrelated Rs on drier days
(La Scala et al. 2000).

Heterotrophic respiration is also directly affected
by litter mass (Reinke et al. 1981; Irvine and Law
2002; Taneva and Gonzalez-Meler 2011), so we ex-
pected litter mass to strongly relate to Rs. Litter mass
was positively related to Rs in Plot 2 and across the
three plots. Spatial variability in litter mass can be
influenced by fire intensity (Brockway and Lewis
1997) or through interactions with overstory trees
(Zinke 1962; Vetaas 1992). In mature longleaf pine
forests with a range in stand basal areas, litter mass
was found to be positively related to monthly and
annual variability in Rs (Samuelson and Whitaker
2012). Litter mass was also found to be specifically
related to spatial variability in Rs in a Florida slash
pine plantation (Fang et al. 1998) and in unmanaged
California mixed-conifer forests (Dore et al. 2014).

Above and belowground vegetation directly influ-
ence the autotrophic component of Rs (Mäkiranta et al.
2008; Hojjati and Lamersdorf 2010; Prolingheuer et al.
2014), and we thus expected that areas with higher
understory cover, root biomass, and more nearby trees
would relate to pockets of higher Rs. However, woody,
forb, and graminoid cover were positively related to Rs
only in some specific circumstances, and no consistent
relationship was found between root biomass and the
spatial variability of Rs. Fine root biomass has been
demonstrated to be positively related to spatial variabil-
ity in Rs, such as in control mixed-conifer forests (Dore
et al. 2014), in an unmanaged beech forest (Søe and
Buchmann 2005), and in a slash pine plantation (Fang
et al. 1998). We separated roots by diameter because of
the potential for varying specific root respiration rates
between root size classes (e.g., very coarse roots have
been found to exhibit lower specific respiration rates
than fine roots; Chen et al. 2009). However total root
biomass may have been confounded by varying specific
root respiration rates between plant functional groups.
For example, fine pine root biomass, but not non-pine
root biomass, was positively related to temperature-
independent variability in Rs across four longleaf pine

stands varying in age and structure (ArchMiller and
Samuelson 2016), and root respiration rates have been
shown to vary between different understory functional
groups (Tjoelker et al. 2005).

The positive relationship between Rs and the DBH of
nearby trees (i.e., within 1 and 2 m of Rs collars) was
likely a result of the priming effect that photosynthates
can have on autotrophic and heterotrophic respiration
near tree roots (Farrar et al. 2003). Proximity to trees has
been shown to increase Rs in other studies, such as
across longleaf pine stands varying in age and structure
(ArchMiller and Samuelson 2016) and in a 22-year-old
longleaf pine forest (Clinton et al. 2011). In loblolly pine
plantations varying in age, Rs was significantly higher at
the base of loblolly trees than 1.5 m away from trees
(Wiseman and Seiler 2004). On the other hand, tree
density within 4 or 6 m of the Rs collars was negatively
related with Rs on a plot-by-plot basis. Gap sizes sig-
nificantly affect the spatial structure of light availability
to the floor of longleaf pine forests (Battaglia et al.
2002), such that shading effects may have reduced
understory productivity and autotrophic respiration in
dense areas of the forest.

This study of the spatial variability in Rs indicated
that residuals kriging was unnecessary in this case (i.e.,
spatially independent residuals). Likewise, Luan et al.
(2012) detected no spatial variability in Rs at 10 m
scales in Chinese forests and concluded that
observations were spatially independent and that
regular regression analysis was adequate and
statistically valid. Aiken et al. (1991) detected no spatial
autocorrelation in residual Rs variation after detrending
the Rs data with regression models that included posi-
tional coordinates. Soil respiration was spatially
autocorrelated at large scales (i.e., 66 to 92 m) in this
study, but this spatial structure was accounted for by the
detrending multiple linear regression analyses with
ecological covariates. However, these multiple linear
regression models at the scale across plots were not as
good as the individual plot models at predicting finer-
scale variation in Rs. Ferré et al. (2015) determined that
ecological covariates that vary at larger scales (77 to
100 m; e.g., tree diameter or soil texture) better corre-
lated with Rs than shorter scale variables (26 to 46 m;
e.g., available phosphorus) in a poplar (Populus x
euroamericana) plantation. Similar to our predicted Rs
spatial patterns, the corresponding spatial patterns of the
larger scale covariates did not capture fine-scale patterns
within the forest in Ferré et al. (2015).
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Conclusions

Soil respiration, which was measured systematically
in gridded plots over a restricted temporal extent in a
64-year-old longleaf pine forest, exhibited positive
spatial autocorrelation with ranges of 66 to 92 m
(i.e., across plots), but did not exhibit spatial auto-
correlation at the plot (i.e., < 34 m) scale. Spatial
variability in Rs was decoupled from soil temperature,
and multiple linear regression with stationary ecological
covariates (e.g., edaphic, forest floor, root, and stand
structural characteristics) accounted for 52 to 73 % of
the spatial variability in Rs at the plot scale. Across plots,
stationary factors accounted for 24 % of the spatial
variability in Rs and successfully accounted for the pos-
itive spatial autocorrelation in Rs, as indicated by spa-
tially independent residuals. Although we expected to
detect diurnal variation in Rs from early morning
through early evening, we observed only negligible
changes in the spatial distribution of Rs throughout the
day, indicating the importance of the interrelationship
between stationary plant and soil factors on the spatial,
temperature-independent distribution of Rs in heteroge-
neous longleaf pine forests. Models based on within-plot
plant-soil interactions better-captured fine scale patterns
in Rs than across-plot models, highlighting the need for a
better understanding of the complexity of interactions
between ecological factors and the autotrophic and het-
erotrophic components of Rs.
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