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Aims Despite claims of plant specificity, particularly
towards cereals, data over the past 40 years does not
appear to substantiate claims of such specificity/affinity
of Azospirillum species. Consequently an evaluation of
the specificity/affinity of the genus Azospirillum across
all plants, in general, and cereals, in particular, was
undertaken.
Results Although the majority of studies focused on ce-
reals, Azospirillum spp. increase growth of 113 plant spe-
cies across 35 botanical families, including 14 species of
cereals. Amongst Azospirillum spp., several well studied
strains have been effective in several plant species, making
these organisms potentially valuable for further study.
Conclusions This review demonstrates that azospirilla
are not cereal-specific at the genus and species levels.
Azospirillum serves as a general PGPB to every plant
species tested so far. Given the paucity of widespread
screening, affinity of strains to a plant genotype, culti-
var, or plant species cannot be overruled. Definitive
conclusions concerning such specificity require molec-
ular and cross-inoculation studies, using various strains
of bacteria, and re-isolation after growth of the plants in
different plant species. (203 words).
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Introduction

Bacteria of the genus Azospirillum possess numerous
properties allowing them to survive and thrive in the
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Abstract
Background Azospirillum spp. are the most studied
plant growth-promoting bacteria (PGPB). The genus
represents a common model for plant-bacteria interac-
tions. This genus was initially isolated and tested on
cereals and was subsequently commercialized.
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nutrient rich and protective environment that exists in
the rhizosphere of plants (Steenhoudt and Vanderleyden
2000). With the advantage of multiple plant growth
promoting mechanisms (Bashan and de-Bashan 2010),
Azospirillum strains have been tested and used as inoc-
ulants in crop production, initially with cereals, but later
with other plants.

When the genus Azospirillum (Beijerinck 1925) was
re-discovered by the late Johana Döbereiner and her
colleagues in Brazil in the 1970s it was heralded as an
associative plant growth-promoter for cereals
(Döbereiner and Day 1976). Consequently, initial stud-
ies regarding the agronomic potential of these plant
growth-promoting bacteria (PGPB) were conducted ex-
clusively on cereals, as is often still the case (for re-
views: Bashan and Levanony 1990; Okon and
Labandera-Gonzalez 1994; Bashan and Dubrovsky
1996; Dobbelaere et al. 2001; Bashan et al. 2004;
Massena-Reis et al. 2011, Table 1). The wealth of data
concerning its interaction with cereals led to the conclu-
sion that Azospirillum sp. has some as yet undefined
specificity for gramineous plants (Baldani and
Döbereiner 1980). By comparison to the specificity of
Rhizobium-legume symbiosis, which is evident at early
stages of the infection and involves specific molecular
signaling among the bacteria and their host (Lerouge et
al. 1990), caution is required when considering potential
specificity of Azospirillum-cereal interactions, as the
evidence better supports a possible affinity of some
strains for cereals, rather than any specificity (Drogue
et al. 2012).

In subsequent studies Azospirillum species and strains
known to affect the growth of cereals have been also
tested on other species of plants worldwide. It has since
became clear that many isolates of this genus can im-
prove the growth and influence the metabolism of many
plant species across many families, including annuals,
perennials, trees, ornamental, spices, wild plants and
even single cell microalgae (for documented examples
see Table 1 and Table S1). Consequently, it is clear that
Azospirillum can interact with a wide variety of plants
and its species serve as a general plant growth-promoting
bacteria (PGPB). However, the question still remains
whether genus/species affinity for specific plants is evi-
dent and whether host specificity exists.

Given the pervasive contention that cereal-specificity
of Azospirillum exists, critical re-evaluation of pub-
lished research over the past four decades of implied
specificity or preferred affinity of Azospirillum is

essential. This review was driven by comparing four
hypotheses derived and proposed from the prevailing
assumptions within the literature: (1) Azospirillum as a
genus has inherently a higher affinity for cereals and the
effects recorded on other plant species are the exception,
(2) Azospirillum has higher affinity to certain plant
species but the increased affinity is at the species or
strain level, (3) Azospirillum strains colonize and use a
narrow range of plants as hosts, thus demonstrate host
specificity and (4) Azospirillum species/strains are non-
specific plant growth promoting bacteria affecting the
metabolism of plants in general and some species/strain
have a wide host range.

To examine these hypotheses we evaluated the liter-
ature using the following criteria: (1) the variety of plant
species that show response to Azospirillum inoculation
in general, (2) evidence for specific/unique reaction of
plant only to certain Azospirillum species or strain (3)
plants that have been shown to be colonized by
Azospirillum and whether the attachment was exclusive-
ly by particular species/strains and (4) any knowledge of
species/strain specific properties, including molecular
traits, that are related to Azospirillum attachment to
plants. Consequently, this essay was organized, as fol-
lows: historic background of the topic, phenomena of
interaction of common strains of A. brasilense with
multiple hosts, attachment and initial colonization as
parameters of potential affinity/specificity, and molecu-
lar studies providing potential indicators of affinity of
strains to plants.

The historic theme of BSpecificity^ of Azospirillum

The genus Azospirillum has currently 12 species
(Lavrinenko et al. 2010), with the most studied species
including: A. brasilense, A. lipoferum (Tarrand et al.
1978), A. halopraeferens (Reinhold et al. 1987), and
A. oryzae (Xie and Yokota 2005). Recently, two species
A. amazonense (Magalhães et al. 1983) and A. irakense
(Khammas et al. 1989) were re-classified as
Niveispirillum irakense and Nitrospirillum amazonense
(Lin et al. 2014). Early claims of Azospirillum specific
affinity for certain cereal species (Bashan and Levanony
1990) relied on inoculation studies that focused on
strains of A. brasilense and A. lipoferum and were based
on the following cases: (1) When responses of C3 and
C4 plants were tested, A. lipoferum predominantly col-
onized C4 plants while A. brasilense predominantly
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associated with C3 plants both in tropical (Baldani and
Döbereiner 1980; Baldani et al. 1986) and in temperate
zones (Haahtela et al. 1981; Lamm and Neyra 1981). (2)
Enhanced performances of cereal plants were more
frequent when specific plant-bacterial species combina-
tion was used (Baldani et al. 1983, 1987; Reynders and
Vlassak 1982; Pereira et al. 1988).

Moreover, strains of A. brasilense (SpT60, JM6A2
and Cd), isolated from different plants: wheat
(Triticum spp.), maize (Zea mays), and Bermuda
grass (Cynodon dactylon (L.) Pers.), respectively,
showed distinct chemotactic response to organic
acids, which correlated with the exudates of the re-
spective plants of origin (Reinhold et al. 1985).
Specificity can occur at the plant cultivar level; only
a few of many tested cultivars of the same plants
responded to inoculation with a given strain of
Azospirillum (Bouton et al. 1979; Wani et al. 1985;
Millet et al. 1986; Walker et al. 2011; Chamam et al.
2013), and plant genotype affected the response to
Azospirillum inoculation (Garcia de Salamone and
Dobereiner 1996; Garcia de Salamone et al. 1996).

The proposal of host specificity of Azospirillum was
reinforced by discoveries in molecular biology. Finding
sequences on Azospirillum plasmids with homology to
rhizobial nodulation genes nodPQ and nodG during the
late 1980s to early 1990s (Vieille and Elmerich 1990)
supported the contention that specificity existed, argu-
ing for an ability of Azospirillum to nodulate certain
hosts. However, further analysis demonstrated no in-
volvement of nod genes in Azospirillum-root interac-
tions (Vieille and Elmerich 1992). Use of fluorescent
probes demonstrated that the very common A.
brasilense strain Sp245 is an internal root colonizer
(Schloter et al. 1994), whereas the common strain Sp7
only colonized the root surface. Yet, this might differ
from variety to variety or species to species.
Contemporaneous research attempted to facilitate the
interaction using synthetic auxins to create para-
nodules on cereal roots that were colonized by
Azospirillum (Tchan et al. 1991; Christiansen-Weniger
1992; Kennedy and Tchan 1992; Zeman et al. 1992;
Sriskandarajah et al. 1993; Yu et al. 1993; Christiansen-
Weniger and Vanderleyden 1994; Katupitiya et al.
1995a, b; Kennedy et al. 1997). Although this procedure
did not result in endophytic colonization by strain Sp7
or establish a long-term colonization with other species,
this approach created a new dimension in N2-fixation,
which unfortunately was not developed further.

While the vast majority of publications have been on
Azospirillum-cereal interaction, the proposal that the
genus Azospirillum exclusively or mainly enhances
growth of cereals has been confronted with newer evi-
dence demonstrating effect on numerous other plant
species from a variety of families (Table 1, Table S1).
Currently, Azospirillum species are known to positively
affect 113 plant species of which 14 are cereals and the
rest non-cereals (Fig. 1a) for 34 additional botanical
families (Fig. 1b).

The accumulative data of the last three decades indi-
cates that Azospirillum as a genus has the ability to
interact with a wide variety of plants, including crop
plants, weeds, annuals and perennials, and can be suc-
cessfully applied to plants that have no previous history
of Azospirillum in their roots. It appears that
Azospirillum is a general rhizosphere colonizer and a
general plant growth-promoter and its interaction with
plants does not resemble legume-rhizobia specific inter-
actions. This data does not preclude the possibility that
Azospirillum species and strains may demonstrate plant
preference, a possibility that must be investigated.

Interaction ofAzospirillum strains with multiple host
plants

Only a small variety of strains, including strains of A.
brasilense and A. lipoferum have been commonly used
in inoculation trials, some of which are commercially
available for a variety of crops. Several examples of
strains can demonstrate the multifaceted of activity on
plants.

One of the best examples of a relatively promiscuous
isolate is A. brasilense Cd/Sp7. A. brasilense Cd was
isolated from plants inoculated with strain Sp7, thus
they were sometimes considered to be one strain; how-
ever they have been known to display different pheno-
types. They constitute one of the most studied strains for
A. brasilense, having been isolated originally from a
gramineous weed (Cynodon dactylon, Eskew et al.
1977) and commonly used as a reference strain.
Initially, this strain was shown to colonize and enhance
the growth and the yield of many winter and spring
cereals (Kapulnik et al. 1981, 1983; Lin et al. 1983;
Smith et al. 1984; Yahalom et al. 1984; Bashan 1986a;
Assmus et al. 1995) and to move in soil towards wheat
plants (Bashan 1986b; Bashan and Levanony 1987;
Bashan and Holguin 1994). It had a marked capacity
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to enhance growth and yield of vegetables, industrial
crop plants (Bashan et al. 1989b, c; 1991), burr medic
(Medicago polymorpha L.) seedlings (Yahalom et al.
1990), common bean (Phaseolus vulgaris L.) (Burdman
et al. 1996), environmental plants (Bashan et al. 2009b,
2012) and sunflower (Helianthus annuus L.) (Itzigsohn
et al. 1995). Additionally, A. brasilense Sp7 could attach
to arbuscular mycorrhizal structures (Bianciotto et al.
2001). The most unexpected enhancement was that of
the rootless, single cell microalgae Chlorella vulgaris
Beijerinck and C. sorokiniana Shihira et Krauss; the
resemblance to its effects on growth, photosynthesis
and metabolite content of plants (Bashan and
Dubrovsky 1996; Gonzalez and Bashan 2000; de-
Bashan et al. 2002; Bashan et al. 2006; Choix et al.
2012a, b) and its phenotypic cell-cell attachment
employing fibrills (de-Bashan et al. 2011) made the
combination of this strain with microalgae a proposed
general model for plant-bacterial interaction (de-Bashan
and Bashan 2008).

Another strain interacting with multiple hosts and
multiple activities on plants is A. brasilense Sp245,
which is able to colonize the surface of roots (Pereg
Gerk et al. 2000) despite the fact that it was originally
isolated from surface sterilized wheat roots and was
shown to colonize wheat roots as an endophyte
(Baldani et al. 1983, 1986; Schloter et al. 1993;
Assmus et al. 1995). The strain is able to increase nitrate
assimilation (Ferreira et al. 1987), alter membrane po-
tential and proton efflux (Bashan 1990; Bashan and
Levanony 1991; Bashan et al. 1989a) and enhance
nitrogen accumulation (Boddey et al. 1986) and yield
of wheat (Baldani et al. 1987; Okon and Labandera-
Gonzalez 1994). Subsequently, this strain was used for
inoculation of other plants and was capable of enhanc-
ing their growth. Strain Sp245 could increase the hor-
mone abscisic acid content in Arabidopsis thaliana (L.)
Heynh plants (Dubrovsky et al. 1994; Cohen et al. 2008)
and have even more attributes. Those include: increas-
ing growth and mineral content in soybeans (Glycine
max (L.) Merr.) (Bashan et al. 1990), improving vigor of
aged seed of lettuce (Lactuca sativa L.) (Carrozzi et al.
2012) enhancing germination and growth of the giant
cardon cactus (Pachycereus pringlei (S.Watson) Britton
& Rose) (Puente and Bashan 1993), improving the
establishment of three cactus species in the field
(Bashan et al. 1999) and promoting the growth of the
halophyte Salicornia bigelovii Torr (Bashan et al. 2000).
It survived well in the rhizosphere of tomato (SolanumT
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lycopersicum L.) (Bashan et al. 1995), colonizing nu-
merous weed species of different families (Bashan and
Holguin 1995), inducing ammonium transporter in to-
mato root (Becker et al. 2002), mitigating salt effects on
lettuce (Barassi et al. 2006) and promoted the growth of
tomato, pepper (Capsicum annuum L.), and cotton
(Gossypium hirsutum L.) (Bashan 1998; Bashan et al.
1989b, c; Bashan and de-Bashan 2005). Finally, it en-
hanced accumulation of intracellular nitrogen, phospho-
rus and enzymatic activities in a unicellular microalgae
Chlorella vulgaris (de-Bashan et al. 2008b; Meza et al.
2015a, b).

A third example is A. brasilense Sp6. Originally
isolated from maize, it promoted significant growth in
maize (Barbieri and Galli 1993) and growth of roots of
wheat (Barbieri and Galli 1993; Barbieri et al. 1986) and
sorghum (Sorghum bicolor (L.)Moench) (Basaglia et al.
2003). The same isolate improved the growth of the
shrub quailbush, Atriplex lentiformis (Torr.) S.Wats
(de-Bashan et al. 2010a) and significantly changed the

metabolism of the microalgae C. vulgaris and
C. sorokiniana (de-Bashan and Bashan 2008; Meza
et al. 2015a, b).

A fourth example is A. brasilense Az39, the most
common commercial strain in Argentina, was tested on
several cereals with significantly improved yield results
(Fulchieri and Frioni 1994; Cassan et al. 2009a; Díaz-
Zorita and Fernández-Canigia 2009; Zawoznik et al.
2011; Garcia de Salamone et al. 2012; Masciarelli
et al. 2013) or in combination with legume nodule
microorganisms (Cervantes and Rodriguez-Barrueco
1991; Perrig et al. 2007). This strain was proven growth
promoter for soybean (Cassan et al. 2009b), and
Casuarina sp. (Rodríguez-Barrueco et al. 1991).
Numerous local publications from Argentina and India
indicate the successful use of this strain for sunflower,
tomato, cucumber (Cucumis sativus L.), pepper, squash
(Cucurbita sp. L.), cabbage (Brassica oleracea L.),
radish (Raphanus sativus L.), cotton, peanuts (Arachis
hypogaea L.), alfalfa (Medicago sativa L.), Achicoria

a b

Fig. 1 Plant species, cereals vs. non-cereals inoculated with
Azospirillum sp. showing plant beneficial effects (a). Botanical
families on which Azospirillum sp. exerted beneficial effects (b).
Families: 1. Asteraceae; 2. Fabaceae; 3. Poaceae (gramíneas); 4.
Brassicaceae; 5. Apiaceae; 6. Solanaceae; 7. Amaranthaceae; 8.
Malvaceae; 9. Piperaceae; 10. Cucurbitaceae; 11. Rosaceae; 12.
Cactaceae; 13. Euphorbiaceae; 14. Convolvulaceae; 15.

Caryophyllaceae. 16. Urticaceae; 17. Chlorophyceae; 18.
Musaceae; 19. Casuarinaceae; 20. Cistaceae; 21. Linaceae; 22.
Myrtaceae; 23. Phyllanthaceae; 24. Moraceae; 25. Fagaceae; 26.
Arecaceae; 27. Pedaliaceae; 28. Acanthaceae; 29. Agavaceae; 30.
Zingiberaceae; 31. Ranunculaceae; 32. Papaveraceae; 33.
Iridaceae; 34. Geraniaceae; 35. Polygonaceae
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(Cichorium intybus L.), and the flowers of the day lily
(Hemerocallis lilioasphodelus L.) and Nierembergia
linariaefolia (Graham). (Table S1, supplementary
material).

While there is evidence to show that strains of certain
A. brasilense affect more than one group of plants, the
main difficulties in assessing Azospirillum specificity or
even affinity are the lack of studies methodically testing
different strains of the same species (obtained from
different sources) on specific host plant and specific
strains on different host species.

Physiological and biochemical studies of attachment
and initial colonization as parameters of potential
affinity

Survival in the plant’s rhizosphere and promotion of plant
growth do not necessarily qualify the plant as a host. To
be a true host, the plant has to harbor the bacteria attached
to or inside its tissue, ensuring long-term association
between the two. The ability of Azospirillum species to
attach to plant roots in various ways is well documented
(multiple reference in Table 2) making some plants gen-
uine Azospirillum hosts.

Azospirillum-mediated plant growth promotion uti-
lizes various mechanisms that clearly demonstrate ben-
efits to the host plant from this association, of which
four are particularly important. Firstly, if Azospirillum is
not attached to root epidermal cells, growth promoting
substances excreted by the bacteria diffuse into the
rhizosphere, consumed by nutritionally versatile micro-
organisms before reaching the plant and there is no
mutual beneficial interaction (Bashan 1986a). With
physical attachment part of these substances is diffused
into the intercellular spaces of the root cortex. Secondly,
without a secure attachment, rain or irrigation water may
dislocate the bacteria from the rhizoplane to perish in the
surrounding, nutrient-deficient soil. Azospirillum poorly
survives in many soils without host plants (Bashan et al.
1995; Bashan and Vazquez 2000). Thirdly, association
sites on roots having no attached Azospirillum represent
a target for other aggressive rhizosphere colonizers,
which are not necessarily beneficial for the plant.
Finally, the root provides Azospirillum with
microaerophilic niches that suit the physiological prop-
erties of this genus. Azospirillum proliferates under both
aerobic and anaerobic conditions, but is preferentially
microaerophilic in the presence or absence of combined

nitrogen in the medium (Okon and Itzigsohn 1992) and
it shows a strong aerotactic response towards the zones
with reduced oxygen tension on roots (Okon et al. 1980;
Patriquin et al. 1983; Reiner and Okon 1986; Zhulin
et al. 1996; Alexandre et al. 2000; Stephens et al. 2006).
There does not appear to be any evidence to suggest that
Azospirillum is harmful to plants (Bashan 1998). The
association between Azospirillum and the plant can thus
be defined, in general, as mutualism suggesting a possible
host specificity involved in this mutualistic relationship
between the attached Azospirillum cells and the host at
any level (genus, species or strain). The mode of attach-
ment of Azospirillum to its host plant, as well as to other
substrates, is an essential element to be ascertained.

Azospirillum strains can colonize roots externally
and/or internally or can colonize the stem as an endo-
phyte, as seen in rice (Oryza sativa), while some strains
doing both (Table 2; Ramos et al. 2002; Zhu et al. 2002;
Xie and Yokota 2005). Fluorescently labeled probes and
monoclonal antibodies have confirmed the presence of
Azospirillum strains in both the plant interior and the
rhizosphere (Schloter et al. 1993; Assmus et al. 1995).
Specifically, A. brasilense strain Sp245 was found in the
root xylem, while Sp7 could only be detected on the root
surface (Schloter et al. 1994). X-gal staining of labeled
bacteria revealed that strain Sp7 initially colonized the
sites of lateral root emergence and the root hair zone
(Katupitiya et al. 1995a; Pereg Gerk et al. 2000) as does
strain Sp245 (Vande Broek et al. 1993; Pereg Gerk et al.
2000). Washing wheat roots colonized by A. brasilense
Cd removed most of the root-external bacteria and re-
vealed a smaller internal root population (Bashan et al.
1986). A. brasilense Cd was also detected internally,
within the cortex, using immuno-gold labeling
(Levanony et al. 1989).

Root surface colonization is more common, in which
the bacteria form small aggregates, although many sin-
gle cells are scattered on the root surface. These surface
colonizers are embedded in the external mucigel layer of
the root (Umali-Garcia et al. 1981; Berg et al. 1979;
Schank et al. 1979; Bashan et al. 1986; Murty and
Ladha 1987; Pereg Gerk et al. 2000). Interestingly, both
live and dead roots can be colonized (Bashan et al.
1986) suggesting that, while Azospirillum is attracted
to root exudates, bacterial-host signaling is not essential
for the actual attachment to roots, making a saprophytic
growth phase of this bacterium probable.

When examining colonization by various strains,
factors other than specificity can influence colonization
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and therefore can be responsible for differences among
strains in separate studies. Factors important for such
consideration include the culture age, experimental pro-
cedures and/or environmental conditions (multiple
references in Table 2), and even the presence of other
endophytic bacteria on the roots (Bacilio-Jimenez et al.
2001). In addition, some strains isolated from plant or
rhizosphere (thus considered as environmental strains),
such as A. brasilense strains Sp6 and Sp35 and
A. lipoferum strains RG20, S28, and Br17 were not able
to aggregate/flocculate (Pereg Gerk et al. 1998).
Flocculation is both related to the production of
exopolysaccharide (EPS) in Azospirillum and consid-
ered to be essential for firm attachment to root surface,
suggesting that effects on plants observed following
inoculation with these strains were not necessarily due
to attachment to the roots but rather to the presence of
these strains in the rhizosphere.

Azospirillum preferentially colonizes root elonga-
tion zones, root-hair zones and emergence of lateral
roots with colonization patterns that depend on the
host plant and bacteria strain (Bashan et al. 1986;
Okon and Kapulnik 1986; Assmus et al. 1995;
Pereg Gerk et al. 2000; Trejo et al. 2012). In wheat,
colonization is mainly on the root surface and very
few bacteria are attached to the root hairs (Okon and
Kapulnik 1986; Bashan and Levanony 1989b),
whereas in rice, massive root-hair colonization was
frequently observed (Murty and Ladha 1987). In
pearl millet (Pennisetum glaucum (L.) R.Br.)
(Matthews et al. 1983), Kallar grass (Panicum
antidotale Retz.) (Reinhold et al. 1986) and sugar-
cane (Saccharum sp.) callus (Berg et al. 1979; Vasil
et al. 1979) most of the Azospirillum population was
concentrated on the root surface. The colonization
sites in some grasses corresponded to the areas where
root mucigel was present, while the area around the
point of emergence of lateral roots usually shows
high colonization (Bilal et al. 1993).

It is clear that various plants can host bacteria from the
genus Azospirillum and, evidence shows that species and
even strains of Azospirillum can colonize more than one
plant, suggesting a wide host range for each species/strain.
Despite this, the colonization of plants has been vi-
sually demonstrated with only few strains of
Azospirillum (Table 2) and a more thorough investi-
gation of a large number of strains is required in order
to conclude regarding host specificity/affinity of
Azospirillum strains.

Mechanisms of attachment in relation to potential
affinity

Examination of the mechanisms of attachment of
Azospirillum to various substrates compared with plant
roots better addresses the specificity of the interaction
with hosts. Electronmicroscopic studies on several plant
species have demonstrated that Azospirillum cells are
connected to the root surface and to each other within
the bacterial aggregate by a massive network of fibrillar
material (Bashan et al. 1986; Levanony et al. 1989).
Although azospirilla do not always show a uniform
pattern of attachment in different experiments, even
when the same strain is used on the same host
(Michiels et al. 1989), it seems that aggregation by
fibrillar material is the characteristic root surface colo-
nization of this genus regardless the species or the strain
(Umali-Garcia et al. 1980; Patriquin et al. 1983; Bashan
et al. 1986; Gafni et al. 1986; Okon and Kapulnik 1986;
Hadas and Okon 1987; Levanony et al. 1989). The
chemical nature of these fibrils is not fully defined, but
there are indications that they contain proteinaceous
compounds (Bashan and Levanony 1989b) and poly-
saccharides that are responsible for the attachment phe-
nomenon (Katupitiya et al. 1995a; Pereg Gerk et al.
1998, 2000). Fibrillar attachment by the bacteria is
primarily dependent on active bacterial metabolism;
killed bacteria did not attach to roots, but live bacteria
attached to dead plant material (Bashan et al. 1986;
Gafni et al. 1986). Initial root surface attachment is
relatively weak and a slight rinsing of the roots releases
most of the bacteria (Bashan et al. 1986) probably
because of cell surface hydrophobicity, cell surface
charges and cell surface lectins (Castellanos et al.
1997, 1998). Less thermodynamically stable polar at-
tachment of Azospirillum cells to roots (Patriquin et al.
1983; Whallon et al. 1985; Levanony et al. 1989) com-
prised only a small fraction of the cells. Most of the root
surface was colonized by bacteria in a horizontal, ther-
modynamically more stable, position. Examination of
several strains of A. brasilense and A. lipoferum showed
that although surface colonizers and endophyte strains
had similar ability to anchor to wheat roots, strains with
a proven ability to invade the root interior were more
competitive in attaching to adsorption sites (de Oliveira
Pinheiro et al. 2002).

Azospirillum has two different phases of attachment
to wheat roots. The primary adsorption phase is fast but
weak, reaching a maximum within 2 h of incubation,

398 Plant Soil (2016) 399:389–414



Table 2 Studies that showed actual attachment of Azospirillum strains to host roots, host cells or inert surfaces

Azospirillum strain Host plant Reference

A. brasilense

Sp13t, Sp7, JM125A2 Guinea grass (Panicum máximum Jacq.),
pearl millet (Pennisetum glaucum
(L.) R.Br.)

Umali-Garcia et al. 1980

Sp7 and sp245, Sp107, JM6A2, JM73B3,
SpBr14

Wheat (Triticum aestivum L.) Jain and Patriquin 1984

Cd, Cd-1 Different cultivar wheat Kapulnik et al. 1983

245, Sp7, 7030 Isolated plant cells of Zinnia elegans Jacq.
and Triticum monococcum L.

Eyers et al. 1988a

Cd and SpBr14, Sp7 Sp59b Rice (Oryza sativa L.) and clover
(Trifolium sp. L.)

Sukiman and New 1990

Sp245 [gusA] Wheat Vande Broek et al. 1993

JM82 Kallar grass (Leptochloa fusca
(L.) Kunth) and rice

Bilal et al. 1993

Sp7, Cd, Sp13, SpBr14, Sp245, Sp107, 576 Wheat + −2,4,D Katupitiya et al. 1995b

245, Sp7, Cd Wheat Zamudio and Bastarrachea 1994

Sp245, Sp7, Wa3 Wheat Assmus et al. 1995

Sp7 Wheat Vande Broek et al. 1998

Sp245 internal, Sp7 and Wa5 surface Two wheat cultivars (Differences
between cultivars)

Schloter and Hartmann 1998

Sp245, 75 and 80 from Russia Different wheat cultivars (Differences
with bacterial growth phase and cultivar)

Yegorenkova et al. 2001

Sp7 Rice roots Zhu et al. 2002

Sp245, Sp7 Various wheat cultivars Rothballer et al. 2003

REC3, PEC5 Strawberries (Fragaria ananassa
(Weston) Duchesne)

Guerrero-Molina et al. 2012

SM Sorghum bicolor (L.) Moerch Kochar and Srivastava 2012

AbV5, AbV6 Corn (Zea mays L.) Protected from insect
herbivore Diabrotica speciosa Germar

Santos et al. 2014

Sp7, Cd, Sp245, Sp246, Sp107, SpBr14, JA2 Wheat de Oliveira Pinheiro et al. 2002

A. brasilense Cd and
A. halopraeferens AU10

Blank mangrove (Avicennia germinans L.) Puente et al. 1999

Cd Wheat, sorghum Bashan et al. 1986; Bashan and Levanony
1989a,b; Levanony et al. 1989; Trejo
et al. 2012

Cd Tomato (Solanum lycopersicum L.),
eggplant (Solanum melongena L.),
pepper (Capsicum annum L.), cotton
(Gossypium hirsutum L.), soybean
(Glycine max L.)

Bashan et al. 1989c, 1991;
Levanony and Bashan 1991.

Cd Soil, sand and peat particles, polystyrene,
alginate beads; several rock particles;
glass

Bashan 1986b; Bashan and Levanony
1988a, b; Bashan et al. 1991; Bashan and
Holguin 1993; de-Bashan et al. 2002;
Wisniewski-Dye et al. 2011

Cd Microalgae (Chlorella vulgaris
Beijerinck, C. sorokiniana
Shihira et Krauss)

Lebsky et al. 2001; de-Bashan and Bashan
2008; de-Bashan et al. 2011

Sp6 Quailbush (Atriplex lentiformis (Torr.)
S. Watson)

de-Bashan et al. 2010a, b

A. lipoferum

Sp59b Wheat Jain and Patriquin 1984

4B Rice roots Chamam et al. 2013

34H Rice roots Murty and Ladha 1987

SpBr17, 596, Sp59b Wheat + −2,4,D Katupitiya et al. 1995b
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and likely governed by bacterial proteins. The second or
anchoring phase takes longer, beginning after 8 h of
incubation and reaching a maximum after 16 h, is stron-
ger and irreversible, and appears to involve bacterial
extracellular surface polysaccharides yielding long fi-
brils and a large amount of mucigel-like substances
(Umali-Garcia et al. 1980; Zaady and Okon 1990;
Gafni et al. 1986; Bashan and Levanony 1988b; Eyers
et al. 1988a, b; Del Gallo and Haegi 1990;Michiels et al.
1990; 1991; Bashan et al. 1991; Levanony and Bashan
1991; Skvortsov et al. 1995; Puente et al. 1999). This
type of attachment is not only to roots but also to plants
cells as in the case of production of anchoring material
when A. brasilense interacts with the single cell aquatic
microalgae Chlorella vulgaris (de-Bashan et al. 2011).
During this phase movement of Azospirillum along the
root surface is minimal owing to formation of multi-
stranded fibrils, although several single cells are capable
of migrating among the different sections of the root
system (Bashan 1986b; Bashan and Levanony 1991;
Bashan and Holguin 1994) and among individual plants
(Bashan and Levanony 1987; Bashan and Holguin
1995). These holdfast fibrils ensure vertical bacterial
transfer by the growing root tip to deeper soil layers
(Bashan and Levanony 1989a, 1991).

Adsorption and anchoring are probably different phe-
nomena (Michiels et al. 1990, 1991) and have been
observed in the roots of tomato, pepper, cotton, and
soybean (Bashan et al. 1989b, c, 1991). The polar fla-
gellum of A. brasilense, which is primarily used for
swimming, was also involved in the initial attachment
process of the bacteria to roots (Croes et al. 1993).

Several physiological, environmental, nutritional,
and chemical factors modify A. brasilense attachment

to the roots. Lectin and hydrophobic binding have been
suggested as possible mechanistic mediators (Umali-
Garcia et al. 1980; Tabary et al. 1984; Antonyuk et al.
1993; Karpati et al. 1995; Castellanos et al. 1997, 1998,
2000).

There are at least two different quantitative types of
anchoring by this bacterium: a weak attachment to a
non-biological surface and a stronger attachment to
roots even though microscopically they resemble each
other. The anchoring ofA. brasilenseCd to hydrophobic
polystyrene was significantly less than to roots and this
is likely due to the hydrophobicity of the polystyrene
(Bashan and Holguin 1993). Although most inoculated
Azospirillum spp. survived only for a limited time in the
soil (Bashan et al. 1995), some strains are soil dwellers
especially in the tropics (Döbereiner et al. 1976;
Döbereiner 1988). Upon inoculation to the soil
Azospirillum cells are usually irreversibly adsorbed by
the upper fraction of the soil profile in a charge-charge
interaction mainly with clays and organic matter. Later
they form attachments to soil particles such as sand,
organic matter and clays using fibrillar material in a
manner similar to attachment to roots. Physical and
chemical soil conditions such as pH, flooding, dry re-
gime, and availability of bacterial chemo-attractants
greatly affect adsorption of Azospirillum to different
degrees (Bashan and Levanony 1988a; Horemans
et al. 1988). Attachment of Azospirillum to pure sand,
which lacked clays and organic matter, was weaker and
accomplished by a network of protein bridges produced
between the bacteria cell and the quartz particles and
mainly controlled by nutrient availability (Bashan and
Levanony 1988b). Out of several strains examined,
attachment to glass mediated by pili seems to be

Table 2 (continued)

Azospirillum strain Host plant Reference

SpBr17 Wheat Zamudio and Bastarrachea 1994

S82, SpBr17, Sp59 Wheat de Oliveira Pinheiro et al. 2002

A. irakense

KBC1
Showed as a vibriod – is it a wild type?

Rice roots Zhu et al. 2002

Azospirillum sp.

Azospirillum sp B510 Rice
Suppressed fungal and bacterial pathogens

Yasuda et al. 2009
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exclusive to A. brasilense Sp245 (Wisniewski-Dyé et al.
2011).

In summary, the phenotypic attachment of
Azospirillum is mainly characterized by two-phase at-
tachment, perhaps with the aid of the polar flagellum
and a higher affinity of the attachment process to roots
rather than to inert or soil surfaces. However, evidence
suggests that there is a close resemblance between
Azospirillum attachments to the root surfaces of differ-
ent plant species, to the surfaces of single cells and to
soil particles. Consequently, attachment to roots is po-
tentially unsuitable for assessing the specificity at the
species or strain levels. Affinity to roots in general may
be concluded but there is insufficient biochemical and
physiological data to suggest a particular affinity to
cereal roots.

As a final note, endophytic Azospirillum strains may
be the key to understanding the specificity of these
strains to particular hosts, since here the bacterium has
progressed beyond the attachment stage to enter the root
system (for example, A. brasilense Sp245 in wheat
roots, (Schloter et al. 1994) or the stem (for example
A. oryzae COC8 and its relative Azospirillum sp. B510,
Kaneko et al. 2010). Such advanced interaction suggests
that the endophytic strains may communicate with the
plant during the process of infection. Unfortunately,
despite observations of internal colonization and ad-
vances in genomics, there is no information available
on the actual mechanism of internal colonization by
Azospirillum and its regulation. Further examination of
Azospirillum at the molecular level may provide insights
despite this lack of mechanistic information.

Molecular Azospirillum-plant interaction
as potential indicator of affinity of Azospirillum
strains

To date, only a small cohort of genes and molecular
factors has been investigated for their involvement in the
interactions between Azospirillum and plants, particu-
larly those pertaining to potential insights regarding
specificity/affinity. The lack of an easily detected plant
phenotype that could be used to select bacterial mutants
after inoculation with Azospirillum has complicated in-
vestigation of the genetic basis for the interaction.
Consequently, mutations in traits considered to play a
role in plant association have been mostly investigated
and include genes involved in the production of auxins

and surface compounds, genes sharing DNA homology
with other plant-associative bacteria, such as nod, in-
volved in nodulation by Rhizobium (Onyeocha et al.
1990), Rhizobium exo genes, involved in EPS produc-
tion (Michiels et al. 1988; Petersen et al. 1992) and
genes responsible for nitrogen fixation (nif and fix
genes) (Vande Broek and Vanderleyden 1995). The
p90 megaplasmid of Azospirillum was shown to carry
genes such as exoBC, nodPQ, mot1,2,3 genes (produc-
tion of polar and lateral flagella) and genes involved in
IAA synthesis and in chemotaxis (Michiels et al. 1989;
Katsy et al. 1990; Onyeocha et al. 1990; Van Rhijn et al.
1990; Vieille and Elmerich 1990; Elmerich et al. 1991;
De Troch et al. 1994). Although no role was found for
the nodPQ and exoBC homologous genes in
Azospirillum colonization of roots, the plasmid p90
was named the rhizocoenotic plasmid, pRhico by
Croes et al. (1991).

Attachment of Azospirillum to wheat roots is mainly
dependent on two factors: the existence of a polar fla-
gellum that allows the bacteria to attach to the roots and
produce EPS, allowing bacteria to firmly attach to the
root surface (Michiels et al. 1990, 1991; Croes et al.
1993). EPS production is regulated by the flcA gene,
although the mechanism bywhich this regulation occurs
is not fully understood (Pereg Gerk et al. 1998). This is
the only regulatory gene that is known to be related to
the attachment process.

The response regulator protein, FlcA, controls the
shift of Azospirillum from vegetative state to cyst-like
forms, both in cultures and in association with plants.
Tn5 transposon-induced flcA−mutants do not flocculate,
do not transform from motile vibriod cells into non-
motile cyst-like forms and lack the EPS material on
the cell surface under all conditions (Pereg Gerk et al.
1998). This leads to significantly reduced colonization
efficiency of plant roots by Azospirillum, as they depend
on the production of EPS to firmly attach to the root
surface (Katupitiya et al. 1995b; Pereg Gerk et al. 1998,
2000). Development of reliable RT-PCR reference
genes for Azospirillum (McMillan and Pereg 2014),
facilitated the demonstration that flcA is involved in both
the stress response and carbohydrate and nitrogen me-
tabolism in Azospirillum during flocculation (Hou et al.
2014). Proteomics, RT-PCR (Hou et al. 2014) and
cDNA-AFLP (Valverde et al. 2006) analyses to com-
pare wild type A. brasilense Sp7 and non-flocculating
flcA− mutants, have identified genes and proteins in-
volved in the flocculation and aggregation of strain
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Sp7 (Hou et al. 2014), amongst which was a
chemotaxis-like che1 homologue. Interestingly the
Che1 pathway has been suggested to play a role in the
adhesive cell properties of A. brasilense (Siuti et al.
2011) and controls swimming velocity, which affects
transient cell-to-cell clumping (Bible et al. 2012).
Similarly the nitrite/nitrate transporter NarK appears
involved in aggregation (Valverde et al. 2006; Hou et
al. 2014) and interestingly, the narL homologue, which
possibly regulates respiratory membrane-bound nitrate-
reductase, is highly expressed in wheat-bound A.
brasilense FP2 cells (Camilios-Neto et al. 2014).
While it has been established that flcA responds to
environmental cues (Pereg Gerk 2004), its expression
in response to various hosts has yet to be established.
Further analysis of the conditions that affect flcA expres-
sion may shed light on Azospirillum affinity for various
hosts.

Surface properties of Azospirillum are important in
the attachment process. Two genes, noeJ (mannose-6-
phosphate isomerase) and noeL (GDP-mannose 4,6-
dehydratase), were related to EPS biosynthesis and bio-
film formation (Lerner et al. 2009), and are present in
the genome of several strains of Azospirillum
(Sant’Anna et al. 2011; Wisniewski-Dyé et al. 2012).
Disruption of dTDP-rhamnose biosynthesis by Tn5 mu-
tagenesis modified the lipopolysaccharide core, EPS
production and root colonisation in A. brasilense Cd
(Jofre et al. 2004). Tlp1, an energy transfer transducer
is required for taxis and for colonisation of wheat roots
by A. brasilense Sp7 (Greer-Phillips et al. 2004). The
pili mutant (cpaB−) of A. brasilense Sp245 has reduced
biofilm formation and attachment to glass (Wisniewski-
Dye et al. 2011). All of the above may be important in
attachment to host roots. It is interesting to note that a
spontaneous mutant of A. brasilence Sp7 lacking its
lateral flagella, namely PM23, lost its ability to swarm
through semi-solid medium but was able to attach to
root surface (Pereg Gerk et al. 2000). Comparative
analysis of the genomes of various species and strains
of Azospirillummay link the molecular motifs related to
attachment with the ability of different species to colo-
nise different hosts as well as explain the different
modes of colonisation discussed above (root surface
versus root interior colonization).

Despite the great interest in this bacterium and it use
as commercial inoculant (Bashan et al. 2014; Calvo et
al. 2014), investigations into the molecular traits in-
volved in its attachment to plants have been lacking.

The value of such research was identified almost three
decades ago (Elmerich et al. 1987) but the paucity of
such studies persists to the present.

New insight into Azospirillum–plant interactions
using high throughput technology: genomics
and transcriptomics in relation to affinity for plants

The Azospirillum strain B510, an isolate of rice and a
close relative of A. oryzae, was the first complete geno-
mic analysis of an Azospirillum strain published
(Kaneko et al. 2010). Subsequently, the growing num-
ber of genomic sequences available for Azospirillum
species has facilitated valuable comparative studies,
potentially illuminating the specificity of the
Azospirillum-host interaction.

The detection of a tripartite ATP-independent peri-
plasmic transport system and a diverse range of malic
enzymes in the genome of Azospirillum strain B510
were implicated in the utilisation of C4-dicarboxylate
during its interaction with rice (Kaneko et al. 2010).
Genomic analysis of A. brasilense Sp245 suggested
transition of the genus from aquatic to terrestrial envi-
ronments at approximately the same time as the emer-
gence of vascular plants on land (Wisniewski-Dye et al.
2011). A proposed high frequency of horizontal gene
transfer (HGT) from soil and plant-associated bacteria is
the suggested mechanism of adaptation to the rhizo-
sphere and to the host plant. Such a mechanism would
allow the bacteria to gain, rearrange and lose genetic
traits as required for success in their ecological niche.
Indeed, a high frequency of plasmid DNA rearrange-
ments was reported for A. brasilense Sp7 that affected
biofilm formation on glass and roots (Petrova et al.
2010). Moreover, higher genomic plasticity was shown
in Azospirillum genomes compared to rhizobial ge-
nomes known for their genome plasticity (Wisniewski-
Dye et al. 2011), strengthening the suggested link be-
tween the appearance of phenotypic variants and plas-
mid loss or reorganization (Vial et al. 2006b). High
genomic plasticity supports the suggestion that
Azospirillum possesses mechanisms of adaptation to it
various hosts.

The demonstration that the Azospirillum genome ac-
quired a substantial number of glycosyl hydrolases by
HGT that are essential for decomposition of plant cell
walls and that the A. brasilense Sp245 genome contains
three enzymes that are orthologous to cellulases
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(Wisniewski-Dyé et al. 2011), supports previous sug-
gestions that cellulolytic activity may be crucial to the
ability of some Azospirillum strains to penetrate plant
roots (Skvortsov and Ignatov 1998). A comparison be-
tween whole genomes of four Azospirillum strains,
A. brasilense strains CBG497 (from maize grown on
alkaline soil) and Sp245, A. lipoferum 4B and
Azospirillum sp. B510 (Wisniewski-Dyé et al. 2012),
reveal that the Azospirillum core genome (AZO-core) is
dominated by proteins of ancestral origin (74 %) and
22 % of proteins acquired by HGT. While the 62–65 %
of the AZO-core (strain dependent) is mainly chromo-
somally-encoded, the non-chromosomal proportion of
AZO-core is unevenly distributed among strains.
Several strain-specific genes were found to be involved
in the colonization of plant roots; in a comparison
among the four strains, additional flagellation and che-
motaxis operons were found in A. lipoferum 4B and in
Azospirillum sp. B510, while additional genes involved
in EPS biosynthesis and/or transport and LPS biosyn-
thesis were present in the A. brasilense strains, possibly
acquired by HGT (Wisniewski-Dyé et al. 2012). Such
strain-specific genes may suggest variability in the
mode of interaction of strains with their hosts. It remains
unclear, however, what effect, if any, this has on host
specificity.

Although only four A. lipoferum strains out of 40
Azospirillum strains demonstrated acyl-homoserine lac-
tone (AHL) biosynthesis ability (Vial et al. 2006a), it
was suggested that strain-specific quorum sensing reg-
ulates functions linked to rhizosphere competence and
adaptation to plant roots in Azospirillum (Boyer et al.
2008). Indeed, the genome analysis of A. amazonense
Y2 revealed the presence of genes encoding for LuxI
and LuxR homologs proteins suggesting it could syn-
thesize AHLs and respond to their presence in the envi-
ronment. The genome of A. amazonense also presents a
Klebsiella pneumoniae ahlK homologue, possibly
encoding a putative homoserine lactonase implicated
in AHL degradation (Sant’Anna et al. 2011).

Although no difference was found in the anchoring
ability of surface colonizers and endophytes of
A. brasilense and A. lipoferum (de Oliveira Pinheiro et
al. 2002), genomic comparisons suggest that
Azospirillum strains have gained different root-
adhesion mechanisms (Wisniewski-Dyé et al. 2012).
Tight adherence (TAD) pili, essential for colonization
and biofilm formation, are exclusive to the A. brasilense
species while genes involved in cellulose synthesis

probably acquired by HGT are found exclusively in
A. lipoferum 4B and Azospirillum sp. B510.
Specificity was also found in the range of cellulases
and hemicellulases produced by the different strains,
with both A. brasilense strains encoding glycosyl
hydrolase-encoding genes with no orthologues in any
other Azospirillum genomes. A. lipoferum 4B and
Azospirillum sp. B510 seem to be more versatile for
aromatic compound degradation than A. brasilense
strains, with a wider range of aromatic ring-
hydroxylating dioxygenases, proposed to be related to
the composition of the host plant exudates, as a result of
niche-specific adaptation and environmental conditions
(Wisniewski-Dyé et al. 2012).

Profiling of plant secondary metabolites of maize–
Azospirillum (Walker et al. 2011) and rice–
Azospirillum (Chamam et al. 2013) associations re-
vealed strain-specific responses and suggest specific
interaction between Azosprillum strains and their
original host cultivar. The response of twoOryza sativa
japonica (rice) cultivars, Cigalon and Nipponbare, to a
root surface colonizer A. lipoferum 4B (isolated from
Cigalon) and an edophytic Azospirillum sp. B510 (iso-
lated from Nipponbare), investigated using root tran-
scriptome profiling, revealed not only strain-specific re-
sponses of rice, but also combination specific responses
(Drogue et al. 2014). Most of the differentially
expressed genes were related to primary metabolism,
transport and gene regulation; however, strain specif-
ic response was also observed for genes related to
auxin and ethylene signaling suggesting complex
response to hormone signaling (Drogue et al. 2014).
When considering differentially expressed genes to
that of un-inoculated plants, inoculations by
Azospirillum lead to the expression of genes related
to stress response and plant defense in both rice
inoculated with A. lipoferum 4B (Drogue et al.
2014) and wheat inoculated with A. brasilense FP2
(Camilios-Neto et al. 2014). However, inoculation of
rice by the endophytic strain B510 seems to lead to the
repression of a wider set of genes than A. lipoferum 4B
(Drogue et al. 2014). A possible explanation is the
ability of this strain to colonize the plant internally.
Specificity may occur in the molecular responses of
Azospirillum strains to their hosts, even though
Azospirillum, as a genus, can interact with a wide range
of hosts. Further investigation is required to explain the
cellular changes of specific strains during association of
this PGPB with plants.
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Conclusions

Analysis of the extensive published data over four de-
cades has facilitated certain conclusions about the spec-
ificity and/or affinity of organisms in the genus
Azospirillum. This genus represents general plant
growth-promoting bacteria improving the growth of
113 plant species of 35 botanical families, without any
solid evidence of species specificity to selected plant
species. Previous claims for specificity/affinity of
Azospirillum for cereals, proposed in the early days of
the field, are unsupported and may represent historical
assumptions, likely related to the original isolation of
Azospirillum organisms from cereals and experimenta-
tion performed almost exclusively on cereals. Numerous
studies on Azospirillum-cereals association merely reflect
the economic importance of cereals as crops, resulting in
inaccurate claims that the main effect of this genus is on
cereals. The demonstration of Azospirillum-plant interac-
tions that stretch beyond cereals is expected to drive
future research and greatly expand our knowledge of this
important crop-enhancing genus.

It remains to be seen; however, the degree to which
affinity may exist between different Azospirillum strains
and various plant species, as does exist for many other
PGPB for which specific strains performed better with
specific plant genotypes or cultivars. Regardless of the
wealth of research on Azospirillum–plant interactions,
there is insufficient data regarding comparative bacterial
strains-plant species or bacterial strain-plant genotypes.
Additionally, comparative molecular analysis of differ-
ent strains is in its infancy because only a handful of
strains of Azospirillum are fully sequenced.

Future potential useful lines of research in this topic

Although no new specificity of Azospirillum to specific
plant species is expected to emerge, the affinity of
strains to plant genotypes or to plant species is worth
investigating. This will involve examination of:

& A large number of strains tested on one plant species
or a specific strain tested on multiple hosts and
isolation of the strain after plant growth are required
to propose affinity of Azospirillum strains.

& Molecular comparison at the entire genome level
should be done between strains claimed to have
affinity to specific plant species or to plant genotypes.

& A comparison regarding the differences between
flocculating wild-type strains and non-flocculating
mutants (often impaired in colonization) of the same
strain regarding their effects on plant.

& A comparison between motile strains and strains
naturally impaired in motility (affected by pro-
duction of polar flagella that are required for
initial Azospirillum-root interaction) on plants
exuding large amount of exudates and those
limited in the quantity and variability of these
exudates.

& A comparison of cross inoculation between strains
of different geographical origin (tropical, desert,
temperate, aquatic) and plants from the same zone
or with plants with Azospirillum strains isolated
from another origin.

So far, the lack of knowledge regarding the
specificity/affinity of Azospirillum does not de-
tract from the numerous companies that offer
commercial products for inoculation with
Azospirillum. This knowledge will make possible
tailoring of a better, future market product for
sustainable agriculture in common agriculture
practices and organic farming.
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