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Abstract
Background Microbial inoculants are an alternative
method of increasing crop productivity that can reduce
the use of chemical fertilizers, which is one of the more
controversial agricultural practices that affect the envi-
ronment. Beneficial bacteria, collectively known as
plant growth-promoting bacteria (PGPB), enhance plant
growth and protect plants from disease and abiotic
stresses through a wide variety of mechanisms.
Bacterial inoculation efficiency is associated with the
beneficial features of the inoculated bacterium, as well
as with the complex network of interactions occurring in
the soil.
Scope Beneficial bacteria have previously been exam-
ined for interactions with different plant hosts, soil
types, and agricultural practices, but there is limited
information concerning the potential effects of the re-
lease of microorganisms on soil functionality. Despite
the plant growth promotion characteristics, the survival,
abundance, and persistence of inoculant in soil or plant
roots are characteristics that could potentially lead to its
invasiveness. Inoculants can also interfere with soil
health and microbial and faunal community
composition.

Conclusion This review presents an overview of plant-
PGPB interactions and their impacts on microbial com-
munities, hypothesizing about the potential of these
interactions to promote positive disturbances in soil,
mainly in poor environments. The inoculation of free-
living bacteria seems to cause a short-term impact to
agricultural soils, while rhizobia-based inoculants or
bacterial inoculations performed under stress conditions
are long-term processes. However, there is great vari-
ability amongst results concerning the effects of bacte-
rial inoculation into different plant and soil conditions.
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Introduction

In agroecosystems the biodiversity performs a variety of
ecological services beyond the production of food, in-
cluding nutrient recycling, disease control (suppression
of undesirable organisms), detoxification of noxious
chemicals, control of local microclimate, and regulation
of local hydrological processes (Altieri 1999). The di-
versity of species and functional groups is also strongly
associated with soil health and ecosystem multi-
functionality (Wagg et al. 2014), and the ability of soil
to respond to disturbances is influenced by the resistance
and resilience of the soil microbial community (Griffiths
and Philippot 2013). The interactions among microor-
ganisms mediate nutrient and energy transfer to higher
trophic levels (microbial loop) (Saleem and Moe 2014),
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making essential nutrients present in the biomass of one
generation available to the next, and maintain the nutri-
tional conditions required by other inhabitants of the
biosphere (Madsen 2005).

Plants mediate multiple interactions between below
and aboveground heterotrophic communities that have
no direct physical contact (van Dam and Heil 2011).
Microbes associated with plant roots play a substantial
importance on the soil biodiversity, because they can be
pathogenic to plants, as well as they can also influence
the plant vigor by the deposition of nutrients, antibiotics
and plant hormones around the roots (de Vrieze 2015).
The plant-associated microbial community is shaped in
response to nutritional status and developmental stages
of different plant genotypes, as well by the presence and
type of pathogens, predators, and beneficial organisms
(Kreuzer et al. 2006; Pineda et al. 2010; Chaparro et al.
2013; Nakagawa et al. 2014). The soil health and fertil-
ity support soil food webs in which the bacteria-based
energy channel, microfauna (nematodes and protozoa),
and earthworms play an important role in nutrient cy-
cling, whereas infertile soils tend to support food webs
dominated by fungi and arthropods (notably mites,
springtails, and millipedes) (reviewed by Wardle et al.
2004).

The plants release between 40 and 60 % of photo-
synthetically fixed carbon (C) to roots and associated
microorganisms via sloughed-off root cells, tissues, mu-
cilage and a variety of exuded organic compounds
(reviewed by Keiluweit et al. 2015). The plant-
associated microbial community, also referred to as the
second plant genome or microbiome, is crucial to plant
health and development (Mendes et al. 2011; Berendsen
et al. 2012; Panke-Buisse et al. 2014). Several bacteria
and fungi actively cooperate (syn. associative symbio-
sis) with the plants (Moënne-Loccoz et al. 2015).
Beneficial microorganisms can be found inside the roots
or be present on the rhizoplane (surface of roots) or in
the rhizosphere (soil adhered and influenced by the
roots). Concerning bacteria, this ability is mainly found
in plant growth-promoting bacteria (PGPB).

Both plants and PGPB participate in numerous mo-
lecular signaling events that establish specific symbiot-
ic, endophytic or associative relationships (see Fig. 1).
Such relationships vary according to plant genotypes
and bacterial strains and with respect to the degree of
proximity between the roots and surrounding soil
(Fig. 1a), as well as with the abilities of bacteria to
improve plant growth through mechanisms in favor to

nutrient deposition, production of plant-hormones,
stress alleviation, and defense against pathogens
(Fig. 1b). PGPB inoculation is an important strategy
for the sustainability of agriculture, as the successfully
utilization of this practice enables to reduce or even
eliminate the use of pesticides and/or fertilizers without
yield-culture losses. Also, microbial inoculants may
offer a cheaper alternative than fertilizer usage for small-
holder farmers. In this way, many bacteria classified as
PGPB have been extensively isolated from host plants
to test their abilities related to the plant growth
(biofertilizers or biostimulants) and defense against
pathogens (biocontrol agents or biopesticides) aiming
prospection of microbial inoculants (Caballero-Mellado
et al. 2007; Ambrosini et al. 2012; Souza et al. 2013;
Calvo et al. 2014). Microbial inoculants mainly include
free-living bacteria, but also are made from fungi and
arbuscularmycorrhizal fungi (AMF) (Calvo et al. 2014).

Plant biostimulants are diverse substances and mi-
croorganisms used to enhance plant growth, as well as
microbial inoculants, humic acids, fulvic acids, protein
hydrolysates and amino acids, and seaweed extracts
(Calvo et al. 2014). A Bmicrobial inoculant^ (referred
as inoculants in this review) can be defined as the final
product of one formulation containing a carrier and a
bacterial agent or a consortium of microorganisms.
BCarrier^ refers to the abiotic substrate (solid, liquid,
or gel) that is used in the Bformulation^. The
Bformulation^ refers to the laboratory or industrial pro-
cess of unifying the carrier with the bacterial strain in
liquid, organic, inorganic, polymeric, or encapsulated
formulations (Bashan et al. 2014). Technical aspects
are also essential for the success of the inoculant, as
the soil or seed application and its shelf life that must last
more than one season (Bashan et al. 2014). The bacterial
inoculation technologies are important for the higher
efficacy of this practice. To fulfill its purpose bacteria
need survive in the soil and this can be eased through of
carrier type and formulation of a Bwell protected^ inoc-
ulant (Bashan et al. 2014; Jayaraman et al. 2014).

The survival in soil and the colonization of rhizo-
sphere, rhizoplane or plant roots by bacteria are process-
es involved in an intricate ecological context (Revellin
et al. 2001; Ciccillo et al. 2002; Ramachandran et al.
2011; Chamam et al. 2013; Chowdhury et al. 2013).
Plant-inoculant interactions are specific to plant and
bacteria genotypes, varying with the geochemical char-
acteristics of different types of soil and localities, and
with the biological interactions among the soil biota,
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especially those surrounding roots. The plant roots or-
chestrate many of biological interactions in the soil
because the rhizosphere is a rich environment for mi-
crobial and faunal communities (Badri and Vivanco
2009; Wagg et al. 2014). Bacteria need to be able to
compete and colonize plant roots efficiently. In gram-
negative bacteria these activities are rather associated to
the production and perception of acylated homoserine
lactones (AHLs), which are synthesized by LuxI homo-
logs and participate of intraspecific communication
among individuals (Weiland-Bräuer et al. 2015).

Successful roots colonizers respond and interact with
different host plants. However, these relationships are
also considerably dependent of the biotic and abiotic
soil proprieties (Lange et al. 2014). Microorganisms
associated with plants are mainly bacteria, fungi, and
protozoa to a lesser extent (Moënne-Loccoz et al. 2015).
Protozoa are the main microbial predators, which regu-
late bacterial populations in various ecosystems
(Moënne-Loccoz et al. 2015). Protozoa and nematodes
are a crucial link between microflora and larger fauna,
regulating the populations of bacteria and fungi and
playing a major role in the mineralization of nutrients
(Fortuna 2012). In this review we will present and
discuss the most common disturbances in agricultural

soils and the potential of plant-inoculant interactions to
impact rhizosphere microbial communities.

Disturbances on soil microbial communities

Many anthropogenic practices have resulted in intensive
soil degradation and, in the case of agricultural soils, in
the progressive loss of their fertility (Miransari 2011).
The management techniques cause constant distur-
bances that directly or indirectly affect microbial com-
munities in agricultural ecosystems (Bissett et al. 2011;
Derpsch et al. 2014; Ollivier et al. 2011; Paula et al.
2014). Among the most widely used management tech-
niques in the agriculture is the use of pesticides and
fertilizers, affecting the function of microbial communi-
ties by reaching natural and managed ecosystems with
high concentrations of environmental pollutants
(Edwards 2002; Ollivier et al. 2011). The microbial
products of metabolic oxidation or reduction of C and
nitrogen (N) compounds in soils include greenhouse
gases, as carbon dioxide (CO2), methane (CH4), and
nitrous oxide (N2O) (Fortuna 2012).

Fungicides and fumigants are generally potent nitri-
fication inhibitors, and tend to have a greater initial and

Fig. 1 aThe different types of association between plant roots and
beneficial soil bacteria; b Following the colonization or associa-
tion with plant roots and/or the rhizosphere, bacteria can promote
plant growth through (i) the alleviation of plant stress through the
reduction of ethylene levels; (ii) the increase of nitrogenous re-
sources through N2 fixation; (iii) the stimulation of root

development by phyto-hormone production; (iv) P solubilization
around roots; (v) the defense against pathogens via the presence of
competitive traits such as antibiotic and siderophores production;
(vi) Fe solubilization around roots via siderophores production.
C2H4 (ethylene), ACC (ethylene precursor in plants), α-KB (α-
ketobutyrate), NH4

+ (ammonia), IAA (indole-3-acetic acid)
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longer lasting effect on nitrification than either herbi-
cides or insecticides (Wainwright 1999). The N fertili-
zation stimulates specific functional microbial groups,
such as ammonia-oxidizing microorganisms and
denitrifying bacteria (Enwall et al. 2005; Hallin et al.
2009). The use of nitrogenous industrials fertilizers is
among the principal anthropogenic disturbance on the
multiple biogeochemical cycles, contributing to nitrate
(NO3

−) leaching, ammonia (NH3) volatilization, and
N2O emissions (Robertson and Vitousek 2009;
Shcherbak et al. 2014). Moreover, in the relationships
among phosphorus (P) concentrations and mycorrhiza,
an increase of soil P content generally decreases the
populations of this fungus (Smith et al. 2011), although
the response to the P content can also be variable ac-
cording to plant species (Gosling et al. 2013).

Some authors emphasize as fundamental characteris-
tics of a disturbance its discrete nature in time and space
(Pickett and White 1985), its direct or indirect nature of
single or multiple factors acting locally or regionally
(Wan et al. 2014), and its temporary and localized effect
(Dornelas 2010). However, the disturbances can also be
classified according to their duration as either pulses
(discrete and short-term events) or presses (continuous
and long-term events) (Shade et al. 2012). Dornelas
(2010) focuses on disturbances not as causes, but as
ecological effects of an event with important aspects
on biodiversity. Thus, the disturbance can have a posi-
tive connotation if it is seen as something that can also
contribute to the release of funds in the ecosystem due to
changes in survival or reproductive rates, and/or the
increase in the number of individuals that the commu-
nity can accommodate (Holt 2008; Dornelas 2010).

According to Wan et al. (2014), external or internal
disturbances may result in both positive and negative
effects (referred to as Btwo-sided effects^) on the struc-
ture and functions of any complex ecosystems, because
disturbances enter the ecosystem as information, mate-
rial or energy flow, which subsequently produces prof-
itable or unprofitable effects. In this way, a number of
factors must be taken into account when characterizing a
disturbance, including the spatial and temporal scale of
the disturbance, the number of occurrences per unit
time, the magnitude of the disturbance, the proportion
of the ecosystem affected, and the regularity of the
disturbance (Shade et al. 2012). Independently of eco-
logical effects or causes, a disturbance arise in response
to external factors that trigger changes in the structural
and functional components of different aspects of the

system, including at the levels of the individual, popu-
lation, community, ecosystem, and landscape (Pickett
et al. 1989; Berga et al. 2012).

The functional resiliency of soil is related to the effect
of disturbance on the physicochemical structure of the
microbial community in terms of composition and phys-
iology (Griffiths et al. 2008; Berga et al. 2012).
Resistance (i.e., the ability to return to a state of equi-
librium following disturbance or to resist a change) and
resilience (i.e., the rate of return to a state of equilibrium
following disturbance) are related to the stability of the
microbial community, a functional property based on
changes to community dynamics that arise in response
to disturbance (Robinson et al. 2010; see Fig. 2). Land
use alters the resistance and resilience of soil food webs
to drought, for example, and the extensively managed
grassland promotes more resistant and adaptable fungal-
based soil food webs (de Vries et al. 2012).

Litchman (2010) defined invasive microbes as mi-
croorganisms (viruses, archaea, bacteria, protists, and
fungi) that proliferate in a new range and impact local
communities or ecosystems. An alien species is defined
by Saccà (2015) as the one that colonize an area beyond
its natural range, where it reproduces and establishes a
population. It can also be called non-indigenous or non-
native species. According to Vilà et al. (2009), the
DAISIE project (Delivering Alien Invasive Species
Inventories for Europe) (www.europe-aliens.org)
follows the classification of species based on the
invasion status proposed by Occhipinti-Ambrogi and
Galil (2004) and Pyšek et al. (2004), which is: alien
species are those introduced by humans that colonize
outside their natural range and dispersal potential,
whereas invasive species are those alien species that
spread over a large area and attain high local
abundances.

As well placed by Litchman (2010), the notion of
invasive microbial species is complicated due to the
difficulties associated with establishing the ‘non-native-
ness’ of microbes and with applying the very concept of
‘species’ in many microbial taxa (Staley 2006). Here, we
agree with Litchman (2010) concerning the definition of
invasive microbes, since microbes are very susceptible at
the surrounding environment and their responses are
extremely variable according different strains of a same
species. Microbe may belong to different functional
groups that contribute to changes in the ecosystem where
they were introduced. Regardless of species identifica-
tion, the genomic and phenotypic plasticity is common
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among bacteria and many of them have genic products
based on a content received of other individual(s) by
genetic transference, which confuses the definition about
bacterial species and their respective functional groups
(Sullivan and Ronson 1998; Tuller et al. 2011).

The more diverse biological communities are often
they are less prone to (micro) organisms’ invaders than
simpler ones (Litchman 2010). Invasive microbes tend
to have superior competitive abilities that facilitate their
spread in lower diversity communities (van Elsas et al.
2012). An invasive microbe has general similarities with
natives species, since both have needs to adaptation to
the same environment, but also it shows an enhanced
performance when uses more efficiently the resources or
possesses traits that enable the access to resources un-
available to other species (Litchman 2010; van Elsas
et al. 2012). Experiments using different genotypes of

Pseudomonas fluorescens, which differ in their ability to
use resources, have showed that functional dissimilarity
have greater significance than taxonomic richness to the
success of invader (Eisenhauer et al. 2013). The initial
community evenness favors functionality under selec-
tive stress (Wittebolle et al. 2009), and multiple preda-
tors result in higher bacterial species evenness across
bacterial richness (Saleem et al. 2012).

The biodiversity of the resident community reduces
invader success at high niche dimensionality via com-
plementary niche preemption; on the contrary, at low
niche dimensionality, where complementary interac-
tions are restricted, invader success is driven by identity
effects, that is, by pairwise interactions between in-
vaders and resident taxa (Eisenhauer et al. 2013).
According to Clark (2013), many experimental studies
agree that diversity can contribute to invasion resistance

Fig. 2 In agricultural fields, several factors (as depicted by rays)
affect soil health and, consequently, microbial community and
ecosystem function. In a broad context, the success of microbial
inoculation is highly dependent upon specific interactions between
plants and bacteria and is mediated through exudates and bacterial

competitive traits, such as high growth rates and the efficiency of
resource use. Inoculants are invasive microbes and have the po-
tential to significantly alter community composition through the
efficient colonization of roots (left circle), particularly in contrast
to microbes that are inefficient at root colonization (right circle)
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by two main mechanisms: identity effects and species
complementarity: (i) identity effects are the chance of
inclusion of species that are particularly proficient at
resisting invaders, such as strong competitors or those
with unique invader repelling traits; (ii) species comple-
mentarity refers to differences in resource use amongst
species, such that the most diverse communities leave
fewer resources available to potential invaders.

Plant-soil feedback (PSF) is a term used to describe
an interactive loop involving plants and the biological,
chemical, and physical properties of the soil (Ehrenfeld
et al. 2005). Lou et al. (2014) propose that microorgan-
isms are most likely to play a role in PSF loopwhen they
possess an affinity for a particular plant and the capacity
to strongly affect the growth of plants. However, the
functional redundancy of bacteria can relieve the effects
of changes to diversity, as the microorganisms that are
unaffected by the presence of invasive microbes may
perform similar functions in soil. For example, microbes
that work to decompose various elements of the soil are
likely not greatly impacted by the presence of intro-
duced bacteria, as their functional specificity is limited
and redundant (van der Putten et al. 2007).

Inoculants and their potential disturbances on soil
communities

Inoculants are selected according to the beneficial char-
acteristics that they can impact on plant growth and
fitness, although the potential effects on the microbial
community are not frequently assessed. To efficiently
achieve the beneficial features of this practice, a high
concentration of inoculant must be introduced into the
environment (Lupwayi et al. 2000), that can induce
changes to the local biological structure (Litchman
2010). As it is expected that plants and inoculants ac-
tively cooperate in the root zone, these interactions may
establish relationships to allow a better adaptation to the
environment and thereby alter in some way the sur-
roundings (Fig. 2). In this sense, if bacterial diversity
is predominantly modulated by the alterations of plant
exudates in the rhizosphere (Baudoin et al. 2009;
Berendsen et al. 2012), the ability to cooperatively and
specifically interact with plant roots expectedly gives to
the inoculant an enhanced performance in soils.
However, this is not a simple trajectory.

The establishment of beneficial associations requires
mutual recognition and substantial coordination of plant

and microbial responses (Zamioudis and Pieterse 2012),
and these reciprocal interactions correspond to a feedback
loop (Lemanceau et al. 2015). In fact, bacteria are able to
modulate their genetic expression according to com-
pounds secreted by plant roots. Chaparro et al. (2013)
observed a strongly correlation between microbial func-
tional genes involved in the metabolism of carbohydrates,
amino acids and secondary metabolites with the corre-
sponding compounds released by Arabidopsis roots at
particular stages of plant development. Likewise, plants
seems selectively attract beneficial bacteria through the
secretion of specific signaling molecules, such as malic-
acid secreted by A. thaliana after foliar infection with
P. syringae pv tomato (Rudrappa et al. 2008). This com-
pound was a signal to recruit Bacillus subtilis FB17,
which is responsive to it (Rudrappa et al. 2008).
Elevated levels of malic-acid promoted binding and bio-
film formation of FB17 on Arabidopsis roots only in the
presence of pathogens, since plant roots do not secrete
malic-acid during their regular growth (Rudrappa et al.
2008; Beauregard et al. 2013).

Biotic and abiotic elicitors stimulate defense mecha-
nisms in plant cells and greatly increase the diversity
and amount of exudates (Cai et al. 2012). A major part
of plant response to bacterial interaction is the recogni-
tion of microbial-associated molecular patterns
(MAMP) such as chitin, peptidoglycan, lipopolysaccha-
rides or flagellum structures, and the initiation of effi-
cient plant defense reactions (Hartmann et al. 2014). The
perception of secondary metabolites (Garcia-Gutiérrez
et al. 2013) and volatile compounds (Yi et al. 2010), for
example, can also be related to bacteria-induced plant
responses towards improved resistance to pathogens.
Beneficial bacteria evolved to reduce stimulation of
the host’s immune system, as rhizobia and the suppres-
sion of salicylic acid–dependent defense responses by
utilizing the Nod signaling pathway, and phase variation
by PGPR (Zamioudis and Pieterse 2012). Through
phase variation the bacteria can modify surface mole-
cules by site-specific recombination and epigenetic reg-
ulations mediated by DNA methylation, for example,
and thus generate bacterial subpopulations within a
clonal population in order to increase their overall fit-
ness in the environment (van der Woude 2011).

The N-acyl-homoserine lactones (AHLs) play a role in
the biocontrol activity of bacteria through the induction of
systemic resistance (ISR) in plants (De Vleesschauwer and
Höfte 2009). ISR is the result of multiple response cas-
cades employed by the plant host and it is highly
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modulated by plant-hormones, such as salicylic acid,
which can be increased in leaves when AHL-producing
bacteria colonized the rhizosphere (Schuhegger et al.
2006). Schuhegger et al. (2006) observed that the absence
of these molecules makes an AHL-negative mutant bacte-
rium less effective in reducing both plant symptoms and
pathogen growth as compared to the wild type. At chang-
ing the plant responses to the environment, ISR plays an
important role in mediating belowground and above-
ground interactions and does not only affect pathogens,
as may inhibit the growth of beneficial organisms (van
Dam and Heil 2011).

The Bquorum sensing^ (QS), or the more broadly
defined concept of Befficiency sensing^ (Hense et al.
2007), is mediated by AHLs among Gram-negative
bacteria, while cyclic peptides as QS-signals were only
found in Gram-positive bacteria (Hartmann et al. 2014).
Plants perceive, react, and transport AHLs, or plants can
even produce AHL-mimic substances or to develop
other activities influencing QS of plant associated bac-
teria (Gao et al. 2003; Bauer and Mathesius 2004;
Hartmann et al. 2014). Auto-inducers of the AHL type
vary in structure and plant reactions. Schenk et al.
(2012) observed a negative correlation between the
length of AHLs’ lipid chains and the growth promotion
in A. thaliana, and the authors speculate about a positive
correlation between the reinforcement of defense mech-
anisms and the length of the lipid moieties. Several
studies have evaluated the direct AHL impact on differ-
ent plants, as reviewed by Hartmann et al. (2014).

Among bacterial traits involved in the ability of col-
onize the rhizosphere (i.e., rhizosphere competence),
QS highly influences the performance and interactions
within the microbial communities. Many toxins and
antibiotics are also regulated by QS and stress re-
sponses, which enable bacteria to infer the presence of
ecological competition (Hibbing et al. 2010; Cornforth
and Foster 2013). The biological interactions around
roots meet important part on the efficiency of an inocu-
lant, such as microbial competition and predation by
faunal communities, which are crucial relationships to
bacterial life in the environments. Bacterial predation by
protists depends on a number of interacting factors, such
as bacterial phenotypic plasticity (Hahn et al. 1999;
Queck et al. 2006), cell size (Šimek and Chrzanowski
1992), biofilm formation (Huws et al. 2005; Weitere
et al. 2005), and microevolution (Friman et al. 2014).

Protozoan predators play a crucial role in structuring
complex communities, since bacterial grazers improve

plant growth via nitrogen mineralization by microbial
loop (e.g., Bonkowski 2004). Schmitz et al. (2010) sug-
gest that protists predators can impact bacterial abundance
and activity by recycling of nutrients that are used by the
prey (consumptive effects) or improving habitat condi-
tions for better prey foraging (non-consumptive effects).
Soil microbes are important regulators of plant productiv-
ity, especially in nutrient poor ecosystems where plant
symbionts are responsible for the acquisition of limiting
nutrients (van der Heijden et al. 2008; Fließbach et al.
2009). A same bacterium may be able to survive and
colonize poor soil while stimulating microbial diversity
(Bashan et al. 2010), or it may have little chance at
survival and colonization but not majorly affect the mi-
croorganism communities already present in rich soils
(Lerner et al. 2006; Felici et al. 2008). This phenomenon
seems to occur because plants are able to select the root’s
microbiota according to their needs, favoring the interac-
tion with growth hormone producers under rich nutrient
conditions, while they favor nutrient solubilizers under
poor nutrient conditions (Costa et al. 2014).

Moreover, the effects of microbial inoculation can be
direct or indirect, not only through the presence of an
inoculant around the root but also through the promotion
of plant growth. If an inoculant is able to improve the
distribution of roots into soil there will be more root
colonization sites for microbiota because higher soil vol-
ume was explored by plant roots (Baudoin et al. 2009;
Trabelsi et al. 2011). To promote plant-growth, inoculants
must either establish themselves in the soil or become
associated with the host plant; however, the permanence
of these inoculants in the soil has potential to cause
disturbances on the native microbial populations
(Fig. 2). As suggested by Bashan et al. (2010), the mi-
crobial stimulation causes effects on plant growth and
these effects remain in soil, even that the relative domi-
nance of the inoculated population decreased over time. If
the effects of microbial inoculation are positive to other
microbes and subsequent trophic levels beyond plants,
the picture of this highly productive system may help us
to better understand the agricultural soil dynamics.

PGPB inoculation and its impact on the taxonomic
diversity and functionality of soil microorganisms

Strains of the genus Azospirillum, which are free-living,
N2-fixing, Gram-negative Alpha-proteobacteria, are
commonly found in the soil and are commercially used
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as inoculants to agricultural plants; examples include
maize (Revellin et al. 2001; Reis et al. 2011), rice, and
wheat (Naiman et al. 2009; Hungria et al. 2010).
A. brasilense is known to promote plant growth and
colonize the rhizosphere. While the survivability of
A. brasilense is independent of soil aridity, it is directly
and rapidly affected by soil disturbances caused by
water percolation or plant removal (Bashan et al.
1995). For example, to achieve growth promotion of
maize cultured in Brazilian Cerrado by A. brasilense a
higher dose of bacterial inoculation in clay soils was
needed, as opposed to sand soils, where there were no
differences between the applications of diluted or con-
centrated doses of bacterial inoculant (Ferreira et al.
2013). Additionally, the production of PHA
(polybetahydroxyalkanoates) has been associated with
the increased survivability of A. brasilense following
exposure to various stressors and is thus critically im-
portant to improving the shelf life, efficiency, and reli-
ability of commercial inoculants (Kadouri et al. 2005;
Fibach-Paldi et al. 2012).

Some researchers have concluded that rhizosphere-
related microbial communities are highly buffered
against the introduction of foreign bacteria (Björklöf
et al. 2003). Minor changes to the diversity of the
indigenous bacterial community that is present within
rhizospheric soil were observed following bacterial in-
oculation with Azospirillum spp. into soil containing
different plant cultures, such as maize (Herschkovitz
et al. 2005a, b; Lerner et al. 2006; Baudoin et al.
2009), rice (de Salamone et al. 2010), tomato (Felici
et al. 2008), and wheat (Naiman et al. 2009). Non-
prominent effects on the structure of the rhizosphere’s
microbial population have also been observed in the
context of free-living bacteria belonging to genera
Bacillus, Brevibacillus, and Pseudomonas (Björklöf
et al. 2003; Felici et al. 2008; Fließbach et al. 2009;
Piromyou et al. 2011, 2013; Chowdhury et al. 2013).

However, the bacterial inoculation of A. brasilense
Sp6 to support quailbush (Atriplex lentiformis) growth
in acidic metalliferous mine tailings resulted in changes
to the DGGE profile of the rhizospheric community at
15, 30, and 60 days following bacterial inoculation, and
the community structure changed evenmore significant-
ly as plants established themselves and grew (Bashan
et al. 2010). The inoculum increased plant biomass
production and was able to colonize the root surface
and persist there throughout the 60-day experiment
(Bashan et al. 2010). Moreover, the stimulation of

adventitious root growth, which allow an increased in
nutrient uptake and alleviation of the effects of salt stress
on different plant species, has been associated with
different Azospirillum strains that are able to establish
and maintain colonies under salt stress conditions
(Barassi et al. 2007; Bacilio et al. 2004; Nabti et al.
2010; Fasciglione et al. 2012; Zarea et al. 2012).

When N2-fixation is a trait important to the establish-
ment of positive interactions between plants and symbi-
otic bacteria, as is the case among leguminous and
rhizobia, the interference of the inoculant on microbial
diversity is of greater impact than that produced by free-
living bacteria (Zhang et al. 2010; Trabelsi et al. 2011;
Bakhoum et al. 2012). Due to the degree of symbiotic
specialization and the variability of plant and microbial
symbiotic responses (van der Putten et al. 2007), the
diversity of host communities is likely a key determinant
of the invasion success of symbiotic microbes
(Litchman 2010). Bulk soil analyses performed during
the flowering and grain harvesting of the common bean
following bacterial inoculation with S. meliloti 4H41
and Rhizobium gallicum 8a3 demonstrated increased
richness of the total bacterial community, particularly
the Rhizobiaceae family. Additionally, populations of
Alpha- and Gamma-proteobacteria, together with
Firmicutes and Actinobacteria, were enhanced by bac-
terial inoculation (Trabelsi et al. 2011). On the other
hand, rhizospheric soil analyses of faba beans (Vicia
faba L.) inoculated with R. leguminosarum bv. viciae
CCBAU01253 showed a decrease in bacterial diversity
that was negatively correlated with microbial biomass
(Zhang et al. 2010).

Interactions between species play a critical role in
biological invasiveness; for example, mutualism be-
tween exotic plants and microbes can facilitate the
spread of each as they co-invade novel locales (Porter
et al. 2011). Some researchers have indicated that exotic
rhizobial symbionts might have been co-introducedwith
host leguminous into new areas (Stępkowski et al. 2005;
Porter et al. 2011; Crisóstomo et al. 2013; Ndlovu et al.
2013; Horn et al. 2014) and that some rhizobial plasmids
can impair symbiotic N2-fixation, enhancing host inva-
sion (Crook et al. 2012). A genetically modified strain of
Sinorhizobium meliloti Rm42 was inoculated to pro-
mote the growth of alfalfa seeds and persisted in the soil
for at least 6 years despite the absence of a host plant
(Morrissey et al. 2002). Additionally, the horizontal
transfer and microevolution of a genetic modified plas-
mid (pPR602 harboring the thyA gene) were observed
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between S. meliloti strains (Morrissey et al. 2002).
Sullivan and Ronson (1998) also reported that the
500 kb chromosomal symbiot ic element of
Mesorhizobium loti strain ICMP3153 is transmissible
in laboratory matings to at least three genomic species of
nonsymbiotic mesorhizobia. The authors postulated that
this region may represent a class of genetic element that
contributes to microbial evolution by acquisition and, as
it converts the recipient strain into a symbiotic one, it
was denominated a symbiosis island.

Co-inoculation is an important example of the impor-
tance of ecological interactions to maintain sustainabil-
ity, because organisms can cooperate among themselves
and contribute to better plant performance and soil
health. Co-inoculation with arbuscular mycorrhizal fun-
gi and rhizobia enhances productivity of several agro-
nomic plants as lentil (Xavier and Germida 2002), pea
(Xavier and Germida 2003), and soybean (Wang et al.
2011). The mineralization of microbial biomass and
dead organic matter by protists also enhances the nitro-
gen supply to the plants via arbuscular mycorrhizal
fungi (Koller et al. 2013). Changes on community com-
position and spatial distribution of bacteria in the rhizo-
sphere of rice were also attributed to the presence of a
bacterial grazer (Acanthamoeba castellanii) and to the
increase of bacterial activity (Kreuzer et al. 2006). The
authors concluded that the interactions over three tro-
phic levels (i.e., between plants, bacteria and protozoa)
modified significantly root architecture and nutrient up-
take by plants.

Furthermore, the analyses of key bacterial genes,
such as those related to the N-cycle, can also facilitate
understanding regarding how specific microbial func-
tional groups are impacted, such as denitrifies, nitrifies,
and N2-fixing groups. For example, following the bac-
terial inoculation of faba beans in soil possessing resi-
dent rhizobia, N2-fixation was only improved at the
highest rate of inoculation (Denton et al. 2013). Sun
et al. (2009) evaluated Alfalfa-Siberian wild rye
intercropping, the predominant cropping system used
to produce forage in China, and the effects that rhizobial
inoculation produced on the intercropping with respect
to T-RFLP patterns in the 16S rRNA and the ammonia
monooxygenase subunit A (amoA) genes. Both treat-
ments showed a tendency to increase the diversity of
amoA; however, following the intercropping-rhizobial
inoculation treatment, the relative abundance of
Nitrosomonas increased while the relative abundance
of Nitrosospira decreased. In an experiment that

examined the bacterial inoculation effects in alfalfa
using two different indigenous strains of S. meliloti
(OS6 and S26), the effectiveness of inoculation with
OS6 was found to be associated with the abundance of
nifH genes (related to N2-fixation) in the late flowering
phase. A higher number of nirS (related to nitrite reduc-
tion) copies were also observed in the late flowering
phase following treatment with the OS6 strain (Babić
et al. 2008).

It was stated by Zak et al. (1994) that Bwe understand
little about the degree to which genetic diversity is
translated into taxonomic diversity, and even less about
the manner in which genetic and taxonomic diversity
affects functional diversity or ecosystem properties^.
Interestingly, even after 20 years of research, the nature
by which taxonomic diversity affects functional-group
diversity in soil systems is still not well understood,
although it is accepted that higher-diversity ecosystems
are frequently associated with soil fertility (Litchman
2010; Ding et al. 2013). On a global scale, the effects of
continuous agricultural practices, such as fertilization
and soil management, influence important biogeochem-
ical cycles, such as C and N (Robertson and Vitousek
2009). Bacterial inoculation also has the potential to
cause disturbances to the functional activity of soil
microbial communities, and greater understanding into
the effects produced by inoculation is still required. In
this way, the constant improvement of next-generation
DNA and RNA sequencing technologies represents a
significant step forward to obtaining detailed analysis of
the expression profiles of more complex communities
(Warneckea and Hess 2009; Li et al. 2012). Specific
genes that regulate biogeochemical cycles or important
enzymatic events can also alter soil community features
and represent another target that could be analyzed using
quantitative Real-Time PCR (qRT-PCR) (Mao et al.
2011), and microarray (Bai et al. 2013) and
metagenomics techniques (Fierer et al. 2012).

Conclusions

The effect of PGPB inoculation on the efficiency of
plant growth and the impact on microbial communities
is related to the inoculant establishment in the rhizo-
sphere and its survival in soil. The long-term abundance
of inoculants may improve its invasive ability.
Azospirillum spp. seems to be a Bgood inoculant^ but
a Bbad invader^ of agricultural soils, as this species
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promotes plant growth without persisting in the envi-
ronment and produces little to no effects on soil resis-
tance and resilience. On the other hand, rhizobia have
been shown to more greatly affect the microbial com-
munity and can be co-introduced with plant-mutualists
into novel environments. However, the real impact of
bacterial inoculation on agricultural systems remains
unknown and varies considerably according to geo-
graphical location and the species of plants and micro-
organisms used. Moreover, it is possible that the agri-
cultural regime of successive bacterial inoculation may
result in changes related to the periodicity of the inocu-
lation event.

This approach becomes difficult to quantify in light
of the breadth of variables that can influence soil re-
sponsiveness to invasive species. Researchers have
largely assessed the diversity of species by employing
molecular fingerprinting techniques. However, the tax-
onomic diversity associated with variations in functional
activity could provide relevant information concerning
the relationship between the impact of inoculants on
resident microbial communities and the turnover of
nutrients and soil functioning. The availability of mo-
lecular methods that can evaluate changes in microbial
communities in response to environmental changes has
led to notable insights linking diversity and functional
dynamics in several ecosystems (Bao et al. 2013;
Erlacher et al. 2014; Schreiter et al. 2014).

According to Fierer et al. (2012), although our un-
derstanding of the phylogenetic and taxonomic bioge-
ography of soil microbial communities continues to
expand, there has been limited progress in understand-
ing how the functional capabilities of soil microbial
communities change across biomes. In this way, the
use of mRNA analyses seems like a promising method
to obtain specific or whole metabolic activity profiles.
As there have been few studies employing expression
analyses of the microbial community, the use of newer
technologies and long-term experiments should provide
more robust results concerning how the degree of soil
functioning is affected by bacterial inoculation. Long-
term experiments to evaluate the functional diversity of
communities in successive crop planting may provide
more information into the impact of bacterial inocula-
tion on microbial species and soil functionality.

There is still insufficient knowledge allowing us to
determine the effect of the introduction of bacterial
species in the environment and the resulting impact of
this practice on the soil microbiota. We hypothesize that

the resulting interactions of PGPB inoculation can be
positive not only to plant growth, but also to soil fertility
via short- or long-term processes. This response can be
reinforced through successive PGPB inoculations. We
might think more about the inoculants as biotechnolog-
ical tools to recuperate degraded agricultural soils, or
only to keep them fertile, or yet to estimate a design of
microbial communities for biotechnological applica-
tions (Pagaling et al. 2014). Once knowing more about
the resulting ecological alterations of PGPB inoculation
with microorganisms on the soil, new strategies could
help us to maximize this practice, such as the increase of
positive effects in local soils, especially in poor
environments.
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