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Abstract
Aims Theoretical and observational studies have sug-
gested that environmental variations would change
compositional similarity between plant communities.
However, this topic has rarely been examined via ex-
periments involving direct manipulation of resources
utilized by plant communities.
Methods A 9-year field manipulation experiment was
conducted to examine the effects of nitrogen addition
and increased water on community similarity between a
steppe and an old field in the semiarid region of northern
China.
Results Over the experimental period, nitrogen addition
reduced community similarity between the steppe and
the old field, whereas water addition enhanced

community similarity. These treatment effects were
closely related to changes in diversity characteristics as
well as abundance of functional groups and dominant
species of plant communities.
Conclusions These results highlight the importance of
resource availability in regulating the trajectory of eco-
system succession, and suggest that the increase in
atmospheric nitrogen deposition in northern China will
contribute to divergence between the steppe and the old
field, whereas the increase in growing-season precipita-
tionmay encourage convergence between the two grass-
lands with respect to species composition during suc-
cession. Thus the decrease in community similarity
caused by nitrogen enrichment may be counteracted, at
least partially, by precipitation increase under changing
atmosphere and climate.

Keywords Beta diversity . Northern China . Old field .

Precipitation . Species composition . Species richness .

Steppe

Introduction

Community similarity is one of the most widely used
metrics for assessing the extent of change in community
composition, or degree of community differentiation, in
relation to environmental gradients or patterns, a phe-
nomenon described by Whittaker (1960) as Bbeta^ di-
versity. This diversity metric provides a means of
assessing differences in overall community composition
by comparing the proportional similarities of all species
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between two communities. Compared to the common
diversity measure of species richness, community sim-
ilarity has proved to be a more sensitive measure of
changes in community composition (Dormann et al.
2007; Fukami et al. 2001).

Global environmental changes have been reported to
substantially affect community composition of grass-
lands (e.g., Bray and Curtis 1957; Tilman 1989; Xu
et al. 2010). Theoretic and modeling studies have sug-
gested that environmental changes may increase or de-
crease community similarity of two given assemblages
due to changes in species composition (Whittaker
1960; Nekola and White 1999; Steinitz et al. 2005;
2006). Observational studies and phenomenological
analyses of natural communities, without controlling
for environmental factors, have also suggested that the
patterns of compositional similarity of grassland com-
munities vary along environmental gradients
(Onipchenko and Semenova 1995; Chapin et al. 2000;
Fernandez-Going et al. 2012). In a changing world,
however, these theoretical and observational findings
have rarely been tested using rigorous experiments with
manipulated environmental factors simulating the ef-
fects of nitrogen deposition and changes in precipitation
patterns on species similarity of plant communities in
grasslands (for an exception, see Milchunas and
Lauenroth 1995).

Grasslands in northern China constitute a significant
part of Eurasian grasslands and play an important role in
sustaining the ecological environment and socio-
economic health of the region (Kang et al. 2007). Steppe
and old field are the most widely distributed grassland
types in northern China, and these grasslands differ in
past anthropogenic disturbances. Steppes were general-
ly over-grazed during the latter half of the past century,
while old fields experienced intensive farming during
the same period. Excessive exploitation of these lands
has caused serious land degradation and desertification,
and since the year 2000 local governments have im-
posed policies of returning cultivated lands to grasslands
and grazing-prohibition measures to protect the grass-
lands from further degradation. Since then, both types of
grasslands in much of the region have been fenced to
prevent any anthropogenic disturbances.

This has provided an opportunity to study the suc-
cessional processes of the two grassland types following
disturbances. Given that nitrogen deposition (Galloway
et al. 2008) and summer precipitation (Sun and Ding
2010) are projected to increase in this region, studying

the compositional similarity between these two grass-
land types will improve our knowledge of community
composition in response to changing environmental
conditions, enhance the capabilities of models in
predicting the trajectory of community succession under
global climate change scenarios, and help to improve
practices in grassland management.

This article reports the results of a 9-year field ma-
nipulation experiment conducted in a temperate steppe
and an adjacent old field in northern China. Nitrogen
and water availability were manipulated to examine
their effects on community similarity between the two
grassland types during succession. Since species rich-
ness, species turnover rate and functional group abun-
dance in these grassland ecosystems have been reported
to be sensitive to variations in precipitation and nitrogen
deposition (Xu et al. 2010; Yang et al. 2011; Xu et al.
2012a), we hypothesized that changes in nitrogen and
water availability will also affect the community simi-
larity between the steppe and the old field.

Materials and methods

Study sites and experimental design

The study sites were located in an agro-pastoral ecotone in
Duoluncountyof InnerMongolia, northernChina (116°17′
E and 42°02′ N, elevation 1324 m a.s.l.). Mean annual
precipitation is 379 mm and mean annual temperature is
2.1 °C, with mean monthly temperatures ranging from
−17.5 °C in January to 18.9 °C in July. The soil type in
the study area is chestnut according to the Chinese classi-
fication, or Haplic Calcisols according to the FAO classi-
fication of the United Nations.

In 2005, a steppe and an adjacent old field (with
approximately 100 m distance between the two sites)
were chosen as experimental sites for this study. Both
sites had been commonly grazed before the old field was
converted to farmland in the early 1980s. The steppe
was overgrazed until it was fenced in 2000, while the
old field was abandoned and also fenced in 2000. At the
beginning of the experiment, the species composition of
the two grasslands differed considerably. The steppe
was dominated by a perennial forb, Artemisia frigida
Willd., and two perennial grasses, Agropyron cristatum
(L.) Gaertn and Stipa krylovii Roshev.; while the old
field was dominated by A. cristatum and an annual forb,
Artemisia scopariaWaldst. et Kit.
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In early April of 2005, seven blocks (each 107 m×
8m) containing natural communities were established in
both the steppe and the old field. Using a split-plot
experimental design, each block was divided into two
main plots with either ambient precipitation or water
addition. Each main plot was divided into six 8 m×
8 m subplots separated by a 1 m wide buffer zone , and
nitrogen treatments (ambient nitrogen vs. nitrogen addi-
tion with 100 kg nitrogen ha−2 years−1) were randomly
assigned to two subplots in each main plot.

From June to August, the precipitation-addition sub-
plots received 15 mm of precipitation weekly via sprin-
kler irrigation. A total of 180 mm precipitation was
added during each growing season. The plots treated
with nitrogen addition received granular urea, a widely
used medium for simulating atmospheric nitrogen de-
position in grassland ecosystems (e.g., Zhang et al.
2008; Shen et al. 2011; Tian and Niu 2015). Nitrogen
additions were applied twice (early May and late June)
in equal amount every year. The amount of nitrogen
addition is comparable to the estimated mean total ni-
trogen deposition rate in northern China – about 83 kg
nitrogen ha−2 year−1 (He et al. 2007). Thus an effect
similar to that of atmospheric nitrogen deposition on
these types of grassland could be expected from this
nitrogen addition treatment.

Nitrogen and precipitation have been applied to the
relevant plots from 2005 to the present. More detailed
information about the experimental design has been
reported by Zhang and Han (2008). The present study
utilized four treatments: control (ambient nitrogen and
ambient precipitation), nitrogen addition, water addi-
tion, and nitrogen plus water addition.

Plant community survey

In May 2005, a permanent quadrat of 1 m×1 m was
established within each subplot. From 2005 through
2013, in mid-July all plant species present in each
quadrat were recorded. Species richness in each subplot
was defined as the total number of species recorded in
its permanent quadrat in each year. Percent cover of
plants was measured in each quadrat using a 1 m×1 m
metal pane with 100 equal grids and counting the grid
junctions whose vertical projections overlapped with
plants. For species that were either present at the junc-
tions but occupying only a very small area, or absent at
the junctions in the quadrat, plant covers was visually
estimated. Species were classified into four functional

groups – annuals and biennials (AB), perennial grasses
(PG), legumes (LE), and perennial forbs (PF). Percent
cover was summed across species to obtain the cover at
the functional group level.

Soil sampling and analysis

From 2006 through 2012, two soil cores (3 cm in
diameter and 10 cm in depth) were collected biweekly
betweenMay and September in each subplot outside the
permanent quadrat. Soil cores were weighed, dried at
105 °C for 48 h, and weighed again to determine soil
water content. In early August from 2007 to 2012, five
soil samples (10 cm in depth) collected from randomly
selected positions in each subplot outside the permanent
quadrat were mixed to measure soil inorganic nitrogen
concentration using a flow-injection autoanalyser
(FIAstar 5000 Analyzer, Foss Tecator, Denmark), fol-
lowing extraction with solutions of 2 M KCl (Kaye and
Hart 1998).

Calculations and statistical analysis

The analyses reported in this study involved data col-
lected from five randomly selected replicates in both
sites from 2005 to 2013. Within each treatment category
for the same year, data on each subplot in the steppe
were paired with data on each of the five subplots with
the same treatment in the old field to determine the
shared species and the compositional similarity of the
communities as well as the mean values of soil moisture,
inorganic nitrogen concentration, cover ratio of func-
tional group, and species richness at both the functional
group and community levels. The mean value of soil
moisture for each subplot was calculated based on bi-
weekly measurements during each growing season; af-
ter subplots were paired, the mean value of each pair
was recalculated. A total of 900 pairs of subplots were
analyzed.

Nonmetric multidimensional scaling (NMDS) was
then employed to examine differences in community
composition among the treatments from 2005 to 2013.
The Sørensen index was utilized based on a species
presence/absence matrix that included samples in all
replicates of each treatment. The Sørensen index was
calculated as S=2A/(B+C), where A is the number of
species shared by two communities, and B and C are the
numbers of species in the first and second community,
respectively (Sørenson 1948). The Bray-Curtis
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similarity (Bray and Curtis 1957) was also calculated
based on plant cover data (see Fig. S1 in Supplementary
material) and found to be consistent with results based
on Sørensen index similarity. Here we only present the
results of community similarity based on the Sørensen
index, since this similarity index is the oldest and most
widely used index for assessing compositional similar-
ity of communities (Chao et al. 2005), and has been
suggested as more appropriate for diversity measure-
ment or comparisons of qualitative floristic similarity
(Koch 1957; Whittaker 1972). The treatment replicate
scores in the first two axes of the NMDS were then used
as dependent variables in a MANOVA to evaluate the
effects of treatments on community composition. The
MANOVA model included nitrogen treatment, water
treatment, and an interaction term.

Repeated measures ANOVAs with split plot design
were utilized to test the effects of year, nitrogen, water,
and their possible interactions on plant cover and species
richness of each functional group, dominant species
cover, the community similarity between the steppe
and the old field, and the number of shared species of
paired communities. One-way ANOVAs with Duncan’s
multiple range test were used to evaluate the difference
in community similarity among the experimental
treatments.

Finally, simple linear regression analyses were
employed to determine the relationships between com-
munity similarity and soil moisture, soil inorganic nitro-
gen, plant functional group composition (including cov-
er ratio of AB to PF and PG to PF), and species diversity
(including community species richness, AB and PG
richness, and the number of shared species).

The NMDS analyses were conducted using PRIMER
6.0 (Primer-e Ltd, Plymouth, UK). The remaining sta-
tistical analyses were conducted using SPSS 13.0
(SPSS, Inc., Chicago, Delaware, USA).

Results

Plant functional group responses

Responses of plant functional groups to nitrogen and
water manipulations varied from year to year in both
the steppe and the old field (Figs. 1 and 2; Table 1).
Nitrogen addition tended to decrease richness of
functional groups, and this effect was significant
for legumes (P=0.008) and perennial forbs (P=

0.035) in the old field in 2012, and for perennial
forbs in the steppe in 2013 (P=0.013) (Fig. 1).
Water addition generally stimulated species richness
of functional groups, and its impacts were stronger
in the old field than in the steppe (Fig. 1). Nitrogen
addition generally increased the cover of perennial
grasses but decreased that of perennial forbs, espe-
cially in the steppe (Fig. 2). Nitrogen addition in the
steppe significantly increased the cover of annual
and biennial species in 2011 (P=0.001) and de-
creased the cover of legumes in 2012 (P=0.002)
(Fig. 2a and c). Water addition generally increased
the cover of functional groups in both grassland
types except for the perennial grasses, although sig-
nificant inter-annual variations existed (Fig. 2).

Dominant species responses

Increased nitrogen generally decreased the cover of
A. frigida and increased the cover of S. krylovii in the
steppe, whereas it increased the cover of A. cristatum in
both the steppe and the old field (all P<0.001, Fig. 3).
Water addition enhanced the cover of A. frigida and
A. cristatum in the steppe (both P<0.001), but decreased
the cover of S. krylovii in the steppe and A. cristatum in
the old field (both P<0.001, Fig. 3).

Community similarity and number of shared species

Overall, community similarity between the steppe
and the old field increased with time during the
study period of 2005 to 2013. During that time there
were significant inter-annual differences in commu-
nity similarity between the steppe and the old field
(P<0.001, Table S1; Fig. 4). Nitrogen addition sig-
nificantly decreased the mean community similarity
from 0.30 to 0.27 over the study period, while water
addition significantly increased it from 0.27 to 0.30
(both P<0.001, Table S1; Fig. 4). The effects of
nitrogen addition on community similarity varied
with year (P=0.010, Table S1; Fig. 4). No interac-
tion between water and nitrogen treatments was

�Fig. 1 Changes in species richness (mean±SE) of annuals &
biennials, perennial grasses, legumes, and perennial forbs in re-
sponse to 9 years of increased nitrogen and water in a steppe and
an old field grassland in northern China. The symbols×and *
indicate significant main effects (P<0.05) of nitrogen and water,
respectively
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found to significantly affect community similarity
(P=0.362, Table S1). The species composition of
the steppe and the old field communities was signif-
icantly affected by both nitrogen and water additions
(MANOVA, Pillai’s Trace values: nitrogen1,175=

0.06, P=0.004; water1,175=0.20, P<0.001; nitro-
gen×water=NS) (Fig. 5).

The number of shared species of paired commu-
nities significantly increased by 1.13 species per m2

under water addition but decreased significantly by
0.68 species per m2 with nitrogen enrichment
(Table S1). Both the effects of nitrogen addition
and water addition on the number of shared species
of pai red communi t ies changed with year
(Table S1). Significant interactive effects of water
and year were detected for the number of shared
species of paired communities (Table S1).

�Fig. 2 Changes in percentage cover (mean±SE) of annuals &
biennials, perennial grasses, legumes, and perennial forbs in re-
sponse to 9 years of increased nitrogen and water in a steppe and
an old field grassland in northern China. The symbols×and *
indicate significant main effects (P<0.05) of nitrogen and water,
respectively

Table 1 Repeated measures ANOVAs results for the effects of year (Y), nitrogen (N), water (W) and their interactions on plant cover and
species richness of functional groups in a steppe and an old field in northern China

Variable Grassland type Source Degree of freedom AB PG LE PF

F P F P F P F P

Plant cover Steppe Y 8 4.47 <0.001 9.27 <0.001 3.75 0.0005 5.18 <0.001

N 1 0.13 0.719 75.6 <0.001 2.79 0.097 15.04 0.000

W 1 6.02 0.016 9.08 0.003 122.82 <0.001 30.19 <0.001

N×W 1 1.29 0.259 1.34 0.249 19.40 <0.001 2.05 0.154

Y×N 8 2.78 0.009 1.19 0.307 0.47 0.879 1.48 0.168

Y×W 8 1.07 0.390 1.97 0.055 1.31 0.244 2.55 0.013

Y×N×W 8 1.96 0.070 0.80 0.604 0.80 0.602 1.21 0.296

Old field Y 8 19.97 <0.001 12.01 <0.001 1.91 0.064 10.59 <0.001

N 1 0.00 0.958 10.34 0.002 6.48 0.012 3.26 0.073

W 1 65.95 <0.001 1.69 0.196 15.34 0.000 29.16 <0.001

N×W 1 0.77 0.381 0.37 0.546 12.23 0.001 2.47 0.118

Y×N 8 2.31 0.024 1.21 0.296 0.17 0.995 0.74 0.660

Y×W 8 5.64 <0.001 4.66 <0.001 0.67 0.718 2.44 0.017

Y×N×W 8 0.39 0.927 0.44 0.896 0.54 0.825 0.42 0.905

Species richness Steppe Y 8 7.06 <0.001 1.81 0.081 0.88 0.534 2.43 0.017

N 1 2.69 0.103 0.70 0.405 0.07 0.786 19.99 <0.001

W 1 11.56 0.001 1.97 0.163 62.43 <0.001 6.80 0.010

N×W 1 1.96 0.164 6.2 0.014 7.42 0.007 0.45 0.504

Y×N 8 0.81 0.592 0.25 0.980 1.24 0.279 1.20 0.304

Y×W 8 1.15 0.337 1.45 0.180 0.21 0.988 0.70 0.692

Y×N×W 8 1.31 0.244 0.61 0.770 0.74 0.654 1.77 0.087

Old field Y 8 13.20 <0.001 7.83 <0.001 1.94 0.059 4.94 <0.001

N 1 3.69 0.057 4.71 0.032 16.56 <0.001 5.61 0.019

W 1 11.62 0.001 41.62 <0.001 0.96 0.328 78.87 <0.001

N×W 1 0.02 0.888 16.02 0.000 26.95 <0.001 7.42 0.007

Y×N 8 0.73 0.667 0.45 0.890 0.88 0.538 0.70 0.689

Y×W 8 7.15 <0.001 0.99 0.446 0.43 0.899 2.03 0.047

Y×N×W 8 0.64 0.744 0.32 0.956 0.37 0.933 0.43 0.902

Functional groups: AB annuals and biennials, PG perennial grasses, LE legumes, PF perennial forbs
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Community similarity in relation to biotic and abiotic
factors

Community similarity between the steppe and the old
field was positively correlated with mean soil moisture
(Fig. 6a), while negatively correlated with mean soil
inorganic nitrogen content (Fig. 6b), and cover ratios
of AB to PF and PG to PF (Fig. 6c and d) of the paired
plots. Community similarity was also positively corre-
lated with mean community species richness, AB and
PG richness, and number of shared species between the
paired communities (Fig. 6e–h).

Discussion

Based on a 9-year water- and nitrogen-manipulation
experiment, we found that increased nitrogen tends to
reduce species richness (Fig. 1). This negative nitrogen
effect is consistent with most experimental findings in

various terrestrial ecosystems and can be explained by
the shifts in functional group abundance due to nitrogen
fertilization (Suding et al. 2005). The random-loss hy-
pothesis predicts that rare species would be most at risk
of loss with fertilization due to their small population
size (Goldberg and Miller 1990; Oksanen 1996). In this
study, forbs account for the most species in the commu-
nity and comprise the majority of rare species. They
decrease in abundance (cover) with nitrogen addition
(Fig. 2), accounting for most of the decline in species
diversity, thereby supporting the aforementioned
abundance-based hypothesis. Alternatively, a shift from
below-ground competition for nutrients to above-
ground competition for light after fertilization also ex-
plains the diversity loss (Tilman 1987; Goldberg and
Miller 1990). Most forbs in the grassland study area are
in the lower canopy; these species are more likely to be
lost due to more intense competition for light (Collins
et al. 1998) compared to the perennial grasses in the
upper canopy.
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In contrast, water addition can increase species rich-
ness by favoring forbs and decreasing the dominance of
perennial grasses and their competitive advantage over
other species (Xu et al. 2010). Copeland et al. (2012)
reported that water- or nitrogen-induced changes in

plant growth in a neo-tropical savanna were linked to
treatment effects on soil phosphorus due to changed soil
acidity. We found no relationship between soil phospho-
rus and species richness in this study (unpublished data).
The distinct findings here presumably result from the
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different vegetational compositions and environmental
conditions of different ecosystems, which substantially
mediate the effects of resource variations (Copeland
et al. 2012).

The change in species richness and cover at the
functional group level and the change in the cover of
dominant species with nitrogen and water addition sug-
gest that, as many studies have found, changes in envi-
ronmental factors can affect community composition
and promote alternative ecosystem states by shifting
species dominance and nutrient levels (Willems 2001;
Blumenthal et al. 2003; Suding et al. 2004). The fact that
community similarity between the steppe and the old
field decreased under nitrogen enrichment but increased
with water addition suggests that under scenarios of
future environmental changes these two grassland types
in the region will tend to converge with increased pre-
cipitation but to diverge with an increase in nitrogen
deposition. That is to say, the divergent successional
tendencies between the two types of grassland under
nitrogen enrichment will be mitigated by an increase in
precipitation. Because the original vegetation of the old
field was completely destroyed by historical cultivation,
it had degraded more seriously than the steppe prior to
their both being fenced in 2000. As a result, the natural
successional trajectory of the old field will theoretically

be toward the species composition of the uncultured
steppe, a relatively mature and stable ecosystem (Xu
et al. 2010). This prediction has in fact been supported
by our results that community similarity between the
two grasslands increased with time in the control plots
(old field control vs. steppe control), although inter-
annual fluctuations existed (Fig. 4).

The decreased compositional similarity between the
steppe and the old field with increased nitrogen is con-
sistent with findings by Inouye and Tilman (1995), who
reported that plots receiving different levels of nitrogen
displayed divergence in species composition between
three old fields and a native prairie grassland, and that
species similarity displayed mostly negative relation-
ships with rate of nitrogen addition. In this study water
addition increased community similarity between the
steppe and the old field, and facilitated the succession
of the old field communities toward the species compo-
sition of the uncultured steppe communities. These re-
sults are comparable to those reported byMilchunas and
Lauenroth (1993), who found that changes in commu-
nity similarity between grazed and ungrazed grassland
ecosystems can partly be explained by variations in
precipitation.

Our results do not agree with findings from a small
number of experimental studies. For example,
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Milchunas and Lauenroth (1995) simultaneously ma-
nipulated water and nitrogen to explore their effects on
community similarity of a shortgrass steppe. These au-
thors found that nitrogen and water addition did not
change the similarities of plant species composition in
shortgrass steppe at the end of a 5-year treatment period.
A recent study (Eskelinen and Harrison 2015) reported
that neither nitrogen fertilization nor watering affected
community similarity among grasslands with different
soil fertility in a 2-year experiment. The inconsistency
between findings of these two studies and our results
may result from the different experimental periods, the
type-specific responses of grasslands to resource varia-
tions, or from the different similarity metrics selected –
i.e., they used an abundance-based index instead of the
presence-absence metric used in our study. Inouye and
Tilman (1995) stated that long-term studies are of im-
portance to detect responses to resource manipulation in
successional communities, since the response pattern
may be slow in communities dominated by perennial
plant species. Both nitrogen deposition (Galloway et al.
2008) and summer precipitation (Sun and Ding 2010)
have been predicted to increase over the long run in our
study area; thus long-term studies on plant community
responses are necessary.

We found the interactive effect of water treatment and
nitrogen treatment on community composition to be
relatively weak overall, being significant only for cover
and species richness of legumes. It is still most difficult
to distinguish the relative importance of nitrogen and
water in regulating community composition of grass-
lands, because the supply level, frequency and timing of
these resources may mediate or bias their effects on
community composition (Boyer and Zedler 1998;
Knapp et al. 2002; Stevens et al. 2004; Suttle et al.
2007; Xu et al. 2012b; Zhang et al. 2014). Studies that
deal with these factors simultaneously may help to
identify the relative contributions of particular environ-
mental resources to community composition.

Various biotic and abiotic factors contributed to the
changes in community similarity between the steppe
and the old field. Among these factors, the number of
shared species had the most important contribution
(68 %) to changes in community similarity. Previous
research has identified a variety of factors that may
potentially affect community similarity of grasslands,
including changes in soil resource availability (Collins
1992; Inouye and Tilman 1995), species diversity and
composition of communities (Bakker et al. 1984;

Belsky 1984; Collins 1990; Inouye and Tilman 1995)
caused by fire disturbance (Collins 1989; Collins 1992;
Glenn and Collins 1992) and grazing (Carilla et al.
2011; Gessaman and MacMahon 1984). Our analysis
also showed that experimentally-enhanced nitrogen and
water antithetically affected community similarity by
changing diversity characteristics and abundance of
functional groups and dominant species in plant com-
munities. The negative effect of nitrogen addition on
community similarity occurred presumably because in-
creased nitrogen availability decreased species richness,
especially the PF richness – which accounted for major-
ity of community species richness in both grasslands
(Xu et al. 2012a) – thereby reducing the possibility of
the communities sharing the same species. In contrast,
the positive impact of water addition on community
similarity likely occurred because additional water stim-
ulated species richness by favoring shallow-rooted spe-
cies, mainly PF grasses (Yang et al. 2011; Xu et al.
2012a), which increased the chance of more species
common to communities in both sites.

Our results suggested that nitrogen enrichment may
impede, but water increase may accelerate, the restora-
tion of the degraded old field toward the uncultured
steppe. Since establishment of a relatively mature and
stable community is one of the main purposes of eco-
logical restoration under fluctuating environmental con-
ditions (Seabloom 2007), our findings have important
implications for grassland conservation and manage-
ment under scenarios of the predicted increase in atmo-
spheric nitrogen deposition (Galloway et al. 2008) and
summer precipitation (Sun and Ding 2010) in northern
China.

In conclusion, water addition increased but nitrogen
enrichment decreased the compositional similarity be-
tween the steppe and the old field by altering the diver-
sity characteristics and functional group composition of
plant communities during succession of these two grass-
land types. This study highlights the important influence
of water and nitrogen availability on the community
similarity of semiarid grasslands. Our results suggest
that the predicted increase in nitrogen deposition in
northern China will encourage divergence of the old
field grassland from its historical successional trajectory
toward the uncultured steppe grassland, but the
projected increase in growing season precipitation in
that area may drive the two grassland types to be con-
vergent during succession. Thus the decrease in com-
munity similarity between the steppe and the old field
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with an increase in nitrogen deposition may be partially
or completely offset by increase in precipitation under
scenarios of atmospheric and climatic changes in this
semiarid grassland region.
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