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Abstract
Aims Drivers of soil organic carbon (SOC) storage are
likely to vary in importance in different regions and at
different depths due to local factors influencing SOC
dynamics. This paper explores the factors influencing
SOC to a depth of 30 cm in eastern Australia.
Methods We used a machine learning approach to iden-
tify the key drivers of SOC storage and vertical distri-
bution at 1401 sites from New South Wales, Australia.
We then assessed the influence of the identified factors
using traditional statistical approaches.
Results Precipitation was important to and positively
associated with SOC content, whereas temperature
was important to and negatively associated with SOC
vertical distribution. The importance of geology to SOC
content increased with increasing soil depth. Land-use

was important to both SOC content and its vertical
distribution.
Conclusion We attribute these results to the influence of
precipitation on primary production controlling SOC
content, and the stronger influence of temperature on
microbial activity affecting SOC degradation and verti-
cal distribution. Geology affects SOC retention below
the surface. Land-use controls SOC via production,
removal and vertical mixing. The factors driving SOC
storage are not identical to those driving SOC vertical
distribution. Changes to these drivers will have differ-
ential effects on SOC storage and depth distribution.

Keywords Machine learning . Vertical distribution .

Land-use . Climate . Geology

Introduction

Globally, a significant body of research has focussed on
contrasting land-uses and management with a view to
quantifying differences in SOC stocks in different agri-
cultural systems (e.g. West and Post 2002; Dawson and
Smith 2007). In Australia, the Soil Carbon Research
Program (and subsequent National Soil Carbon Pro-
gram) commenced in 2009 to this aim and has yielded
numerous studies attempting to quantify such effects
(Baldock et al. 2013; Sanderman et al. 2013; Wilson
and Lonergan 2013; Rabbi et al. 2014). Whilst quanti-
fying the effects of land-use and land-management on
SOC stocks is an important undertaking for carbon
accounting purposes (Richards 2001), it assumes that
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the changes in SOC associated with alteration of land-
use and management are easily quantified. Unfortunate-
ly, detecting changes in SOC between land-use systems
can be difficult within the necessary timeframes for C
accounting.

This difficulty in successfully distinguishing SOC
differences under varying land-uses may be (partially)
attributable to the numerous, complex and at times
conflicting factors influencing SOC dynamics. These
influential factors were described by Jenny (1941) and
include time, parent material, topography, climate and
organisms (including humans). Although Jenny
characterised these factors as being key to soil forma-
tion, they are all conceptually linked with SOC dynam-
ics as SOC is intimately linked with soil development.

Human influence on SOC is therefore but one of
many driving factors, so that the influence of land-use
and management on SOC storage may bemasked by the
influence of other over-arching factors such as climate.
For example, Jackson et al. (2002) reported overall
gains in SOC after encroachment of grasslands by
woody species in drier climates but losses in wetter
climates. However, a greater understanding of the driv-
ing factors of SOC dynamics may enable de-trending
SOC data from the various influential signals, thereby
allowing detection of differences between land-uses and
land management schemes previously thought to be
undetectable. To this end it was recently noted that to
improve future IPCC assessments ‘it is critical to under-
stand the drivers of soil carbon dynamics in the models,
as well as the real world’ (Todd-Brown and Luo 2014).

Globally, SOC storage has been linked with vegeta-
tion, climate and physico-chemical soil properties such
as texture or soil type (Schlesinger 1977; Post et al.
1982; Burke et al. 1989; Jobbagy and Jackson 2000)
and climate also appears most relevant to SOC storage at
regional scales (Wiesmeier et al. 2013b). Topography,
on the other hand, appears to become relevant at the sub-
regional scale (Grimm et al. 2008; Davy and Koen
2013). In their landmark paper, Jobbagy and Jackson
(2000) assessed not only SOC storage but also its verti-
cal distribution, and found that the factors influencing
total SOC content differed from those influencing SOC
vertical distribution. Specifically, climate was most in-
fluential in shallow depths (0–20 cm), whereas soil
texture (sand and clay content) became more important
at greater depths (>20 cm).More recently, similar results
were reported by Badgery et al. (2013) who found that
the influence of climate is most pronounced near the

surface (0–10 cm), but at 20–30 cm soil texture and
mineralogy become more influential to SOC storage.
This suggests that an in depth understanding of the
drivers of SOC dynamics requires assessment at differ-
ent depths.

Changes in land-use lead to alteration of SOC content
near the soil surface (0–10 cm) (Young et al. 2005; Luo
et al. 2010; Wilson et al. 2010, 2011). Theoretically,
changes in land-use should also affect SOC stocks be-
low this depth, as land-use change usually implies veg-
etation change (e.g. reforestation or clearing of land for
agricultural use), and vegetation type is strongly linked
to SOC storage and its vertical distribution (Jackson
et al. 2000). However, despite international evidence
of subsoil response to changing land-use and manage-
ment (Wiesmeier et al. 2013a), response of SOC below
the surface due to land-use changes is yet to be clearly
demonstrated in Australian soils.

Similarly, changes in land management are generally
reported to have the greatest influence on the SOC
content nearest the soil surface (0–15 cm) (Cotching
2012; Sanderman et al. 2013; Wilson and Lonergan
2013), with effects being more difficult to detect deeper
in the soil (Badgery et al. 2013). This has led to the
suggestion that subsurface SOC stocks may better re-
flect historical rather than current land-management
(Wilson and Lonergan 2013). Despite this, altered
land-management practices have been reported to influ-
ence subsurface carbon stocks (Meersmans et al. 2009)
and the stratification of SOC (Yang et al. 2008) on
decadal timeframes internationally, and more research
is needed to elucidate the effects of both land-
management and land-use on SOC stocks at different
depths.

A possible reason for the discrepancies between
international and Australian findings regarding the
effects of land-use and management on SOC storage
is the unique nature of Australian soils. These are
characterised by low SOC storage compared with
soils internationally, which has been attributed to
Australian climatic influences (low precipitation,
high temperature) leading to low inputs of organic
matter into the soil (Hassink 1997). Given the above-
mentioned difficulties in detecting anthropogenic-
driven SOC changes below the surface 10 cm in
Australian soils, it is likely that—in contrast to many
international soils—the active soil zone typically re-
ferred to as ‘topsoil’ many only comprise the surface
10 cm in Australian soils.
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We hypothesise that the drivers of SOC storage vary
with depth, namely that the factors influencing the total
amount of SOC stored by a soil vary with depth and also
differ from those influencing the vertical distribution of
SOC. To test this hypothesis we used two analysis
approaches—machine learning and classical parametric
statistics—to assess the importance of various possible
explanatory factors on SOC storage and vertical distri-
bution to a depth of 30 cm. The explanatory factors were
derived from site observations and GIS data. The SOC
dataset comprised over 1400 sites from New South
Wales (NSW), Australia, drawn from existing data re-
lating to soils derived from the NSW Soil Monitoring
Program and the National Soil Carbon Research
Program.

Methodology

Study area

New South Wales is a state in eastern Australia, cover-
ing an area of 801 600 km2. Although lying within the
global temperate zone, NSWencompasses a wide range
of climates, with mean annual precipitation (MAP)
ranging from <200 mm year−1 in the west to
>1500 mm year−1 in the north-east of the state (Fig. 1).
Rainfall generally increases from the west to east. The
temperatures are mild overall but can be very hot in the
north-west (>45 °C) and very cold in the alpine regions
of the south-east (<0 °C). This variability in climate is
reflected in the biodiversity of the state, with over 17
bioregions represented within the State, ranging from
sandy deserts to lush rainforests (Sahukar et al. 2003).
The State is traversed from north to south by the Great
Dividing Range, which has a maximum elevation of
>2200 m, and is a geographical boundary between the
eastern seaboard and western centre.

The soils of NSW are highly diverse, with all 14
orders of the Australian Soil Classification (Isbell
2002) represented, such as siliceous sands (Tenosols,
World Reference Base (WRB) Arenosol), cracking
clays (Vertosols, WRB Vertisol) and water-influenced
gleys (Hydrosols, WRB Gleysol) (Charman and Mur-
phy 2007). The diversity of the soil landscape reflects
the variation in climate, geology, topography and vege-
tation found within the State. This diversity in soil type
and climate enables a range of agricultural land-uses,
with the vast majority (74 %) of land used for grazing

and cropping, with other uses being forestry and nature
conservation (Australian Bureau of Statistics 2013).
Overall the state of the soils of NSW is considered fair,
but a noticeable, moderate decline in soil health is
observable in the State (State of NSW Environmental
Protection Authority 2012).

Soil and site data

The data presented here were merged from two separate
datasets. The first was derived from the NSW soil con-
dition Monitoring, Evaluation and Reporting (MER)
Program. This dataset contains information on 800 sites
and provides a provisional ‘baseline’ data layer gathered
in 2008–09. The second dataset was from the Soil
Carbon Research Program (SCRP), initiated across
Australia in 2009 with the aim of assessing current
carbon stocks across a range of representative agricul-
tural land-use systems, focussing on those land-uses that
are believed to hold the most promise for carbon stor-
age. The work reported here was a part of the NSW
component of the SCRP program, comprising a total of
741 sites.

Both datasets contained information regarding SOC
concentration (%SOC), bulk density (ρ, in g cm−3) and
gravimetric rock content (RM, dimensionless units),
from which the C stocks (t ha−1) in a given sampling
depth (cm) were calculated according to:

CStock ¼ %SOC � ρ� 1−RMð Þ � depth ð1Þ
Further information in the datasets related to the land-

use at the time of sampling and the GIS co-ordinates of
the site. This information was complimented with data
which we believe to potentially influence SOC dynam-
ics, namely variables describing climate, land-use and
site such as soil type, elevation and geology (Table 1).
The data were acquired from GIS data layers from
different sources and where possible numerous descrip-
tors describing the same or similar variables (e.g. max-
imum, minimum and average MAT, or numerous geo-
logical and lithological descriptors) were obtained, so as
to reduce potential bias towards a single (set of) vari-
able(s) or a single GIS data source.

Dataset collation and processing

A procedure was developed to merge the two datasets,
which due to their different histories contained
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inconsistent sampling depth information. TheMER pro-
ject had sampled four depths: 0–5, 5–10, 10–20 and 20–
30 cm, whereas within the SCRP project only three
depths were sampled (0–10, 10–20, 20–30 cm). To
unify the datasets, the MER data from the 0–5 and 5–
10 cm were algebraically averaged, to create one depth
corresponding to 0–10 cm. The appropriateness of this
procedure was tested by comparing the carbon stocks
calculated according to Eq. (1) for the 0–10 cm from the
averaged values with those calculated as the sum of the
C stocks in the individual depths (0–5 and 5–10 cm).
The relationship between the two calculations was linear
with Pearson’s product moment r>0.99, so that the
algebraic averaging was deemed sufficient for the pur-
poses of the project.

Incomplete profiles were eliminated, as well as obvi-
ously erroneous values (e.g. SOC>100 % or rock con-
tent=100 %). The bulk density data were highly hetero-
geneous and at times implausible, ranging from 0.2 to
2.9 g cm−3 (which is greater than the density of granite),
so that a statistical procedure to process the data was
developed. Extreme bulk density values were identified
using the interquartile range (IQR). Values above the

limit set by the 3rd quartile plus 1.5 times the IQR
(corresponding to a bulk density of >1.85 g cm−3 in
the top 10 cm and >2.06 g cm−3 in the 20–30 cm depth)
as well as values below the 1st quartile minus 3 times the
IQR (corresponding to a bulk density of <0.33 g cm−3 in
the top 10 cm, and <0.46 g/cm3 in the 20–30 cm depth)
were omitted. The greater tolerance for extremely low
bulk densities was due to the presence of organic soils
(Organosols and Hydrosols, WRB Histosols) in the
dataset, which would have been excluded using the
same tolerance as for the upper limits. A total of 1401
data points remained in the processed dataset for analy-
sis (Fig. 1).

SOC storage and vertical distribution

SOC storage was assessed using several variables,
namely %SOC and Cstock in each depth increment (0-
10, 10–20, 20–30 cm), as well as the sum of %SOC and
Cstock over the three depth increments. Although
assessed individually, we hereafter refer to %SOC and
Cstock combined as SOC content. To assess the vertical

Fig. 1 The study region and location of sampling sites
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distribution of SOC, numerous indicators were investi-
gated, namely:

The proportion of C in the top 10 cm to the sum of C
at the three depth intervals:

Cproportion ¼ SOC0 −10 cmX
SOC0 −30 cm

ð2Þ

the ratio of C in the upper depth to lower depth:

Cratio ¼ SOC0 −10 cm

SOC20−30 cm
ð3Þ

and the difference between C in the upper 10 cm and
lower 10 cm normalised to the amount of C in the lower
depth:

ΔCratio ¼ SOC0 −10 cm−SOC20−30 cm

SOC20−30 cm
ð4Þ

The Cproportion is best related to SOC in the top 10 cm
(which contributes most to SOC in the 0–30 cm depth)
and implies that the vertical distribution of SOC is
strongly dependent on SOC near the surface (i.e. pro-
duction). In contrast, the Cratio gives a greater impor-
tance to the SOC content below the surface, and implies
that SOC ratio is more influenced by C retention in the
soil. The ΔCratio is an intermediate between these two
measures. These three indices were calculated for both
%SOC and Cstocks, and are hereafter collectively referred
to as Cgradient.

Identifying factors important to SOC storage
and vertical distribution

To identify the key drivers of SOC storage and vertical
distribution a machine-learning procedure similar to a
random forest (Breiman 2001) was employed. Numer-
ous (500) regression trees were bagged to an ensemble
and the variable importance of the predictors extracted to
identify the drivers of C storage and vertical distribution.
Tree ensembles were grown using the conditional infer-
ence forest algorithm (cforest command in the party 1.0–
15 package, Hothorn et al. 2006) with the R language for
statistical computing (version 3.1.1, R Core Team 2014).
In growing a conditional inference tree, the decision to
split a node is based upon the outcome of a test of the
global null hypothesis of independence between the
response variable and the predictor variables selected
for splitting a node. If the null hypothesis can be rejected
at the specified significance level (α=0.05), the node is

split. Otherwise, tree growth is terminated. This ap-
proach eliminates the possibility of overgrown trees
(and therefore the need for tree pruning), and overcomes
the bias of traditional random forests to split upon cate-
gorical variables with many factors, or along continuous
variables with a broader scale (Strobl et al. 2007).

Tree ensembles were generated using natural and
log-transformed data for both the above-mentioned C
variables and the available (continuous) predictor vari-
ables (Table 1), resulting in three models (natural, log,
mixed) for each response variable. Log-transformation
of selected variables was undertaken to both stabilise
variance in and linearise the relationship between re-
sponse and (continuous) predictor variables. Log-
transformation of a variable was applied where it led
to an improvement in the correlation between response
and predictor variable.

Model performance was assessed using explained
variance defined by the coefficient of determination
(R2):

R2 ¼ 1−
MSE

Variance
ð5Þ

with MSE the mean square error of the average of
individual estimates for each tree in an ensemble, and
Variance the variance of the modelled response variable.
As our aim was not to produce predictive models but
merely describe the factors influencing SOC storage and
vertical distribution, we assessed model performance
using the fitted, not predicted values.

From these models, each predictor’s variable impor-
tance, VI, (determined both from model accuracy and
area under curve) was extracted from each model.
Where numerous, highly collinear (Pearson’s product
moment r>0.9) predictor variables describing similar
factors (e.g. MATmax, MATave and MATmin, or EVAP
andVPD)were indicated as important in the models, the
lower ranked were eliminated and new ensembles
grown to produce final models without high correlation
of important variables as this may affect variable impor-
tance results (Nicodemus et al. 2010). From these final
models, VI was extracted and averaged over the models
to generate the final results.

Assessing the influence of important factors influencing
SOC storage and vertical distribution

To assess the influence of the important factors driving
SOC storage and vertical distribution, the results of the
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Table 1 Predictor variables used to fit tree ensemble models. (C): continuous variable, F (n): categorical variable with n levels

Variable name Type
(levels)

Explanation Source and further information

Climate variables

CLMZone F (4) Climate zone defined
according to temperature and humidity

A: Australian Bureau of Meteorology (BOM)
Published scale: ~2×~2 km (0.025 degrees)
Based on a standard 30-year climatology (1961–1990)

EVAP C Evaporation (mm year−1) B: Australian Department of Environment
Published scale: ~1×~1 km
1970–2012 monthly averages.

KoppenCode F (10) Detailed classification of
Köppen climate zone based on a modified
Köppen classification system defined for
Australia

A

KoppenGroup F (4) Major Köppen Classification Group A

KoppenMP F (7) Revised international
Köppen-Geiger climate classes

(Peel et al. 2007)
Published scale: ~11×~11 km (0.1×0.1 degrees)

MAP C Mean annual precipitation (mm year−1) B

MARH C Mean annual relative humidity (%, 9 am
data: MARH9am, 3 pm data: MARH3pm)

BOM
Published scale: ~10×~10 km (0.1 degrees)
Based on a 30-year climatology (1976–2005)

MAT C Mean annual temperature
(°C, average: MATave, minimum:
MATmin and maximum: MATmax)

B

Tdiff C MATmax–MATmin Authors

Tdiffnorm C Tdiff divided by MATave Authors

Tratio C Ratio of MATmax to MATmin Authors

VPD C Vapour pressure deficit (kPa) B

SrnGRP F (4) Major Seasonal Rainfall Zones based on median
annual rainfall (November to April and May to
October) and seasonal incidence of rainfall.

C: BOM
Published scale: ~25×~25 km (0.25 degrees)
Based on a 100-year period (1900–1999)

SrnAll_CODE F (10) Detailed Seasonal Rainfall Zones C

Land-use variables

LMcodes F (8) Merged categories from the LUOrig due to
discrepancies between the two separate
databases. Eight categories were defined
covering different land-use and management
intensities: native vegetation, tree crops, native
pasture, introduced pasture, crop-pasture
rotation, non-conventional cropping
(minimum/no-till), irrigated cropping,
conventional cropping.

Authors

LUClass F (4) Simplified land use classes based upon LUOrig,
OEH.LU.Det, and via visual detection using
satellite imagery from Bing and Google maps.
Eight categories were defined: native
vegetation, tree crops, cleared/grazed sites,
cropped sites.

Authors

LUOrig F (38) Original land use description in MER/SCRP dataset. Data obtained from land-owners during sampling

OEH.LU.Det F (33) The detailed land use category according
to the Australian Land Use and
Management (ALUM) Classification

D: NSW Office of Environment and Heritage (OEH)
Compiled: June 2000–June 2007
Published scale: 1: 50,000

OEH.LU.Maj F (22) The major land use category according
to the ALUM Classification

D

116 Plant Soil (2015) 390:111–127



tree ensemble data-mining exercise were used to inform
classical, parametric-based data analyses. The aim here-
by was not to develop predictive models, but to assess
and compare the influence of those predictor variables
indicated by the tree ensembles as important to SOC
storage and vertical distribution.

For each response variable, multiple regressions were
created using only those predictor variables whose rel-

ative importance,VIi; rel ¼ VIi

∑k
1VIi

� 100%, was greater

than that expected from a theoretical model where all
predictor variables are equally important (i.e. VI ¼ 1

k*

100% for k predictors in the tree ensembles). The
models were created with a mixture of natural and log-
transformed data, based upon a correlation analysis of
the best relationships between response and predictor
variables. Log-transformation was not applied to
ΔCratios due to the presence of negative values in the
dataset. The models were built using the variable order
indicated by the rank of the VIrel from the tree

ensembles. An ANOVA of each regression model was
then performed, and non-significant variables (p>0.05)
dropped from the models to build the final model. From
these final models, the relative contribution of climate,
site and land-use variables (Table 1) were calculated as
the total sum of squares from the respective predictors
divided by the model sum of squares.

The influence of continuous variables on SOC vari-
ables was assessed via the coefficients of each model.
For categorical variables, a combination of partial re-
gression, ANOVA and the Games-Howell post-hoc test
(an extension of Tukey’s Honestly Significant Differ-
ences which adjusts for unbalanced groups and unequal
variance) of the relevant variable was performed after
controlling for other important variables. For example,
to assess the importance of land-use on SOC, partial
regressions of important land-use variables were per-
formed whilst controlling for climate and site variables
(i.e. the other important variables indicated by the tree
ensembles) and the Games-Howell test used to detect

Table 1 (continued)

Variable name Type
(levels)

Explanation Source and further information

Site variables

ASC F (14) Australian soil class from map of soil
types across NSW using the
Australian Soils Classification
at Order level, derived from GSG

E: OEH
Published scale: 1:250,000

Elev C Elevation (m above sea level) F: Surface Geology of Australia
Geoscience Australia 2012
Published scale: 1:1,000,000

ρ C Bulk density of fine soil (g cm−3)
in a given sampling depth

Original datasets

GSG F (33) Great soil group from map of soil
types across NSW using the
Great Soil Group Classification.

E

Lith F (37) A summary description of the
lithological composition of
the geologic unit

F

PlotSym F (47) Geologic unit displayed on a map F

PM F (8) Parent material classification Authors

RM C Gravimetric rock content (g g−1)
in a given sampling depth

Original datasets

sdL F (49) Single dominant lithology of
geological unit

NSW Geological Dataset
Department of Mineral Resources
Published scale: 1:250,000

SI F (16) Silica index derived from primary
mineralogy and soil type

Authors

TWI C Topographic wetness index
(dimensionless units)

CSIRO
Published scale: one second of arc (approx. 30 m)
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significant differences between land-uses. To do this,
multiple regression models were created for each SOC
variable to its important environmental and site factors
and the residuals from these models were then regressed
to the important land-use factors and an ANOVA per-
formed. The Games-Howell post-hoc analysis was then
undertaken on the results to identify significant differ-
ences between land-use types. A comparatively conser-
vative significance level of p<0.01 was chosen due to
the large number of observations in the dataset.

Results

SOC storage and vertical distribution

SOC concentration and stocks were characterised by
large variance and non-normal distribution, exhibiting a
positive skew. Cstock in the 0–30 cm ranged from 14 to
203 t ha−1 with a coefficient of variation (CV) of >50 %
for the entire dataset (Table 2). Relative variance was
even larger for %SOC with a CVaround 80 %. At the site
scale, the average %SOC CV was 24 % for the three
depths (range 0.5–155 %), while the average for Cstocks

was 29 % (range 0.5–156 %). Generally, SOC concen-
trations and stocks declined with depth, though not at all
sites, indicated by the negative values observed as min-
ima forΔCratios (Table 2). Of the Cgradients, the proportions
had the lowest, the ratios the highest relative variance.

Tree ensemble models

The SOC content nearest the surface and integrated over
all depths were best fit by the models, which explained
76 % of observed variance (Table 3). Explained model
variance was poorer for the Cratios at 67 %. Model
performance decreased with increasing soil depth.

Bulk density and MAP were important explanatory
variables for %SOC at all depths, and these variables
were top ranked at all depths except 20–30 cm. In the
top 10 cm, vapour pressure deficit (VPD) and mean
annual relative humidity at 3 pm (MARH3pm) were
important, but at 10–20 and 20–30 cm Great Soil Group
(GSG) and the land-use recorded during sampling
(LUorig) emerged as important splitting variables
(Fig. 2). At a depth of 20–30 cm, LUorig was the most
important variable in the models. Other factors identi-
fied as important in some models were the categories
descr ib ing cl imate classes and seasonal i ty

(KoppenCode, ClmZone, SrnAll_Code—all depths),
as well as the geological/lithological categories PlotSym
and sdL (20–30 cm depth).

In contrast, bulk density was not an important splitting
variable for Cstocks (Fig. 2). The variable importance
rankings for Cstocks revealed LUorig, MAP, and
KoppenCode as important variables for the models at all
depths (0–10, 10–20, 20–30, and 0–30 cm). LUorig was
the most important splitting variable at all depths, with the
exception of the top 10 cm, where VPD was most impor-
tant. Other important splitting variables were relative hu-
midity (MARH3pm, all depths except 20–30 cm), soil type
(GSG, all depths, though not in all models of 0–10 cm),
seasonal rainfall (SrnAll_Code, all depths except 20–
30 cm), geology (PlotSym) and rock content (20–
30 cm) and lithology (Lith, some models at 20–30 cm).

Generally, the importance of climate variables and
descriptors dominated in the top 10 cm, and with in-
creasing depth land-use and geological descriptors be-
came more important for both %SOC and Cstocks.

In contrast to the differences observable in variable
importance rankings between %SOC and Cstocks, all mea-
sures of vertical distribution of SOC yielded LUorig as
the most important predictor variable, with a normalised
importance of up to 10 times greater than expected.
Further important variables in all models were temper-
ature, geology, Köppen class, and evaporation
(MATmax,PlotSym, KoppenCode, EVAP, Fig. 3). In
some models, soil type (GSG) and lithology (Lith) were
indicated as being of marginal importance (normalised
importance less than twice the expected value).

Multiple regression analyses

Model performance and factors contributing to SOC
storage, stocks and vertical distribution

The multiple regressions best explained the variance in
%SOC, and performance declined for the Cstocks and the
indicators of C vertical distribution. The amount of
variance explained by the models declined with increas-
ing soil depth (Table 4). Between 49% (Cstock 20–30) and
74 % (%SOC 0–10) of total variance in the SOC variables
was explained by the multiple regression models. Of the
explained variance in the %SOC models, climate factors
contributed the largest amount in the top 0–10 cm,
accounting for 51 % of explained variance, with 35 %
of attributable to site factors and 14 % to land-use. With
increasing depth, the importance of climate factors to
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explained variance decreased and the relative contribu-
tion of both site and land-use factors increased, so that at
20–30 cm depth, climate factors contributed 8 % of
explained variance in %SOC models, with 61 % attribut-
able to site and 30 % attributable to land-use. The
amount of variance attributable to the climate, site and
land-use for the Cstocks differed, but the general pattern
was similar, with climate influence dominating in the
top 10 cm, and land-use and site becoming more impor-
tant with increasing soil depth (Table 4).

All models of the Cgradients (i.e., the indices
representing the vertical distribution of SOC) yielded
similar results, with 56–58 % of variance explained by
the multiple regressions (Table 4). Land-use was the
most important influence on SOC vertical distribution,
accounting for 68±4 % of explained variance, with
climate accounting for 22±6 % and site factors account-
ing for 10±4 % (averages±standard deviation of the
individual Cgradient results).

Influences on SOC storage and stocks

Of the continuous variables included in the multiple
regressions, MAP and MARH3pm were positively asso-
ciated with %SOC and Cstocks, whereas VPD was nega-
tively associated with both %SOC and Cstocks. Bulk den-
sity was negatively associated with %SOC.

Of the categorical variables, only Köppen climate clas-
ses (KoppenCode) and the land-use recorded during sam-
pling (LUorig) are considered here, as they were impor-
tant in all tree ensemble models and significant in the
multiple regressions. Although GSG was significant in
many models, the Games-Howell post-hoc analysis failed
to identify significant differences between soil groups.

After controlling for other variables, the Games-
Howell post-hoc analysis of%SOC and Cstocks to Köppen
climate classes indicated generally greater SOC in tem-
perate than in either subtropical, grassland or desert

Table 2 SOC concentration, stocks and vertical distribution indicators

SOC concentration (%) Cstock (t ha
−1) SOC concentration (%) Cstock (t ha

−1)

Depth (cm) Depth distribution indicator

0–10 10–
20

20–
30

∑0–
30

0–10 10–
20

20–
30

0–30 Proportion Ratio Δratio Proportion Ratio Δratio

Minimum 0.43 0.19 0.09 0.92 5 3 1 14 0.21 0.34 −0.45 0.13 0.19 −0.54
Maximum 19.21 10.71 9.87 36.36 106 61 54 203 0.82 16.92 0.76 0.80 17.71 0.75

Range 18.79 10.52 9.78 35.45 102 58 53 190 0.62 16.58 1.20 0.67 17.52 1.29

Median 1.69 0.86 0.66 3.24 22 12 10 44 0.51 2.41 0.30 0.48 2.11 0.25

Mean 2.08 1.10 0.85 4.03 25 15 12 51 0.51 2.93 0.30 0.48 2.56 0.25

SE mean 0.04 0.02 0.02 0.08 0.4 0.2 0.2 0.7 0.00 0.05 0.00 0.00 0.04 0.00

95 % CI mean 0.09 0.05 0.04 0.16 0.7 0.5 0.4 1.5 0.01 0.10 0.01 0.01 0.09 0.01

Variance 2.73 0.75 0.47 8.96 199.9 79.9 58.4 773.5 0.01 3.56 0.03 0.01 2.69 0.03

Standard deviation 1.65 0.86 0.68 2.99 14.1 8.9 7.6 27.8 0.11 1.89 0.18 0.11 1.64 0.18

CV 0.80 0.78 0.81 0.74 0.57 0.60 0.65 0.54 0.21 0.64 0.61 0.22 0.64 0.71

Table 3 Performance of
tree ensembles models Variable R2

%SOC 0–10 0.75

%SOC 10–20 0.74

%SOC 20–30 0.71

∑%SOC 0–30 0.75

Cstock 0–10 0.74

Cstock 10–20 0.71

Cstock 20–30 0.70

Cstock 0–30 0.76

%SOC proportion 0.76

%SOC ratio 0.67

Δ%SOC ratio 0.75

Cstock proportion 0.75

Cstock ratio 0.67

ΔCstock ratio 0.75
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climates (Table 5). Differences were not consistent for
all depths, nor when considering both %SOC and Cstocks.

After controlling for other variables, the Games-
Howell post-hoc analysis of %SOC and Cstocks to land-
use indicated the highest C concentrations and stocks in
native systems (unused timber/scrub and native grasses).
C concentrations and stocks declined in the order: unused
timber/scrub/native grasses > improved pasture≅ grazing
systems (including low-grazed systems, native pastures,
set-stocking systems and rotational grazing systems) >
softwood plantation ≅ modern farming systems (includ-
ing rotational crop-pasture systems, minimum till

systems and carbon farming systems) > tillage cropping
> irrigated cotton ≅ dryland cropping.

Influences on SOC vertical distribution

The two continuous variables indicated as important in
all the tree ensemble models and therefore included in
the multiple regressions were temperature and evapora-
tion (MATmax and EVAP), and both were negatively
associatedwith the Cgradient. Of the categorical variables,
only Köppen climate classes (KoppenCode) and land-
use at sampling (LUorig) are considered here, as they

Fig. 2 Relative variable importance from the regression tree
models for SOC concentration and stocks. (a) %SOC at 0–10 cm,
(b) %SOC at 20–30 cm, (c) Cstocks at 0–10 cm and (d) Cstocks 20–

30 cm. The blue dotted line represents the expected variable
importance in a model where all variables are equally ranked.
For an explanation of variables, see Table 1
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were important in all models and significant in the
multiple regressions. Although GSG was important in
the tree ensemble models for the Cgradients of %SOC, no
significant differences between different soil types were
found using the Games-Howell post-hoc test.

After controlling for other variables, the Games-
Howell post-hoc analysis of%SOC and Cstocks to Köppen
climate classes revealed fewer significant differences in
Cgradients than in %SOC or Cstocks. More significant dif-
ferences were found in vertical distribution of Cstocks

than in the vertical distribution of %SOC (Table 5).

Similarly, fewer significant differences were
found for analyses of land-use in the Cgradients than
in %SOC and Cstocks. Smaller Cgradients were found
under cropped systems than under most other sys-
tems. Cgradients declined in order: grazing systems
(including improved pasture, low-grazed systems,
native pastures, set-stocking systems and rotational
grazing systems) ≅ modern farming systems (in-
cluding rotational crop-pasture systems, minimum
till systems and carbon farming systems) >
cropping.

Fig. 3 Relative variable importance from the regression tree
models for vertical distribution indicators. (a) %SOC,proportion, (b)
%SOC,ratio, (c) Δ%SOC,ratio, (d) Cstock proportion, (e) Cstock ratio, and (f)

ΔCstock,ratio. The blue line represents the expected variable impor-
tance in a model where all variables are equally ranked. For an
explanation of variables, see Table 1
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Discussion

Model performance

For the tree ensembles, the R2 indicate a good explana-
tion of variance between measured and modelled SOC
concentration and stocks (e.g. Wiesmeier et al. 2014),
indicating their suitability at describing the observable
variance in SOC dependent upon the explanatory vari-
ables available from sampling and site (GIS) data. The
gap between modelled and total variance (~25–30 %)
resembled closely the CV at site level (for 10 replicates
per site CVaveraged ~25%, data not shown), so that our
models appear not only adequate at explaining variance
but do not overfit the data. There was no large difference
in fitted model performance between the two measures
of SOC content: %SOC performed slightly better for the
individual depths, but for the combined 0–30 cm depth
interval, Cstocks were described slightly better, indicating
that the models perform equally well at describing
trends in both SOC concentration and stocks.

With the exception of %SOC at 0–10 cm, the multiple
regression models generally explained less variance
than the tree ensemble models. However, given the fact
that they were designed to analyse the influence of
specific variables on SOC storage and vertical distribu-
tion, and not as predictive models their lower perfor-
mance is not of great import.

Factors influencing SOC storage and vertical
distribution

The tree ensemble models indicated similarities and
differences in the variables important to SOC concen-
tration and storage. Notably, although bulk density was
very important to SOC concentrations, it was not an
important factor determining C stocks. Relationships
between SOC concentration and bulk density are well
established and it is often assumed that SOC concentra-
tion affects bulk density (Ruehlmann and Körschens
2009). However, in compacted soils water infiltration,
gas exchange, plant growth and root penetration are

Table 4 Multiple regression models

Variable Final model Adjusted R2 Proportion of explained
variance

All Climate Site Land-use

%SOC 0–10 log(%SOC 0–10) ~ log(BD0-10) + log(MAP) + VPD + MARH3pm +
KoppenCode + OEH.LU.Det + GSG + LUorig

0.74 0.51 0.35 0.14

%SOC 10–20 %SOC 10–20 ~ log(BD0-10) + MAP + GSG + LUorig + SrnAll_CODE +
log(BD0-10) + KoppenCode + ClmZone

0.66 0.25 0.58 0.17

%SOC 20–30 %SOC 20–30 ~ LUorig + log(BD0-30) + GSG + KoppenCode + PlotSym + sdL +
ClmZone + MAP

0.59 0.08 0.61 0.30

∑%SOC 0–30 log(∑%SOC 0–30) ~ log(MAP) + log(BD0-10) + GSG + log(BD0-30) +
KoppenCode + LUorig + SrnAll_CODE + MARH3pm

0.69 0.52 0.28 0.20

Cstock 0–10 log(Cstock 0-10) ~ VPD + MARH3pm + log(MAP) + KoppenCode + LUorig +
GSG + SrnAll_CODE

0.65 0.80 0.03 0.17

Cstock 10–20 Cstock 0–10 ~ LUorig + MAP + GSG + KoppenCode + SrnAll_CODE +
ClmZone + log(BD0-10) + MARH3pm

0.56 0.43 0.17 0.39

Cstock 20–30 Cstock 20–30 ~ LUorig + KoppenCode + MAP + RM20-30 + PlotSym + GSG 0.49 0.28 0.17 0.55

Cstock 0–30 log(Cstock 0–30) ~ LUorig + MAP + KoppenCode + GSG + SrnAll_CODE +
VPD + MARH3pm

0.60 0.46 0.07 0.47

%SOC proportion %SOC proportion ~ LUorig + MATmax + PlotSym + EVAP + KoppenCode + GSG 0.58 0.26 0.10 0.64

Cstock proportion Cstock proportion ~ LUorig + MATmax + PlotSym + KoppenCode + EVAP 0.55 0.22 0.06 0.72

%SOC ratio log(%SOC ratio) ~ LUorig + KoppenCode + PlotSym + EVAP + MATmax + GSG 0.57 0.25 0.09 0.66

Cstock ratio log(Cstock ratio) ~ LUorig + PlotSym + KoppenCode + MATmax + EVAP 0.57 0.10 0.16 0.74

Δ%SOC ratio Δ%SOC ratio ~ LUorig + EVAP + MATmax + KoppenCode + PlotSym + GSG 0.58 0.28 0.08 0.64

ΔCstock ratio ΔCstock ratio ~ LUorig + MATmax + PlotSym + EVAP + KoppenCode 0.56 0.22 0.05 0.72
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limited, inhibiting SOC production so that bulk density
also affects SOC. As such, bulk density can be viewed
as important indicator of soil physical health with a
strong influence on SOC. That bulk density was impor-
tant to SOC concentrations but not stocks, despite its
occurrence in the formula used to calculate Cstocks, is
likely a result of the inverse relationship between SOC
concentrations and bulk density. As SOC concentration
increases, bulk density decreases. However, the relation-
ship between SOC concentration and bulk density is not
linear, so that the product of these two variables is not
clearly delineated rendering bulk density unimportant to
predicting Cstocks. Due to the nature of the highly diverse
soils and fixed sampling depths in the original datasets,
we calculated SOC stocks without adjusting for the
effects of SOC on bulk density and therefore sampling
depth via equivalent soil mass (ESM) equation (Ellert
and Bettany 1995). It is possible that using ESM
to calculate SOC stocks may further illuminate the
importance of bulk density to soil physical health and
SOC stocks, and this should be the focus of future
investigations.

The fact that the variables identified as important in
the tree ensemble models differed (absolutely and in
rank) between %SOC and Cstocks accounts for the differ-
ent contributions to explained variance in the multiple
regression models of the different factors (climate, site,
land-use) for SOC concentration and stocks. A further
explanation for the different contributions of the various
factors to model variance is the differences in total
variance explained by the models (SOC concentrations
are better modelled than Cstocks), which leads to a shift in
the relative contribution of a given factor to the ex-
plained variance. In this dataset, %SOC appears influ-
enced by bulk density, whereas Cstocks, with one excep-
tion, are not, with the result that the multiple regression
models describe Cstocks less effectively than %SOC, and
the influence of site factors (which include bulk density)
is greater for %SOC than for Cstocks.

Similar to other investigations into SOC storage at
different depths (Jobbagy and Jackson 2000; Badgery
et al. 2013), climate factors dominated as important
explanatory variables for both SOC concentrations and
stocks near the surface, with precipitation, vapour

Table 5 Games-Howell post-hoc analysis on the partial regression of Köppen climate classes to C indicator variables, controlled for other
explanatory variables in the model

Köppen classes compared Indicator variable

%SOC Cstock Depth
distribution

Depth (cm)

0–
10

10–
20

20–
30

0–
30

0–
10

10–
20

20–
30

0–
30

%SOC Cstock

Temperate, no dry season, hot summer: grassland, hot, persistently dry + + 0 + + + 0 + 0 0

Temperate, no dry season, mild summer: grassland, hot, persistently
dry

0 + 0 + 0 + 0 + 0 −

Temperate, no dry season, mild summer: grassland, warm, persistently
dry

0 0 0 + 0 0 0 0 − −

Temperate, no dry season, mild summer: subtropical, moderately dry
winter

0 0 0 + 0 0 0 + 0 0

Temperate, no dry season, mild summer: subtropical, no dry season 0 0 0 0 0 0 0 0 0 −
Temperate, no dry season, mild summer: temperate, no dry season, hot

summer
0 0 0 0 0 0 0 0 − −

Temperate, no dry season, warm summer: temperate, no dry season,
hot summer

− 0 0 − − − 0 − 0 0

Temperate, no dry season, warm summer: temperate, no dry season,
mild summer

0 0 0 − 0 0 0 − 0 +

+ indicates a higher value of the C-indicator variable in the first-mentioned Köppen climate class than in the second-mentioned Köppen
climate class; − indicates a lower value of the C-indicator variable in the first-mentioned Köppen climate class than in the second-mentioned
Köppen climate class; 0 indicates no significant difference (p<0.01) between zones. Only comparisons with a significant difference in either
the surface or subsurface depths are reported
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pressure deficit and relative humidity highly important
in the top 10 cm but less important below the surface.
Consistent with our understanding of the relationships
between rainfall, net primary production (Michaletz
et al. 2014) and SOC storage (Jobbagy and Jackson
2000; Wiesmeier et al. 2013b), MAP was positively
associated with SOC content, whereas VPD was nega-
tively associated with SOC content. These results sug-
gest that SOC production near the surface is limited by
water availability. The effect of water-limitation will be
most noticeable in SOC content at the soil surface, as
dryness throughout the soil profile will not only limit
below-ground SOC production (i.e. root growth and
exudates), but also above-ground plant productivity,
e.g. leaf-litter production. Therefore, water-stress is like-
ly to affect the SOC content at the soil surface to a
greater degree than below the surface. Compounding
this is the fact that soil temperatures are greatest near the
surface, resulting in a higher evaporation and drier soils,
which will further limit SOC production in shallow-
rooting vegetation types (e.g. pasture).

Despite long-standing links between temperature and
ecosystem productivity (Michaletz et al. 2014), temper-
ature was not an important variable in the tree ensemble
models of SOC content. However, temperature was
highly important to the vertical distribution of SOC.
Temperature has been shown to have a stronger associ-
ation with SOC vertical distribution than precipitation
(Wang et al. 2004), and we believe that our results
indicate that SOC vertical distribution is driven more
by degradation than by production processes. Microbial
activity and SOC decomposition rates are positively
associated with temperature, but are also limited by
substrate availability (Kirschbaum 2006). Although
water-availability will limit microbial activity (VPD is
an important splitting variable in the tree ensembles),
precipitation directly limits SOC production, and will
therefore limit microbial activity and SOC degradation
indirectly by limiting substrate availability. As the SOC
content is generally greatest near the surface, higher
temperatures will lead to enhanced turnover of SOC
near the surface, where substrate limitation is less likely
to affect microbial activity, resulting in a lower gradient
of SOC from the surface to subsurface and thereby
reducing the Cgradients.

With increasing soil depth, the Köppen climates clas-
ses (and other categorical climate descriptors) became
more important to the models. This indicates that the
absolute amount of rainfall, evaporation and humidity

are less important than the climate patterns (i.e. season-
ality, temperature regime). This can be explained by
reduced water and temperature fluctuations with in-
creasing depth from the soil surface, which dampens
the absolute climate signal and results in SOC dynamics
below the surface being driven by seasonal trends.

With increasing soil depth, the influence of climate
variables diminished and site and land-use factors be-
came more important to SOC storage. That site factors
such as soil type, lithology and geology become more
important with depth can be explained by the fact that
the ability of the soil inorganic matrix to retain SOC is
linked with mineralogy and texture (Six et al. 2002),
which are derived from bedrock and weathering prop-
erties and are inherent to the sampling site. Near the
surface, SOC content is highest and so fine minerals are
most likely to be saturated with SOC, limiting their
retention capacity. Below the surface SOC content gen-
erally decreases, so that saturation of fine minerals is
less likely to be an issue and mineralogy becomes more
relevant to SOC storage. This is consistent with the
results of Grimm et al. (2008), who found that subsoil
(10–50 cm) SOC variance was best explained by soil
textural classes as derived from soil mapping units.
These results imply that, for the environment and sites
represented in this dataset, the amount of SOC produced
(i.e. near the surface) at a site is limited predominantly
by climate, above-all precipitation and water-availabili-
ty, but that C retention (i.e. below the surface) is more
closely linked with geological and mineralogical site
properties than with climate variables.

Mineralogy and (the closely associated) soil texture
have long been recognised as relevant to SOC retention
(Christensen 1992), particularly in Australian soils
(Hassink 1997). In our study we did not have access to
soil textural data or measured mineralogical properties,
so can only assess the importance of mineralogy via the
(proxy) GIS variables related to geology and lithology.
Our results highlight their importance to SOC storage
below the surface and we strongly recommend the as-
sessment of textural and mineralogical data in SOC
research projects so that the importance of these vari-
ables can be better understood in future research.

It is notable that the site factors identified as impor-
tant in the models were inherent to internal soil proper-
ties, i.e. bulk density, soil type, geology and lithology,
and not descriptive of external (topographical) site prop-
erties such as elevation or TWI. Topography is one of
Jenny’s soil forming factors (Jenny 1941) and has been
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found to be highly important to SOC stocks (Grimm
et al. 2008; Davy and Koen 2013). However, those
studies assessed considerably smaller areas,
characterised by lower climate variance, but highly var-
ied topographies. Minasny et al. (2013) suggest that
local terrain attributes (slope, aspect, curvatures) are
important at small scales (<100 m) but that position in
landscape is more important at larger scales (>100 m).
Our results suggest that despite the fact that topography
varies greatly across NSW, for the scale of this study,
which encompasses a large area around the size of
Germany, Poland, the Czech Republic, and Austria
combined, topographical features are not important
drivers of SOC storage and vertical distribution. Instead,
climate, geology and humans have the greatest influence
on SOC stocks and vertical distribution.

Traditionally, land-use has been reported to affect
SOC content near the surface (0–10 cm), with effects
more difficult to detect deeper in the soil (Wilson et al.
2008, 2010; Luo et al. 2010). However, the tree ensem-
ble models all indicated land-use as highly important to
C content below the surface and the contribution of
land-use to explained variance in the multiple regression
models more than doubled from the surface 10 cm to the
20–30 cm depth. Further evidence for the importance of
land-use in determining subsurface OC content is the
identification of land-use as by far the most important
variable to C vertical distribution in the tree ensemble
models, and its accounting for around two-thirds of the
variance in the multiple regression models of SOC
vertical distribution.

That land-use becomes important with depth may
reflect stratification of SOC down the soil profile under
different land-use systems as a result of differential
accumulation or loss or SOC at a different depths down
the soil profile, for example accumulation of SOC at the
surface of unused timber/scrub areas, indicated by their
higher SOC content and gradients. For pasture systems,
it appears that grazing may reduce the input of SOC at
greater soil depths (via removal of plant matter at the
surface, thereby lowering translocation), resulting in
lower SOC content below the surface and therefore
higher vertical distribution indicators. Furthermore, the
deposition of animal faeces onto the soil surface will
help to enrich the soil surface in organic matter, enhanc-
ing the gradient from surface to subsurface. Alternative-
ly, land-use can affect vertical distribution via mixing of
the soil, as indicated by the low Cgradient and SOC
content in conventionally cropped systems.

Land-use not only affected the vertical distribution of
SOC to a depth of 30 cm, but also the absolute SOC
storage, with native, unused systems storing significant-
ly larger amounts of C than anthropogenically managed
systems. These results confirm the current understand-
ing of the effect of land-use and soil disturbance on soil
carbon stores, namely that compared with natural sys-
tems, the greatest depletion of SOC occurs in highly
disturbed, cropped and tilled systems, with modern
farming methods (including rotational crop-pasture sys-
tems, minimum till systems and carbon farming sys-
tems) and grazed systems not as greatly depleted in
SOC.

Finally, the results and discussion related to the ver-
tical distribution of SOC have been drawn on data from
the top 30 cm of soil. As outlined in the Introduction,
Australian soils are unique and it is likely that the
‘topsoil’ (i.e. active/reactive soil zone) can adequately
be assessed in the 0–10 cm depth. Although tillage
depth in the State is generally 10 cm, occasionally
deeper tillage to depths of 20–25 cm are used for spe-
cific purposes (e.g. the placement of ‘deep’ P fertiliser),
which may affect the indices used for assessing the
factors influencing SOC vertical distribution of SOC,
as will the rooting depth of grasses. Although many
Australian soils are shallow, with depths of <1 m (Soil
and Landscape Grid of Australia 2014) and exhibit poor
profile development, generalisation of these results to
entire soil profiles should be treated with caution. In-
stead, the results and discussion presented here can be
considered a starting point to assess the drivers of the
depth distribution of SOC in eastern Australia. Specifi-
cally, the hypotheses developed based upon these re-
sults, namely that climate is important near the surface
but that geological and mineralogical characteristics
become more important in subsoils, that precipitation
is the largest climatic driver of SOC stocks, and that the
depth distribution is drivenmore by temperature than by
precipitation should be tested in future research explor-
ing greater soil depths.

Conclusions

We investigated the drivers of soil organic carbon (SOC)
storage at three depths (0–10, 10–20, and 20–30 cm) as
well as the gradient of SOC from the surface to subsur-
face in the soils of New South Wales, Australia using a
combination of machine-learning and classical statistics.
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Our results indicate that the storage of SOC near the
surface is driven predominantly by climate, most spe-
cifically water availability, indicated by the positive
association of SOC with precipitation and relative hu-
midity, but negative association with vapour pressure
deficit. With increasing soil depth the influence of cli-
mate waned and inherent site factors (bulk density, soil
type, geology and lithology) and land-use became more
important to SOC content. Below the surface, seasonal-
ity and climate regimes appear to be more important
than absolute values of precipitation and vapour pres-
sure deficit. This we attribute to the dampening of the
absolute climate signal (e.g. temperature fluctuations,
wetting–drying cycles) at greater soil depths. Tempera-
ture was not important to SOC content, but highly
important to SOC vertical distribution, and we
hypothesise that this is a result of the temperature de-
pendence of microbial activity and SOC degradation. In
warmer climates, microbial activity is enhanced, and is
greatest near the soil surface, where SOC content is
highest. Thus, warmer temperatures lead to a compara-
tively greater turnover of surface SOC and a correspond-
ingly lower gradient of SOC from surface to sub-soil
than in colder climates. Land-use affects the absolute
storage of SOC, with natural systems containing the
greatest amounts of carbon and conventionally cropped
systems the least. Grazed systems and modern farming
systems (e.g. rotational cropping-grazing or carbon
farming systems) had intermediate SOC contents be-
tween these end-members. Importantly, land-use is the
most important predictor of the vertical distribution of
SOC in the investigated depths, which can be attributed
to preferential accumulation at the soil surface (unused
timber/scrub systems), reduced input into the sub-soil
(grazed systems) ormixing of the soil profile (cropping).
Lastly, our study assessed SOC storage and vertical
distribution in the top 30 cm of soil. Although this
is a good starting point for investigating SOC stor-
age and vertical distribution, future research efforts
should be focussed on testing the hypotheses de-
veloped here regarding the relative importance of
the numerous drivers of SOC at multiple depths as
well as the depth distribution of SOC in deeper soil
profiles.
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