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Abstract
Background and aims Azospirillum brasilense, which
has the potential to stimulate plant growth, belongs to
the group of plant growth-promoting bacteria. The lectin
found on the surface of A. brasilense strain Sp7 has the
ability to bind specific carbohydrates and ensures adhe-
sion of the bacteria to the root surface. The aim of this
work was to investigate possible inductive effects of the
Sp7 lectin on the plant cell signal systems.

Methods Enzyme-linked immunosorbent assay, spectro-
photometry, and thin-layer and gas–liquid chromatogra-
phy were used to determine the content of signal inter-
mediates in the cells of wheat root seedlings. Laser scan-
ning confocal microscopy was used to examine the lo-
calization of fluorescently labeled lectin on the plant cell.
Results The Sp7 lectin acted on the signal system com-
ponents in wheat seedling roots by regulating the con-
tents of cAMP, nitric oxide, diacylglycerol, and salicylic
acid, as well as bymodifying the activities of superoxide
dismutase and lipoxygenase. The revealed cell mem-
brane localization of the lectin is of deciding importance
for its signal function.
Conclusions The results of the study suggest that the
A. brasilense Sp7 lectin acts as a signal molecule in-
volved in the interaction of growth-promoting
rhizobacteria with plant roots.

Keywords Rhizosphere . Associative nitrogen fixation .

Azospirillum . Lectins .Wheat roots . Signal molecules

Introduction

The free-living bacteria Azospirillum live in close asso-
ciation with plant roots and are some of the best char-
acterized plant growth-promoting rhizobacteria
(PGPR). Plants obtain direct benefit from the ability of
these bacteria to fix N2 (Baldani and Baldani 2005),
produce phytohormones (Tsavkelova et al. 2006),
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solubilize phosphates (Rodriguez et al. 2004), improve
plant water and mineral status (Ogut and Er 2006),
produce compounds to increase membrane activity
(Alen’kina et al. 2006) and proliferation of the root
system tissues (Nikitina et al. 2004), decrease stressor
effects on plants (Bashan et al. 2004), and control nu-
merous phytopathogens (Dadon et al. 2004).

Many azospirilla are unable to enter plant cells, and
this presupposes that these bacteria can form signal
molecules that cross the plant cell wall and are recog-
nized by the plant membrane receptors. This interaction
can initiate a chain of events resulting in altered metab-
olism of the inoculated plant and in proliferation of
roots. Since plant membranes are extremely sensitive
to any change, their response may serve as a precise
indicator of Azospirillum activity at the cellular level
(Bashan et al. 2004; Bashan and de-Bashan 2010).

The binding of wheat germ agglutinin (WGA) to cell
receptors of A. brasilense Sp245 alters bacterial cell
metabolism, promoting N2 fixation, excretion of ammo-
nium ions, and synthesis of indole-3-acetic acid (IAA).
It also alters the relative proportion of acidic phospho-
lipids of the membrane; that is, WGA may function as a
signal molecule in the Azospirillum–plant association
(Antonyuk and Evseeva 2006).

Some Azospirillum strains are known to produce
several lectins in vitro (Castellanos et al. 1998), and
Nikitina et al . (1996) speculated a role for
Azospirillum cell surface lectins in bacterial adhesion
to roots. Alen’kina et al. (1998) isolated the surface
lectin of A. brasilense Sp7 and found it to be a 36-kDa
glycoprotein with specificity for L-fucose (1.87 mM)
and D-galactose (20 mM). The lectin affected α-
glucosidase, β-glucosidase, and β-galactosidase activi-
ties in the membrane and apoplast fractions of wheat
seedling roots (Alen’kina et al. 2006). Lectins have also
been found to induce changes in the mitotic state of
growing onion plant cells (Nikitina et al. 2004).

In this context, we sought here to investigate how
plants would respond to the effect of the A. brasilense
Sp7 lectin and to prove that the lectin has a signal function.

Materials and methods

Strain and growth conditions

Azospirillum brasilense Sp7 was obtained from the cul-
ture collect ion of Winogradsky Insti tute of

Microbiology, Russian Academy of Sciences, Moscow.
The culture was grown in the synthetic medium de-
scribed by Sadasivan and Neyra (1985) at 37ºC for 18 h.

Lectin isolation

The lectin was isolated from the Sp7 cell surface by the
method of Echdat et al. (1978) and was purified by gel
filtration on a 30×2.2-cm column of Sephadex G-75
(40–120 μm particle diameter). The emergence of pro-
tein fractions was followed at 278 nmwith a Uvicord SII
apparatus (LKB, Sweden). The eluents were 0.1 M
CH3COOH (pH 4.8) and 0.05 M phosphate-buffered
saline (PBS; pH 7.0) containing 0.15 M NaCl. The flow
rate was 1.5 mL min−1. The lectin nature of the purified
material was confirmed by hemagglutination assay as
described by Lakhtin (1989). Fifty-microliter portions of
successive twofold dilutions of a lectin solution were
added to the wells of a microtitration plate, with PBS
serving as a control. Washed trypsin-treated rabbit eryth-
rocytes were added at a concentration of 2 % in PBS and
were incubated at room temperature for 2 h. The mini-
mum concentration of the lectin solution that gave hem-
agglutination was recorded as the hemagglutination titer.

Seed sterilization, obtainment of seedling roots, and root
pretreatment with lectin

Seeds of Triticum aestivum L. “Saratovskaya 29” (All-
Russia Science Research Institute of Agriculture in the
South-East, Saratov, Russia) were surface sterilized in
70 % v/v ethanol for 1 min and were washed five times
with sterile water. For seedling roots, seeds were grown
aseptically in petri dishes on sterile distilled water. The
roots of 4-day-old seedlings were held in a solution
containing 5 to 40 μg mL−1 of lectin and, in a separate
series of experiments, in a lectin solution containing
0.1 mМ СаСl2. After that, the content of signal inter-
mediates was determined, with non-lectin-treated root
samples as controls.

Protein assay

Protein was estimated by the Bradford method (1976).

cAMP assay

The seedling roots were fixed in liquid nitrogen and then
homogenized in an isolation buffer consisting of 50 mМ
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Tris–HCl (рН 7.4), 0.1 mМ theophylline, 1 mМ di-
thiothreitol, and 0.5 mg mL−1 polyvinylpyrrolidone.
The mixture was filtered and centrifuged at 10,000×g
for 40 min. Enzyme-linked immunosorbent assay
(ELISA) was conducted in 96-well polystyrene plates
(SPL Life Sciences, Korea). Each well received 50 μl
of successive twofold dilutions of the samples, and the
samples were immobilized by drying in a flow of air
at room temperature. The primary antibodies were
rabbit anti-cyclic adenosine monophosphate (cAMP)
antibodies (0.1 mg mL−1; Sigma, USA), and the sec-
ondary antibodies were peroxidase-labeled goat
antirabbit antibodies (2 μg mL−1). The ELISA result
was presented as the percent difference between the
absorbance (A) values obtained for the experimental
and control roots.

Nitric oxide assay

Nitric oxide (NO) content was determined by mea-
suring the level of nitrite (NO−

2) accumulated in the
root homogenate, by using the Griess reagent
consisting of equal volumes of 0.3 % sulfanilic acid
and 0.5 % α-naphthylamine. After 10 min of contact,
the absorbance at 540 nm (A540) was measured
(Schulz et al. 1999).

Citrulline assay

Citrulline was determined by thin-layer chromatography
(TLC) on silica gel 60А (Merck, Germany), with n-
butanol–acetic acid–water (4:1:1 v/v) as the solvent
system. The chromatograms were stained with a ninhy-
drin solution (Darbre 1989), and citrulline was identified
with pure commercial citrulline (Sigma, USA). The
spots were scraped off and eluted, and citrulline was
quantified at 570 nm.

Diacylglycerol assay

Lipid extracts of wheat seedling roots were obtained by
the methods of Folch et al. (1957) and Blight and Dyer
(1959). The lipid components were identified by TLC
on silica gel, with hexane–diethyl ether–acetic acid
(55:45:1 v/v) as the solvent system, as well as by
qualitative reactions and by comparison of the chro-
matographic mobility of the samples with that of stan-
dards (Keyts 1975). The amount of diacylglycerol
(DAG) was determined by gas–liquid chromatography

on a GH-2010 gas chromatograph (Shimadzu, Japan)
fitted with an Equity-1 capillary column (30 m length,
0.32 mm inside diameter; Supelco, USA). The flow rate
of the helium carrier gas was 34 mL min−1, and the
oven and detector temperatures were 270 °С.
Methylation was done according to Christie (1993).
DAG was identified by comparing its retention time
with that of the standard.

Lipoxygenase assay

The activity of lipoxygenase (EC 1.13.11.12) in
the root homogenates was measured spectrophoto-
metrically, with linoleic acid as a standard (Axelrod
et al. 1981).

Salicylic acid assay

For determination of free and bound salicylic acid (SA),
1 g of roots was thoroughly washed with distilled water
and was fixed with hot 96 % ethanol. The extract was
divided into two parts to obtain the free and the bound
form (Palva et al. 1994). SA was determined on a GH-
2010 gas chromatograph equipped with an Equity-1
column at 200 °С.

Phenylalanine ammonia lyase assay

Phenylalanine ammonia lyase (PAL) (EC 4.3.1.5) was
extracted from roots with 0.1М borate buffer (рН8.8) at
4 °С for 30 min, with a root:buffer ratio of 1:17. The
reaction mixture, consisting of 0.1 mL of root extract
and 0.4 mL of borate buffer (рН 8.8) with 12 mM L-
phenylalanine, was incubated at 37 °С for 1 h. Enzyme
activity was measured spectrophotometrically by the
change in absorbance at 290 nm (A290) and was
expressed in absorbance units (ΔЕ g−1 of root wet
weight) (Zucker 1969).

Superoxide dismutase assay

For determining superoxide dismutase (SOD) (EC
1.15.1.11) activity, roots were homogenized in 0.15М
PBS (рН7.8). The homogenate was centrifuged at
7,000×g for 15 min, and the enzyme activity was de-
termined by the inhibition of the reduction rate for
tetrazolium nitroblue in a nonenzymatic system con-
taining phenazine methosulfate and NADH (Alscher
et al. 2002).
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Tetramethylrhodamine isothiocyanate labeling
of the lectin and the determination of lectin localization
on wheat root cells

Fluorescent labeling of the A. brasilense Sp7 lectin

For labeling, 50 μL of ТRITC (1 mg mL−1 in
dimethylsulfoxide) was mixed with 1 mL of a lectin
solution (2 mg of dry sample in 1 mL of 0.1 M sodium
bicarbonate buffer, pH 9.0). The reaction was run at 4ºC
for 3 h in the dark, after which the labeled lectin was
separated from unreacted fluorochrome by gel filtration
on a column (NAP 5; Sigma, USA) of Sephadex G-25
in 20 mM sodium bicarbonate.

In a preliminary test of the specificity of the labeled
preparation, a dot assay using rabbit erythrocyte ghosts
was conducted. The ghosts were prepared by osmotic
hemolysis in 0.015М sodium chloride, resuspended in
the same solution, and washed three times with physio-
logical saline. Finally, the ghosts were sedimented by
centrifugation at 3,000×g for 10 min, and the superna-
tant liquid was discarded.

The immunodot reaction was run on 1.5-μm-pore-
size nitrocellulose membranes (Synpor, Czech
Republic). One-microliter drops of twofold dilutions of
the erythrocyte ghosts were spotted onto a membrane in
the centers of drawn 5-mm squares, dried, and fixed in a
desiccator at 60 °С for 15 min. For preventing nonspe-
cific adsorption of the label on the sample and carrier,
the membrane was incubated in a solution of PBS (рН
7.2), 0.2 % BSA, and 0.02 % Tween 20 at room tem-
perature for 15 min. Next, the membrane was incubated
at room temperature for 30 min in a solution of a labeled
lectin or of a lectin pretreated with the specific hapten L-
fucose (1.87 mМ). Finally, the membrane was washed
with PBS (рН7.2) containing 0.02 % Tween 20 and was
visualized with a Leica LMD 7000 microscope (Carl
Zeiss, Germany) set to the fluorescence mode (dichroic
cube I3).

Microscopy

Root segments were washed with PBS (pH 7.0),
mounted on a glass slide, and, on application of
50 μL of labeled lectin, held in the dark for 30 min.
After being washed with PBS three times for 10 min
each, the preparations were examined with a Leica TCS
SP5 laser scanning confocal microscope (Carl Zeiss,
Germany). For additional labeling, the fluorescent dyes

rhodamine and FM 1-43 (Hanton and Brandizzi 2006)
were used.

Statistics

All experiments were performed in triplicate, and the
results were statistically analyzed and presented as mean
± standard error (SE). Significant differences between
control and treated plants were determined by Student’s
t test. Differences were considered significant at
p<0.05.

Results

Although Azospirillum imparts an evident growth-
promoting effect on a variety of plants, very little is
known about the signaling events in the early interaction
between bacteria and plant cells. It has been reported
that A. brasilense Sp7 induced the generation of reactive
oxygen species (H2O2) in Arabidopsis interacting with
Azospirillum, both at the early and at the later stages of
interaction (Ahmed 2010). The effects of Azospirillum
lipoferum and A. brasilense on plant аntioxidant en-
zymes, including catalase, peroxidase, and superoxide
dismutase, have been investigated (Baniaghil et al.
2013), and A. brasilense has been shown to promote
the accumulation of SA in plant roots either locally or
systemically (Bashan and de-Bashan 2002a; Ramos
Solano et al. 2008).

Some molecules responsible for the eliciting activity
of PGPR strains have been characterized and may be
cell surface components (Coventry and Dubery 2001;
Meziane et al. 2005; Reitz et al. 2002). In this context,
the lectins of Azospirillum are of much research interest.
Earlier work showed that Azospirillum lectins are in-
volved in bacterial adhesion to plant roots through their
ability to bind carbohydrates (Nikitina et al. 1996).
Further study of the lectins’ physiological functions
showed that in addition to expressing adhesive proper-
ties, they can regulate seed germination ability in a
concentration-dependent manner and that this lectin ac-
tion is related to a change in the mitotic state of plant
cells (Nikitina et al. 2004). Lectins exhibit enzyme-
modifying activity toward homologous hydrolytic en-
zymes (Chernyshova et al. 2005) and plant cell enzymes
(Alen’kina et al. 2006). With this in mind, we now
proposed that Azospirillum lectins might have a role in
the functioning of the plant signal systems.
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Lectin effect on the root content of cAMP

An important role in the functional and structural re-
sponses of plant cells to external abiotic and biotic
influences is played by the adenylate cyclase signal
system. One component of this system is cAMP, gener-
ated from ATP by adenylate cyclase. The concentration
of cAMP in plant samples may vary between lowest
possible (femtomoles) and quite high (tens of micro-
moles) values (Lomovatskaya et al. 2008). Such a scat-
ter depends on external medium factors, which have a
substantial effect on the content of this secondary
messenger.

An ELISA study of the effect of the A. brasilense
Sp7 lectin on the quantity of cAMP in wheat root
homogenates demonstrated that after 15 min of incu-
bation, all lectin concentrations tested decreased the
cell quantity of cAMP. The decrease was the greater
the higher the lectin concentration was. After 30 min
of incubation, the content of cAMP increased but still
was lower than the control (roots, 100 %). After
60 min of incubation, the cAMP content was greater
than the control with 5, 10, and 20 μg mL−1 of lectin,
but lower than the control with 40 μg mL−1

(Table 1).
Calcium ions are effective modulators of adenylate

cyclase activity (Cali et al. 1994; Willoughby and
Cooper 2006). In this study, adding Са2+ ions to the
lectin-containing incubation solution increased cAMP
content in all treatments as compared with the control
(untreated roots). This effect was the greater the more
inhibitory was the lectin action. When the lectin had an
activating effect, no influence ofСа2+ ions was recorded
(Table 1).

Lectin effect on SOD activity

The synthesis of hydrogen peroxide is one of the
quickest plant cell responses to inducing factors, and a
large role in it is played by special enzyme systems.
Active oxygen species function mainly within the
NADPH-oxidase signal system. SOD is one of the most
important enzymes in the antioxidant defense of plants,
which catalyzes the conversion of the superoxide radical
to hydrogen peroxide. SOD activity has been observed
to increase under different effects (Babithaa et al. 2002;
Kuzniak and Sklodowska 2004). In this study, after 2 h
of root incubation with Sp7 lectin, SOD activity in-
creased at all lectin concentrations tested. The largest
(and almost identical) increases were found with 20 and
40 μg mL−1 of lectin (Fig. 1).

Lectin effect on the root content of NO

NO is an important participant in signal transduction
and regulator of physiological processes in the plant
cell. It is involved in the regulation of the plant cell
cycle (Wilson et al. 2008), plant differentiation and
morphogenesis (Simpson 2005), and the establishment
of symbiotic relations between legumes and rhizobia
(Glyan’ko and Vasil’eva 2010). The content of NO
increased with all lectin concentrations used, but
40 μg mL−1 was found to be the most effective. The
effect appeared after 1 h, peaked at 3 h, and then de-
creased to the control value (Fig. 2).

Many investigators believe that plants can have sev-
eral sources of NO formation and that only some of
them can be regulated via signal pathways (Flores
et al. 2008; Glyan’ko et al. 2009). One of such pathways

Table 1 Changes in the content of cAMP in wheat seedling roots incubated with the A. brasilense Sp7 lectin

Treatment 15 min 30 min 60 min

Without Са2+ With Са2+ Without Са2+ With Са2+ Without Са2+ With Са2+

A. brasilense Sp7 lectin

5 μg mL−1 87±2 137±4 95±2 101±4 143±6 145±4

10 μg mL−1 82±2 137±4 91±2 101±4 141±6 145±4

20 μg mL−1 75±3 150±4 86±3 104±4 125±4 128±3

40 μg mL−1 70±2 179±2 75±1 110±4 73±2 127±2

Results are means ± SE (n=3). All differences significant (p<0.05). Сontrol, roots (100 %) (cAMP content, 0.3 μМ) and roots ± CaCl2
(100 %) (cAMP content, 0.34 μМ)
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is α-arginine + О2 + NADPH → α-citrulline + NO, a
reaction catalyzed by NO synthase. To prove that the
lectin could induce this pathway of NO formation, we
determined the quantity of citrulline in the roots incu-
bated with 40 μg mL−1 of lectin as the most effective
concentration for NO synthesis. The results showed that
the lectin caused an increase in the citrulline quantity
during the first hours of coincubation, with a peak at 3 h
(Fig. 3).

The finding that root incubationwith Sp7 lectin led to
a simultaneous increase in the root contents of NO and
citrulline permits the conclusion that the lectin can acti-
vate the NO signal system of plants.

Lectin effect on the root content of DAG

In plants, phospholipase C is localized in the plasma
membrane and is a key enzyme of the inositol cycle. Its
functioning gives rise to two intracellular messengers—

the water-soluble inositol-1,4,5-triphosphate (IP3) and
the lipid-soluble DAG. The Sp7 lectin induced DAG
synthesis in seedling roots only when used at
40 μg mL−1. The induction occurred after 3 min of
coincubation, with a peak after 40 min. By 60 min of
coincubation, synthesis had decreased sharply, with the
amount of DAG declining to the control value. As Ca is
the major activator among the ions able to affect the
activity of phospholipase C (Novotnà et al. 2000), the
induction was enhanced when Ca was added to the root
incubation medium (Fig. 4).

Lectin effect on lipoxygenase activity

One of the mechanisms responsible for the formation of
signal products of lipid transformation is the
lipoxygenase signal system, the starting enzyme of
which is lipoxygenase. Determination of lipoxygenase
activity in lectin-incubated roots showed that there was a
sharp rise in activity—by 30 % after a 30-min incuba-
tion and by 50 % after a 60-min incubation. Extending
the incubation time caused the enzyme activity to de-
cline to the control value. Only 5 μg mL−1 of lectin had
inducing activity (Fig. 5).

Lectin effect on the root content of SA

In plants, SA is present both in free form and in bound
forms, of which SA 2-O-β-D-glucoside is the most
abundant. It should be stressed that SA participates
in resistance induction only in its free form. Bound
forms of SA have no such property; instead, they act
as a kind of reserve that ensures SA storage in tissues
(Raskin 1992).
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Various biogenic factors may increase the plant tissue
content of SA by several tens of times (Vasyukova and
Ozeretskovskaya 2007). The considerable attention giv-
en to SA is primarily due to its being involved in plant
defense reactions against pathogens. Thus, the infection
of tobacco leaves by tobacco mosaic virus was reported
to increase the content of SA by 180 times (Malamy
et al. 1990). Such effects in response to infection or
elicitor treatment have been recorded with many plant
species (Wang and Li 2006; Catinot et al. 2008).

The change in the SA content of lectin-incubated
roots indicated a noticeable effect of the lectin. In our
experiments, we determined the amounts of free and
conjugated SA, as the two forms easily pass into each
other but differ in their biochemical and physiological
activities (Tarchevsky et al. 1999). The results showed
that the lectin changed the content of SA only after 1 h
of incubation with roots and that as the lectin concen-
tration increased, the amount of free SA increased and
that of conjugated SA decreased. As seen in Fig. 6, the

amounts of the formed free SA and the hydrolyzed
bound SA were different. The question arises, did SA
accumulation result only from hydrolysis of the conju-
gates, or was it also synthesized de novo? To answer this
question, we determined the activity of phenylalanine
ammonia lyase (PAL), an enzyme responsible for the
synthesis of SA. As shown in Fig. 6 and in Table 2, the
lectin did induce the activity of PAL, but there was no
correlation between the change in the content of free SA
and the activity of PAL.

Localization of the A. brasilense Sp7 lectin on the cells
of wheat seedling roots

Studies on the plant cell localization of Azospirillum
lectins are of particular interest, as they provide insights
into the possible mechanism of lectin action on cellular
metabolism. A. brasilense preferentially colonizes the
root tip and root hairs (Bashan and Levanony 1989;
Levanony et al. 1989); therefore, we examined the local-
ization of the Sp7 lectin in these very root zones. Using
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fluorescence microscopy and tetramethylrhodamine iso-
thiocyanate (TRITC)-labeled Sp7 lectin, we demonstrat-
ed that the lectin was present only on the cell surface of
wheat roots. Figure 7а and b shows clearly that the
labeled lectin was distributed along the perimeter of
the sheath cell and the root hair cell. Additional staining
of root cells with the fluorescent dye FM 1-43, used to
visualize plasma membranes, showed that the lectin was
present exclusively on the plasma membrane, but not on
the cell wall. In the set of optical sections of the root
sheath cell shown in Fig. 7а, the red color corresponds
to ТRITC fluorescence and can be visualized on the
outside of the plasma membrane, whereas the green
color, corresponding to fluorescence from the lipophilic
dye FM 1-43, is revealed on the inside of the cytoplas-
mic membrane.

To test whether the binding sites for the lectin could
be localized intracellularly, we used the mitochondrial
dye rhodamine 123. The middle optical section of the
root hair shown in Fig. 7b demonstrates lectin localiza-
tion on the cell surface (red color). The yellow color of
the intracellular matrix is due to the red and green

(fluorescence of rhodamine 123) colors being mixed.
The intracellular matrix was not revealed on prepara-
tions stained only with TRITC–lectin.

This report is the first to present data on the localiza-
tion of an Azospirillum lectin on the plant cell. The
character of lectin distribution on the plasma membrane
revealed by fluorescence, together with the results of the
other experiments, indicates that the reception of the
lectin signal occurs primarily on the cell surface.

Discussion

In this study, we have demonstrated that the
A. brasilense Sp7 lectin can induce the adenylate cy-
c l a se , NO syn thase , NADPH oxidase , Ca
phosphoinositol, and lipoxygenase signal systems of
wheat roots during recognition early in the establish-
ment of a plant–bacterial association.

The induction of the adenylate cyclase signal path-
way, which occurred 15 min into lectin incubation
with seedling roots, was one of the early plant cell
responses to the lectin effect. One can conclude that
the Sp7 lectin can both elicit and suppress cAMP in
the plant cell. This signal system plays an important
role in the functional and structural responses of plant
cells to many extrinsic abiotic and biotic factors
(Lomovatskaya et al. 2008).

Several authors have shown that the plant perception
and transduction of signals from metabolites of fungal
and bacterial pathogens involve receptor–G protein
complexes (Kawakita and Doke 1994; Zhu et al.
2009). The activation or inhibition of adenylate cyclase
always occurs through the corresponding ligand–recep-
tor interactions and various types of G proteins, which
are known to be either stimulatory (Gs) or inhibitory
(Gi). After binding to the ligand, the receptor undergoes
conformational changes, resulting in the same changes
in the G protein (Chen and Iyengar 1993; Sunahara and
Taussig 2002).

The most probable explanation for the lectin effect is
that the lectin acts dose-dependently on the receptors
associated with the Gi and Gs proteins. Adding Ca2+ to
the incubation medium changed the interaction of the
lectin with these receptors, resulting in changes in ade-
nylate cyclase activity and, correspondingly, in cAMP
content. Support for such conclusions can be inferred
from the earlier data that the Sp7 lectin can have dose-
dependent effects (Nikitina et al. 2004) and that the ions
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Fig. 6 The content of conjugated (1) and free (2) SA in the control
and lectin-incubated roots. Incubation time, 1 h. Results are means
± SE (n=3). All differences significant (p<0.05)

Table 2 PAL activity in lectin-incubated roots

Treatment PAL activity (%)

Control 100±3

Lectin at 5 μg mL−1 115±5

Lectin at 10 μg mL−1 105±4

Lectin at 20 μg mL−1 110±6

Lectin at 40 μg mL−1 120±3

Results are means ± SE (n=3). All differences significant
(p<0.05). Сontrol, roots (100 %) (PAL activity, 0.8±0.2 U g−1

root wet weight)
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of bivalent metals, including Ca, can modulate the bio-
logical activity of many lectins (Imberty et al. 2004;
Bulgakov et al. 2007).

One of the most important signal systems in plants is
the lipoxygenase system. Previous research from other
authors has indicated that rhizosphere bacteria,

а
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Tll

Tll+R

FM
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Fig. 7 Localization of the A. brasilense Sp7 lectin on the plant
cell. a Cells of the root sheath + lectin−TRITC + FM. b root hair +
lectin−TRITC + FM + rhodamine. Fluorescence was laser excited

at 488 nm. Reception at 555–618 nm (red) for TRITC, 615–
630 nm (green) for FM 1-43, and 505–540 nm (green) for rhoda-
mine. Tll TRITC-labeled lectin, R rhodamine

Plant Soil (2014) 381:337–349 345



including PGPR (among them azospirilla), activate
lipoxygenase metabolism in the plant cell (Choudhary
et al. 2007; Beneduzi et al. 2012). In this study, root
incubation with Sp7 lectin for 30 min induced the
lipoxygenase signal pathway, as evidenced by an in-
crease in lipoxygenase activity.

A 40-min incubation resulted in an increase in the
DAG quantity owing to the activation of phospholipase
C, which is localized in the plasma membrane and is a
key enzyme of the phosphoinositide cycle. The func-
tioning of phospholipase C gives rise to two intracellular
messengers—the water-soluble inositol-1,4,5-triphos-
phate (IP3) and the lipid-soluble DAG. IP3 mobilizes
Ca2+ from the endoplasmic reticulum, increasing the
concentration of free Ca2+ ions in the cytosol, and
DAG, which remains in the membrane, activates Ca2+-
sensitive phospholipid-dependent protein kinase
(Krasilnikov 2000).

Root incubation with Sp7 lectin for 1 h increased
the content of NO, which participates in the NO signal
system and regulates physiological processes in the
plant cell. NO is involved in the regulation of the
plant cell cycle (Wilson et al. 2008), plant differentia-
tion and morphogenesis (Simpson 2005), and the es-
tablishment of symbiotic relations between legumes
and rhizobia (Glyan’ko and Vasil’eva 2010). Creus
et al. (2005) reported that NO is involved in the lateral
root formation induced by A. brasilense Sp245 in
tomato plants.

That the incubation of roots with Sp7 lectin led to a
simultaneous increase in the root contents of NO and
citrulline permits the conclusion that the lectin can acti-
vate the NO signal system of plants. It is known that an
increase in NO concentration activates guanylate cy-
clase. The resulting cGMP activates protein kinase,
which opens the Ca channels of the intracellular Ca
repositories; this brings about an increase in the cyto-
solic Ca concentration, activation of Са-dependent pro-
tein kinases, phosphorylation of the protein factor of
transcription regulation, and the beginning of synthesis
of specific proteins (Dyakov et al. 2001).

Root incubation with Sp7 lectin for 1 h increased the
content of SA, a stress metabolite that combines the
properties of a signal intermediate with those of a phy-
tohormone. Although most previous studies on SA have
been focused on interactions between plants and virulent
or avirulent pathogens (Bari and Jones 2009; Delaney
et al. 1994; Tarchevsky et al. 2010), it has been demon-
strated that some PGPB, including A. brasilense

(Bashan and de-Bashan 2002b; Ramos Solano et al.
2008), can stimulate plants to accumulate SA either
locally in roots (Chen et al. 1999) or systemically in
leaves (De Meyer et al. 1999; Zhang et al. 2002). Our
present results permit the conclusion that the
A. brasilense Sp7 lectin can induce SA-mediated sig-
naling in plant cells. We infer that the Sp7 lectin induces
two routes of SA formation: the release from the conju-
gated form through an increase in β-glucosidase activity
(Alen’kina et al. 2006) and the activation of PAL, which
is responsible for SA synthesis. The effects of SA under
biotic stress are largely determined by its influence on
the activities of the enzymes involved in the regulation
of the prooxidant/antioxidant equilibrium, in particular
catalase, NADPH oxidase, peroxidase (Geetha and
Shetty 2002), and SOD (Rao et al. 1997).

Of particular interest is the synthesis of hydrogen
peroxide, which is one of the quickest plant cell re-
sponses to inductive factors. SOD is one of the most
important enzymes in the antioxidant defense of plants,
which catalyzes the conversion of the superoxide radical
to hydrogen peroxide (Kuzniak and Sklodowska 2004).
In this study, SOD activity increased after 2 h of root
exposure to Sp7 lectin.

Finally, the revealed membrane localization of Sp7
lectin on the plant cell is of deciding importance for its
signal function.

We propose that Azospirillum lectins may act at the
initial stages of plant–bacterial interaction by ensuring a
strategy of interaction related to the induction of plant
defense responses. This is something similar to what is
observed in nodule and phytopathogenic bacteria, de-
spite the outcomes of these interactions being substan-
tially different. In plants, a physiological response to
various pathogens includes a diversity of defense reac-
tions to the danger of infection (Dmitriev 2003). The
legume–Rhizobium interaction also leads to the induc-
tion of defense mechanisms in the host plant, which is
accompanied by the generation of active oxygen species
and NO, enhancement of the activities of oxidative
enzymes (peroxidase, catalase, SOD), accumulation of
phenolic compounds, and enhancement of antioxidase
defense (Glyan’ko et al. 2007). Our results could be of
practical significance, as pretreatment with growth-
promoting antistress inducers contributes to plant resis-
tance and productivity. Our results are also of consider-
able interest for understanding the biological role of
lectins in bacterial–plant relationships during the forma-
tion of nitrogen-fixing associations.
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