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Abstract
Background and aims As plants approach maturity and
start to senesce, the primary sink for phosphorus (P) is
the seed but it is unclear how plant P status affects the
resulting P concentration and speciation in the seed and
remaining plant parts of the residues. This study was
established to measure how P speciation in different
parts of wheat and canola is affected by plant P status.
Methods Wheat and canola grown in the glasshouse
were supplied three different P rates (5, 30 and 60 kg
P ha−1 equivalent). At physiological maturity, plants
were harvested and P speciation was determined for all

plant parts (root, stem, leaf, chaff/pod and seed) and
rates of P application, using solution 31P nuclear mag-
netic resonance (NMR) spectroscopy.
Results Phytate was the dominant form of P in seed
whereas orthophosphate was the dominant form of P
in other plant parts. The distribution of P species varied
with P status for canola but not for wheat. The phytate
content of wheat chaff increased from 10 to 45% of total
P as the P rate increased. Canola pods did not show a
similar trend, with most P present as orthophosphate.
Conclusions Although minor differences were ob-
served in P speciation across the three P application
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rates and plant parts, the effect of this on P cycling from
residues into soil is likely to be relatively minor in
comparison to the overall contribution of these residues
to soil P pools. This glasshouse experiment shows the
dominant P form in crop residues that is returned to soil
after harvest is orthophosphate, regardless of plant P
status.
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Speciation . Organic P. Inorganic P

Abbreviations
C Carbon
DGT Diffuse gradient thin film
EC Electrical conductivity
N Nitrogen
NaOH-EDTA Sodium hydroxide

ethylenediaminetetraacetic acid
NMR Nuclear magnetic resonance
P Phosphorus
PBI Phosphorus buffering index
RNA Ribonucleic acid

Introduction

Phosphorus (P) is a highly mobile element in plants,
moving readily among plant parts. The seed (grain)
becomes the ultimate sink for P and at maturity may
contain up to 90 % of the plant total P (Batten et al.
1986; Smith 1965). The remaining plant P is distributed
among roots, stem, leaves and chaff/pod material.
Phosphorus within these plant parts is eventually
returned to soil where it can be released as soluble
inorganic P, easily-degradable organic P or persist as
more slowly available organic P.

Residue P decomposition and nutrient release are af-
fected by residue chemical composition (concentrations of
other nutrients, and availability of these nutrients to plant
roots and microbes) as well as by environmental factors
such as soil water status. Much information exists on the
effect of crop residues with varying carbon (C):P ratios on
residue P release and decomposition (Alamgir et al. 2012;
Fuller et al. 1956; Kwabiah et al. 2003; Umrit and Friesen
1994; White and Ayoub 1983). Predicting when P from
crop residues will be released based on these measures has
proven more difficult. Many studies have used immature
plant material or plant material from different plant species

to achieve differences in residue C:P ratio. Two problems
arise from using this information to predict the fate of P in
mature crop residues post-harvest. Firstly, immature plant
material may have different total P and P speciation from
mature plant material. Therefore, the use of immature
residues is only relevant when considering green or brown
manuring crops. Secondly, depending on the source of
plant material, there is the potential for differing P specia-
tion among plant species.

Sequential chemical fractionation methods have com-
monly been used to speciate plant P forms. The main P
forms that have been identified in plant material via this
technique are inorganic P, ester P, lipids, nucleic acids,
phytate and residual P (remaining unidentified P forms)
(Batten and Wardlaw 1987; Chapin and Bieleski 1982;
Kakie 1969; Lee et al. 1976). More recently, solution 31P
nuclear magnetic resonance (NMR) spectroscopy has
identified P forms in a range of mature crop residues
collected from the field (Noack et al. 2012). In this study,
the main P forms identified in crop residues (stem/leaf
and chaff/pods) were orthophosphate, phospholipids, ri-
bonucleic acid (RNA), pyrophosphate and phytate.

The effect of P status on P forms in plant material has
been a focus for determining critical or optimal P con-
centrations for plant growth (Kakie 1969; Lee et al.
1976) and for leaf tissue testing (Batten and Wardlaw
1987; Bollons et al. 1997). When plant P supply is
increased from the deficiency to the sufficiency range,
the concentrations of major P fractions (ester, lipids,
nucleic acid and inorganic P) in vegetative plant organs
increase (Batten and Wardlaw 1987; Chapin and
Bieleski 1982; Kakie 1969; Lee et al. 1976; Veneklaas
et al. 2012;White and Ayoub 1983). Further increases in
P supply result in only the inorganic P concentration
increasing, where it becomes the major form of storage
(Batten and Wardlaw 1987; Kakie 1969). In a study
where wheat plants were supplied with either low
(0.25 mM P solution) or high (1 mM) rates of P, at
maturity the proportion of inorganic P to other P forms
(lipid, ester and residue P) was three times greater in
high-P plants compared to low-P plants (Batten and
Wardlaw 1987). The leaves of wheat in the low-P treat-
ment had translocated almost all P to other plant parts
and contained a lower concentration of inorganic P.
Based on these findings, we expect that crops with
higher total P concentrations will leave more P in crop
residues and a larger percentage of that P will be present
as inorganic P (orthophosphate), which will cycle back
to soil in a potentially more plant-available form.
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This study aimed to measure how P speciation in
different parts of wheat and canola at maturity is affected
by plant P status. Wheat and canola crops constitute
60 % of Australia’s current grain crop production
(ABARES 2012). A better understanding of crop resi-
due P chemistry is an important step for improving
predictions of the fate of crop residue P and its contri-
bution to soil P status and ultimately crop nutrition.

Materials and methods

Soil properties

Soil was collected to 10 cm depth from Black Point in the
grain producing region of southernAustralia (S34°36.776′,
E137°48.599), and was classified as a Calcarosol accord-
ing to the Australian Soil Classification (Isbell 1997). The
soil was oven-dried at 40 °C and sieved to less than 2 mm
prior to characterisation and use in the glass house exper-
iment. Soil pH (H2O) and electrical conductivity (EC)
were measured in a 1:5 soil:solution suspension
(Rayment and Higginson 1992). Calcium (Ca) carbonate
content was measured according to Martin and Reeve
(1955). Field capacity was measured according to Klute
(1986), and total organic C according to the method of
Matejovic (1997). Cation exchange capacity was mea-
sured using compulsive exchange utilising Ba2+/NH4

+

(method 15E1) and Colwell P using method 9B2 of
Rayment and Higginson (1992). Phosphorus buffering
index (PBI) was measured according to Moody (2007)
and plant available P was measured using the diffuse
gradient thin film (DGT) method outlined by Mason
et al. (2010).

Black Point soil is an alkaline (pH 8.5) loam with no
surface salinity issues or detectable Ca carbonate, an
organic C content of 1.6 %, and cation exchange capac-
ity of 17.9 cmol(+) kg−1. The soil has a low PBI of 75
and is deficient for P according to both the Colwell
(measured 3 vs. critical concentration 25 mg kg−1

(Moody 2007)) and DGT-P (measured 4 vs. critical
concentration 60 μg L−1 (Mason et al. 2010)).

Glasshouse experiment

The experimental design consisted of three rates of
applied P fertiliser (designed to provide deficient, ade-
quate and luxury P status) by two species, replicated
seven times. The P fertiliser rates were 5, 30 and 60 kg P

ha−1 equivalent (10, 60 and 120 mg P pot−1), applied as
phosphoric acid immediately below the seed on the day
of sowing. A total of 3 kg of air-dry sieved (<2 mm) soil
was added to pots made of capped polyvinyl chloride
drainage pipe, 17 cm long and 15 cm diameter, which
was not free-draining. Basal nutrient applications
of nitrogen (N) as urea equivalent to 75 kg N ha−1,
potassium (K) and sulphur (S) as K2SO4 at
40 kg K ha−1 and 16 kg S ha−1, zinc (Zn) as
ZnSO4.7H2O at 15 kg Zn ha−1, copper (Cu) as
CuSO4.5H2O at 12 kg Cu ha−1 and manganese (Mn)
as MnCl2.4H2O at 2 kg Mn ha−1 were applied as a
30 mL solution to each pot. Four pre-germinated seeds
were sown in each pot and thinned to two plants per pot
in the first week.

Pots were placed in a naturally lit glasshouse (median
temperature 21.5 °C) and the experiment started on
October 5. The pots were arranged in a completely
randomised design. The positions were re-randomised
every 2 weeks. Two top up applications of N were made
as urea equivalent to 75 kg N ha−1 on day 34 and
20 kg N ha−1 on day 41 to ensure N was not limiting
growth. All plants were harvested after physiological
maturity on January 17 (104 days after sowing).

Plant shoots were oven-dried at 60ºC and separated
into stem, leaves, chaff (protective casing of wheat
grain) or pod (canola) and seed. Plant roots were re-
moved from the soil, freeze dried and brushed to remove
any adhering soil. Dry weights were recorded for each
plant part. Sub-samples of plant material from each of
the seven replicate pots were ground to <2 mm and a
0.5 g (or <0.5 in the case of wheat roots due to low dry
matter production) sample was digested using concen-
trated HNO3 at 140 °C (Zarcinas et al. 1987). The total P
concentration in the digest was determined using induc-
tively coupled plasma atomic emission spectroscopy
(ICP-AES). A 0.1–0.5 g sub-sample was analysed for
total C and N using a CNS-2000 high temperature
combustion analyser (Leco Corporation Michigan,
USA) and is expressed as %C and %N on an oven-
dried basis.

NaOH-EDTA extraction

Plant sub-samples from the seven replicate pots were
ground and then combined (due to there being insuffi-
cient material from each replicate for analysis) prior to
extraction with NaOH-EDTA using a modified method
of Cade-Menun and Preston (1996) originally
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developed for soil extraction. Triplicate 2.0 g subsam-
ples of dried residue for roots, stem, wheat leaf and
chaff/pods were extracted with 40 mL of 0.25 mol L−1

NaOH and 0.05 mol L−1 Na2EDTA (or 0.5 g were
extracted with 10 mL solution for plant parts with low
dry matter production, wheat roots, stem and leaves) for
16 h. For wheat and canola seeds and canola leaves a
larger sample:solution ratio (0.5 g: 40 mL) was used.
This ratio was used for the seed samples due to the high
starch content in seeds, which resulted in a highly vis-
cous extract when the smaller ratio was used. Canola
leaves contained high Ca concentrations in solution,
reducing the extraction efficiency of plant P so a larger
sample:solution ratio was used to overcome this. The
extracts were centrifuged (1,400×g) for 10 min and
filtered using Whatman No.42 filter paper. An aliquot
(10–20 mL) from each of the triplicates was immediate-
ly frozen using liquid N and freeze-dried for NMR
analysis.

NMR analysis of NaOH-EDTA extracts

Triplicate freeze-dried samples for each plant part and P
rate were combined and ground; a 500-mg subsample
was re-dissolved in 5 mL of deionised water, and cen-
trifuged at 1,400×g for 20 min. The supernatant solution
(3.5 mL) was added with methylenediphosphonic acid
(MDP) (0.1 mL at a concentration of 6 g L−1) and
deuterium oxide (D2O; 0.3 mL) to a 10 mm NMR tube.
The resulting pH was >13. Solution 31P NMR spectra
were acquired at 24 °C on a Varian INOVA400 NMR
spectrometer (Varian, Palo Alto, CA) at a 31P frequency
of 161.9 MHz. Recovery delays ranged from 40 to 60 s
and were set to at least five times the T1 (spin lattice
relaxation time) values of the orthophosphate resonance
determined in preliminary inversion-recovery experi-
ments (data not presented). A 90° pulse of 25 μs was
used, the free induction decay was collected for 1.0 s,
and spectra were broadband 1H decoupled. Between
275 and 5,295 scans were acquired. The total duration
of acquisition was 5–25 h for each sample.

Quantification of P species from 31P NMR spectra

The relative concentrations of P species in the NaOH-
EDTA extracts were determined from 31P NMR spectra
using a combination of integration and deconvolution.
Pyrophosphate concentrations were determined using
integration alone. Integration was used to determine

the combined concentration of inorganic orthophos-
phate and orthophosphate monoester P. The relative
concentrations of P species giving rise to the numerous
individual peaks in this region of the spectrum were
quantified by spectral deconvolution, using a method
similar to that of Bünemann et al. (2008). Each spectrum
was fitted with up to 12 peaks as identified by Noack
et al. (2012). These were identified as orthophosphate,
α- and β-glycerophosphate, phytate (four peaks), and
five peaks in the monoester region that were identified
as mononucleotides, and include the 2′ and 3′ isomers
that result from alkaline hydrolysis of RNA (Noack
et al. 2012; Turner et al. 2003a). Each peak was defined
by three parameters: the chemical shift (frequency),
intensity, and the line width, which we allowed to vary
in the fit. The absolute concentration of each P species
(including those determined using integration alone and
those determined using integration and deconvolution
combined) was calculated by integration against the
known concentration of the MDP that was added to
each NMR tube. These values are referred to as
NaOH-EDTA-extractable P.

A correction was required for some samples when
determining phytate and orthophosphate concentrations
due to the overlap of the phytate C-2 peak with the
orthophosphate peak. For these samples, total phytate
was calculated as 6/5 times the total concentration of the
three observable resonances, and 1/5 of this value was
subtracted from the total orthophosphate concentration
(Doolette et al. 2009).

Mycorrhizal staining method

To assess arbuscular mycorrhizal colonisation, subsam-
ples of wheat roots (~0.2 g) were cut to approximately
2 cm length before clearing in KOH 10 % and staining
in a 5 % ink-vinegar solution (Vierheilig et al. 1998).
Stained roots were assessed for arbuscular mycorrhizal
colonisation using the gridline intersection method
(Giovannetti and Mosse 1980) under a dissecting mi-
croscope at 40× magnification.

Statistical analysis

Analysis of Variance (ANOVA) was undertaken using
the GENSTAT version 13 statistical package (VSN
International, Rothamsted, UK). Assumptions of con-
stant error variance (homogeneity), normality of data
distribution and additivity of treatment and replicate
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effects were tested for each analysis. Least significant
difference (l.s.d.) between treatments was determined at
<5 % significance using Fisher’s protected l.s.d.

Results

Plant dry matter

Wheat plants supplied with low P produced significant-
ly less dry matter for all plant parts compared to plants
supplied the medium and high P rates, with up to five-
fold increases in wheat seed (grain) yield with increas-
ing P nutrition (Table 1). At medium and high rates of P
application, dry matter production was not significantly
different for any wheat plant parts, except the seed.
Canola stem, pod and seed dry weight varied differently
with P rates. The root and leaf dry weights were either
not significantly different or only different for two of the
three P rates (Table 1). Plant roots were the smallest
mass of plant material, generally followed by stem and
leaves, chaff/pods and seed.

Plant C:N and C:P

The C:N ratios of the plant tissue were smallest at the
low rate of applied P for both crop types (Table 1).
Plants supplied with medium and high P rates had
similar C:N ratios for most plant parts. The C:P ratios
varied with P rates and plant parts. Generally, plants at
the high P rate had the smallest C:P ratios for both wheat
and canola. The seed material had the smallest C:N
(1:14–20) and C:P (1:68–193) ratios, followed by
chaff/pod or leaf, roots and stems (Table 1).

Plant P concentrations

For all wheat plant parts except chaff, total plant P
concentrations differed significantly with P rate
(Table 2). Interestingly, wheat plants supplied with P at
the medium rate had lower concentrations of total P than
plants supplied with the low rate. Total P concentrations
of canola stem and seed material were significantly
different across the three P rates, whilst total P concen-
trations of root, leaf and pod materials were either not
significantly different or only different for two of the
three P rates. Plant roots contained the lowest concen-
trations of total P, followed by stem, leaves, chaff/pods
and seed.

Extractability of plant P by NaOH-EDTA

An important consideration in interpreting NMR analy-
sis of P speciation is the efficiency of P extraction. On
average, NaOH-EDTA extraction efficiency was 93 %
of total plant P measured by ICP-AES across all plant
parts (Table 2). This high extraction efficiency means
that NMR analysis assessed most of the P present in the
various plant parts. Sodium hydroxide-EDTA-
extractable P in wheat and canola plant parts ranged
from 77 to 105 % for the vast majority of samples.
Low extraction efficiencies were observed for leaf sam-
ples. Values >100 % were recorded for some root sam-
ples. This may be a consequence of de-mixing of
homogenised root samples, which likely contained
some soil material. Apparent exaction efficiencies of
>100 % were attributed to some sub-samples used for
total P analysis containing more of this soil (with a
diluting effect) than sub-samples used for NMR
analysis.

Phosphorus speciation—roots

Phosphorus forms common to both wheat and canola
root extracts were orthophosphate, glycerophosphate,
mononucleotides and phytate (Fig. 1). Orthophosphate
and α- and β-glycerophosphate (most likely present
predominantly as phospholipid in the plant material,
which undergoes alkaline hydrolysis during NaOH-
EDTA extraction) were the most abundant P forms in
plant roots, with orthophosphate accounting for 11 to
36 % and glycerophosphate accounting for 10 to 30 %
of total NaOH-EDTA-extractable P (Fig. 2).
Mononucleotides comprised 14 to 22 % of P in wheat
and canola root extracts. This would include ribonucleic
acid (RNA) present in the plant material, which is un-
stable under the alkaline conditions of extraction and
would be hydrolysed to a mixture of 2′- and 3′- mono-
nucleotides). Phytate was detected at low concentrations
in all root material as four resonances in the monoester
region in a 1:2:2:1 ratio (Turner et al. 2003a).

The percentage of NaOH-EDTA-extractable P pres-
ent as organic P ranged from 46 to 59 % in wheat and
47–66 % in canola roots (Fig. 2). The percentage of P
detected as orthophosphate did not increase in wheat
roots as P rate increased. The percentage of orthophos-
phate in canola roots increased from 35 to 53 % (25–
70 mg P kg−1) as P rate increased.
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Pyrophosphate was detected in wheat roots compris-
ing a further 10 to 20 % of the P in roots across the three
P rates. No pyrophosphate was detected in the roots of
canola.

Phosphorus speciation—stem and leaves

Both wheat and canola stem samples contained ortho-
phosphate, glycerophosphate and phytate (Fig. 2). As P

rate increased, orthophosphate as a percentage of the
NaOH- EDTA-extractable P in wheat stems increased
from 29 to 74 % whereas percentages of phytate de-
creased (from 55 to 19 %) (Fig. 2a). For canola stem
material, plant P status had no consistent effect on P
speciation.

Orthophosphate represented >85 % of the NaOH-
EDTA-extractable P in the leaf material of both canola
and wheat. The remaining 15 % of leaf P was identified

Table 1 Dry weight (g pot−1), C: N and C: P ratios in response to rate of P application to soil for wheat and canola

P rate Plant part Dry weight (g pot−1) C:N C:P

Low Medium High Low Medium High Low Medium High

Wheat Root 0.3a 1.6b 1.7b 53 57 48 3,995 3,115 1,560

Stem 0.4a 5.0b 4.9b 32 155 186 2,330 5,065 3,246

Leaves 0.8a 3.8b 4.1b 20 90 88 1,355 2,450 1,376

Chaff 1.1a 5.4b 5.8b 41 85 85 590 955 596

Seed 3.0a 14.5b 16.3c 14 20 20 128 172 116

Whole plant 5.6 30.3 32.8

Canola Root 1.1a 2.8b 3.1b 49 82 138 5,933 3,042 3,349

Stem 1.3a 7.9b 9.4c 40 209 231 4,226 5,945 3,028

Leaves 2.7a 4.5b 4.8b 13 64 70 1,229 1,079 958

Pods 3.6a 8.2b 8.9c 41 125 110 2,519 2,740 608

Seed 3.2a 8.1b 8.5c 14 18 20 193 122 68

Whole plant 11.9 31.4 34.7

Data for dry weight are the mean of seven replicates and C:N and C:P are the mean of three replicates. Within a row, treatments appended by
a different letter are significantly different (P≤0.05)

Table 2 Total plant P (mg kg−1) and P extractable in NaOH-EDTA (mg kg−1)

P rate Plant part Total P (mg kg−1) NaOH-EDTA-extractable P (mg kg−1)

Low Medium High Low Medium High

Wheat Root 57a 86b 121c 84 (146) 136 (158) 127 (105)

Stem 180a 83b 129c 176 (98) 79 (95) 132 (103)

Leaf 236a 153b 279c 246 (104) 225 (147) 177 (42)

Chaff 574ab 379a 640b 442 (77) 250 (66) 582 (91)

Seed 3176a 2384b 3519c 3,018 (95) 2,027 (85) 2,745 (78)

Canola Root 73a 142a 131a 72 (98) 110 (77) 117 (89)

Stem 102a 73b 143c 93 (92) 70 (96) 126 (88)

Leaf 261a 320b 359b 242 (93) 278 (87) 312 (87)

Pod 151a 146a 648b 127 (84) 113 (77) 674 (104)

Seed 2902a 4753b 8416c 2,292 (79) 3,660 (77) 7,069 (84)

Data presented for total P are the mean value of seven replicates. Within a row, treatments appended by a different letter are significantly
different (P≤0.05). Values in parenthesis are the percentage of total P extracted by NaOH EDTA
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as glycerophosphate. There was no significant change in
percentage of orthophosphate and glycerophosphate in
leaf material across the three rates of P application for
either crop type (Fig. 2).

Phosphorus speciation—chaff and pod

As with stem and leaves, orthophosphate was the most
abundant P species in wheat chaff (49–87%) and canola
pods (74–81 %). Glycerophosphate and phytate were
the other P forms detected in chaff and pod material.
Phytate was the second most abundant P form in wheat
chaff. Phytate represented 9–43 % of the NaOH-EDTA-
extractable P, with this proportion increasing with in-
creasing plant P status (Fig. 2). Glycerophosphate com-
prised only 4–8 % of the total wheat chaff P.

Canola pods contained lower percentages of phytate
(9–13 %) and glycerophosphate (7–15 %) but a higher
percentage of orthophosphate than wheat chaff. Unlike

wheat chaff, plant P status did not significantly alter the
percentage of the different P species identified in canola
pods. A small percentage (2.5 %) of total P was detected
as pyrophosphate in canola pods for the high P
treatment.

Phosphorus speciation—seed

Organic P species constituted more than 90 % of the
NaOH-EDTA-extractable P in the seed of both crop
species examined. Phytate was the dominant form of P
in both wheat and canola seeds (Fig. 2), comprising 37
to 89 % of total NaOH-EDTA-extractable P. The per-
centage of phytate in the wheat seeds did not change
with plant P status and, on average, comprised 80 % of
the total seed P across the three P rates examined. The
proportion of phytate in canola seeds increased from
60 % (low P) to 75 % (medium P) to 85 % (high P)
with increasing P rate. This increase in phytate was

Fig. 1 Representative solution 31P NMR spectra of NaOH-EDTA extracts. The spectra shown are for seed, pod, root, leaf, and stem for canola
grown with low P. Peaks assigned as O orthophosphate, G glycerophosphate, P phytate and mononucleotides as indicated by the arrows
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offset by a decrease in the glycerophosphate content
from 30 % (low P) to 19 % (medium P) to 11 % (high
P) of the total canola seed P.

Glycerophosphate represented the secondmost abun-
dant form of P in seed of both wheat and canola (Fig. 2).
Mononucleotides were also identified in wheat and ca-
nola seeds, where they constituted 1–6 % of NaOH-
EDTA-extractable P. Orthophosphate was present in all
seeds, but constituted only 3–6 % of seed P
(Fig. 2). The percentages of inorganic and organic

P species in wheat seeds did not change with P
nutrition. For canola seeds, however, phytate com-
prised an increasing proportion of total P as plant
P status increased.

Mycorrhizal colonisation

All wheat roots were colonised by VA-mycorrhizae,
with percentage infection ranging from 20 to 50 % of
root (data not shown).
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Discussion

Phosphorus status of plant material

The critical ranges for plant nutrient concentrations
identified by Reuter and Robinson (1997) were used to
evaluate the P status of wheat and canola plants supplied
with each of the three P rates used in our experiment.
Wheat grain containing 0.25–0.3 % P is categorised as
‘deficient’, grain containing 0.3–0.5 % P is categorised
as ‘adequate’ and grain with >0.5 % P is categorised as
having ‘high/luxury’ P status. On this basis, wheat ma-
terial from the low and high P rates had adequate P
concentrations, whereas plants supplied the medium P
rate were deficient in P (Table 2). Similarly, the critical
concentration ranges for mature canola seeds (Reuter
and Robinson 1997) are 0.25–0.41 % P (deficient),
>0.45 % (adequate) and 0.7–1.0 (high/luxury) . On this
basis, canola seed P concentrations supplied the low,
medium and high P rate are categorised as having had
deficient, adequate and luxury P status, respectively.

The total P concentrations in the wheat plant material
did not increase linearly with increasing P fertiliser rate.
The relationship is often referred to as the ‘Piper-
Steinberg effect’ (Piper 1942; Steenbjerg 1951). Wheat
P concentration decreased between the low and medium
rate with substantial increases in yield causing a dilution
in tissue P concentration. This complicates interpreta-
tion of the data, as plants supplied the low P rate had
higher P concentrations than those supplied the medium
P rate. Nevertheless, the low P rate produced plants that
were severely P deficient.

Phosphorus speciation varied among plant parts

At harvest (grain maturity), the wheat and canola seeds
contained 75 % and 85 % of the total plant P, respec-
tively (Table 2). Phytate was the most abundant P spe-
cies in seeds, constituting up to 80 % of the NaOH-
EDTA-extractable P in both seed types (Fig. 2). This is
consistent with previous studies, which report 50 to
80 % of seed P in the form of phytate (Lott et al.
2002; Reddy et al. 1989). Other P forms identified in
wheat and canola seeds were glycerophosphate (11–
30 %), orthophosphate (4–6 %) and mononucleotides
(1–6 %). Previous 31P NMR-based analyses (Negassa
et al. 2010; Raboy 2006) did not identify or quantify
glycerophosphate and mononucleotides in mature seeds
(or seed by-products) but, rather grouped them as ‘other

P’ or ‘other orthophosphate monoesters’. Plant P status
had no effect on the proportion of P species detected in
wheat seeds. With increasing P status of canola plants,
seeds displayed luxury P storage as phytate. The vast
majority of the seed of both crops is removed at harvest
and so the seed usually only contributes a small fraction
(on average 2–10 %) of the dry matter returned to soil
(Anderson and Soper 2003; Gan et al. 2008).
Differences in the amount and form of P in seeds is
therefore of minor importance in understanding the
cycling of P from plant residues to soil in grain cropping
systems. The remaining plant dry matter (root, stem,
leaves and chaff/pods), which together constitutes plant
residues returned to the soil following harvest, contained
15–25 % of the total plant P.

A significant percentage of residue P that returns to
soil occurred as orthophosphate (Fig. 2). Previous stud-
ies using sequential chemical fractionation methods to
identify inorganic P in various plant parts reported sim-
ilar percentages in mature plant material (Birch 1961;
Jones and Bromfield 1969; Martin and Cunningham
1973). Birch (1961) investigated the effect of differing
inorganic and organic P contents of plant residues on the
transformation of residue P during decomposition. For a
range of residue types, the percentage of inorganic P
(cold acid extracted) ranged from 50 to 95 % of the total
residue P. Slightly lower percentages (36–74 %) of
orthophosphate were detected in mature stem and leaf
material of a range of crop residues collected at harvest
(Noack et al. 2012). This residue orthophosphate is in a
form that is potentially immediately available to plant
roots and microorganisms, as well as for sorption onto
soil minerals.

Organic P species were detected in varying concen-
trations among plant parts (Fig. 2). Glycerophosphate,
phytate and mononucleotides were detected in some or
all plant parts. Generally, glycerophosphate comprised a
higher proportion of the plant P than mononucleotides
or phytate, except for wheat stem and chaff material,
which contained a high proportion of phytate. Both
phospholipids and nucleic acids, from which the glyc-
erophosphate and mononucleotides in this study likely
originated, have been shown to bemineralised rapidly in
soils and do not contribute to the stable P pool (Harrison
1982; Islam and Ahmed 1973; Kowalenko and
McKercher 1971). More recently a range of microor-
ganisms have been found capable of degrading phytate
in the laboratory (Hill and Richardson 2007). However,
microbial degradation of phytate in soil will be regulated
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by the ability of phytate to bind to mineral surfaces (Celi
et al. 1999), and form insoluble metal complexes (He
et al. 2006), thereby protecting it from microbial degra-
dation (Turner et al. 2003b). The organic P species
detected in these plant parts can thus be considered as
mostly easily-degradable organic P (phospholipids,
RNA and potentially phytate) with only phytate poten-
tially contributing to a more resistant organic P pool.

Pyrophosphate was detected in wheat roots, where it
constituted 7–14 % of the NaOH-EDTA-extractable P
(Fig. 2a). The presence of pyrophosphate in
decomposing plant material has previously been attrib-
uted to the colonisation by fungi and other microorgan-
isms (Miltner et al. 1998; Cheesman et al. 2010). A
previous study by Bünemann et al. (2008) revealed the
potential for microorganisms to synthesise condensed P
forms such as pyrophosphate in soils. The presence of
pyrophosphate (as detected by NMR spectroscopy) was
positively related to high fungal plate counts
(Bünemann et al. 2008). In this experiment, the presence
of pyrophosphate in wheat roots is consistent with the
presence of mycorrhizal colonisation.

Phosphorus speciation varied little with P status

The relative proportions of P species were unaffected by
plant P status for the majority of wheat and canola plant
parts (Fig. 2). This is in contrast to many previous
studies which have reported that increases in P status
increase inorganic P concentrations and also increase
inorganic P as a proportion of total P (Barr and Ulrich
1963; Batten and Wardlaw 1987; Chapin and Bieleski
1982; Fuller et al. 1956; Kakie 1969; Lee et al. 1976;
White and Ayoub 1983). However, many of these stud-
ies involved immature plant material, with plants grown
for 2–6 weeks to determine the optimum or adequate P
levels required for plant growth. It is well established
that immature plant material has very a different distri-
bution of P forms compared to mature plant material
(Bouma and Dowling 1982; Lewis 1992).

Few studies have examined the effect of P supply on
P speciation in mature plant material (Barr and Ulrich
1963; Batten and Wardlaw 1987; Hart and Jessop 1983;
Umrit and Friesen 1994). Most of these studies also
reported that the concentration of inorganic P and its
proportional contribution to total plant P content in-
creased with P nutrition in mature plant material.
Batten and Wardlaw (1987) grew wheat to maturity
and found the concentration of inorganic P forms

increased with increasing P supply. In the low P plants,
30–40% of the P in leaves was inorganic P compared to
60 % at the higher P level. Similarly, it was found that
for a pasture species (Setaria sphacelata), the percent-
age of total plant P that was acid-soluble (0.2N H2SO4)
inorganic P increased from 63 to 92 % with increasing
rates of P fertiliser in the field (Umrit and Friesen 1994).
In our study, using wheat and canola, the concentration
of inorganic P increased with increasing P status in
many plant parts but this increase was matched by
increases in other forms of P. This suggests that wheat
and canola crops with deficient, adequate or luxury P
status will contain different concentrations of total P but
that the proportion of this P present as orthophosphate
varies little.

Plant parts that were affected by P status were wheat
stem and chaff and canola roots (Fig. 2). A significant
percentage of P in wheat stems occurred as orthophos-
phate, which rose from 30 to 74 % as P rates increased,
with a corresponding decrease in phytate concentration.
The trend for wheat chaff was opposite to the stem, with
phytate percentage rising with increasing P status. The
presence of phytate in wheat stem and chaff material
contrasts with previous studies which suggest excess P
in plant parts other than the seed is stored as orthophos-
phate (Batten and Wardlaw 1987; Kakie 1969; Umrit
and Friesen 1994). The factors that regulate the synthe-
sis of phytate in plant tissue are unclear, although a
recent study showed a clear association between cellular
orthophosphate concentrations and phytate synthesis in
non-seed tissue (Mitsuhashi et al. 2005). These authors
reported that the synthesis of phytate was induced by
growing Catharanthus roseus cells in high orthophos-
phate concentration solutions, while cells growing in
solutions with low orthophosphate concentrations
contained little or no phytate. The presence of phytate
in wheat stem material may result from phytate being
synthesised in response to temporarily high orthophos-
phate concentrations in these cells.

Implications for P cycling in grain cropping soils

The quality of crop residues in terms of C, N and P is
important in understanding the decomposition of resi-
dues in soil. The C:N and C:P ratios resulting from the
different rates of P application (Table 1) are in agree-
ment with many previous papers which have shown that
plants with higher total P have lower C:N and C:P ratios
(e.g. White and Ayoub 1983). However, these ratios are
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not always capable of predicting residue P release (Birch
1961; Enwezor 1976), possibly due to differences in P
speciation that affect availability of P released from
decomposing residue for microbial degradation or for
incorporation into microbial biomass.

In previous sections we have considered the P speci-
ation of individual plant parts. The combination of non-
seed plant parts (root, stem, leaves and chaff/pods)
constitutes the residue pool returned to soil after the
seed is harvested and removed from the field. We cal-
culated the percentage of each P species that would be
returned to soil in the residue P pool from the total P
concentration, dry weight and P speciation for each
plant part (Fig. 3). Although P status caused differences
in P speciation in some plant parts, these differences
tend to cancel out when speciation is expressed on a
whole plant residue basis. Orthophosphate was the dom-
inant P species in residues returned to soil, followed by
phytate (wheat) or glycerophosphate (canola) with
mononucleotides and pyrophosphate present in only
very small amounts (Fig. 3). As plant P status increased,
the relative percentage of these P forms remained un-
changed for whole plant residues of canola, whilst
changes were small and inconsistent for whole plant
residues of wheat.

This improved understanding of the interaction be-
tween plant P status and P speciation in mature residues
can assist with estimating the mass of each P species
returned to soil in a cropping system. For example,
using the medium P rate treatment for wheat and assum-
ing an average grain yield of 3 t ha−1 and a harvest index

of 0.4, resulting in 7.5 t dry matter ha−1 that would be
returned to the soil as crop residues with a total content
of 2 kg P ha−1; 1.1 kg ha−1 of this P will be returned as
orthophosphate (56 %), 0.6 kg ha−1 as phytate (30 %),
0.2 kg ha−1 as phospholipids (9 %), 0.05 kg ha−1 as
RNA (3 %) and 0.05 kg ha−1 as pyrophosphate (2 %).

Orthophosphate is the dominant form of residue P
and it has many potential fates in cropping soils.
Residues remaining on the soil surface can be colonised
by microorganisms, resulting in microbial uptake of
orthophosphate, or this water soluble form of P can
be leached from residues into the surface soil. For
residue incorporated into the soil, microbial biomass
can immobilise orthophosphate with the P subse-
quently released through mineralisation. Leached or
mineralised P that ends up in the soil solution P
pool will be available for uptake by plant roots and
microorganisms or interactions with less labile soil P
pools through sorption to soil particles or precipita-
tion with soil minerals.

Conclusions

There was no marked change in plant P speciation with
increasing plant P status across different wheat and
canola parts. Stems and leaves, which contribute the
bulk of post-harvest residue P, were dominated by or-
thophosphate. Root P was dominated by organic P but
constituted only a small fraction of the post-harvest
residue P derived from the plant. Although differences
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in P speciation were observed in some plant parts, this
effect was insignificant when expressed on a whole
plant residue basis. This experiment showed the domi-
nant P form in post-harvest crop residues is orthophos-
phate, regardless of plant P status.
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