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Abstract
Background and aims The GPR indices used for
predicting root biomass are measures of root radar
reflectance. However, root radar reflectance is highly
correlated with root water content. The objectives of
this study are to assess the impact of root water content
on GPR-based root biomass estimation and to develop
more reliable approaches to quantify root biomass
using GPR.
Methods Four hundred nine roots of five plant
species in a sandy area of northern China were
examined to determine the general water content
range of roots in sandy soils. Two sets of GPR
simulation scenarios (including 492 synthesized
radargrams in total) were then conducted to com-
pare the changes of root radar signal and the
accuracies of root biomass estimation by GPR at
different root gravimetric water content levels. In

the field, GPR transects were scanned for Ulmus
pumila roots buried in sandy soils with three
antenna center frequencies (0.5, 0.9, and 2.0 GHz).
The performance of two new GPR-based root biomass
quantification approaches (one using time interval GPR
index and the other using a non-linear regressionmodel)
was then tested.
Results All studied roots exhibited a broad range
of gravimetric water content (>125 %), with the
water contents of most roots ranging from 90 % to
150 %. Both field experiments and forward simu-
lations indicated that 1) waveforms of root radar
reflection, radar-reflectance related GPR indices,
and root biomass estimation accuracy were all
affected by root water content; and 2) using time
interval index and establishing a nonlinear regres-
sion model of root biomass on GPR indices im-
proved the accuracy of root biomass estimation,
decreasing the prediction error (RMSE) by 4 to
30 % under field conditions.
Conclusions The magnitude of GPR indices depends
on both root biomass and root water content, and root
water content affects root biomass estimation using
GPR indices. Using a linear regression model of root
biomass on radar-reflectance related GPR index for
root biomass estimation would only be feasible for
roots with a relative narrow range of water content
(e.g., when gravimetric water contents of studied roots
vary within 20 %). Appropriate GPR index and regression
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models should be selected based on the water content
range of roots. The new protocol of root biomass quanti-
fication by GPR presented in this study improves the
accuracy of root biomass estimation.

Keywords Ground penetrating radar . Noninvasive
root investigation . Root biomass estimation . Root
water content . Forward simulation . Controlled field
experiment

Abbreviations
GPR Ground penetrating radar
EM Electromagnetic
RMSE Root mean square error
LOOCV Leave-one-out cross validation

Introduction

As a non-destructive subsurface detection tech-
nique, ground penetrating radar (GPR) has been
used in coarse root investigation since the end of
last century (Hruška et al. 1999). Because of its
unique advantages (including its non-destructive
nature, ability for rapid data collection, and repeat-
able sampling through time) as compared to the
traditional invasive methods for root biomass
quantification (e.g., soil coring, uprooting, and ex-
cavation), GPR is becoming an alternative ap-
proach for in situ coarse root biomass estimation
(Guo et al. 2013a).

Butnor et al. (2001) was the first to apply GPR for
root biomass prediction, in which total root biomass
(g/m2) to the depth of 40 cm of loblolly pine (Pinus
taeda) was correlated with root radar reflectance and
root reflector counts on radargrams, respectively, al-
though the correlation coefficients were relatively low
(r=0.34~0.57). With the aid of advanced GPR signal
post-processing procedures (e.g., Kirchhoff migration
and Hilbert transform), Butnor et al. (2003) greatly
improved the correlation between root biomass from
soil cores (g/core) and GPR reflectance (r=0.86). Based
on the GPR data processing procedure presented in
Butnor et al. (2003), several subsequent studies estimat-
ed root biomass using the statistical correlation between
the strength of root radar reflectance and root biomass
per core (e.g., Stover et al. 2007; Butnor et al. 2008) or
root biomass per area (e.g., Samuelson et al. 2008)
(Table 1). Cui et al. (2011) subsequently established a

strong correlation linking fresh weights (g) of roots to
the corresponding time interval GPR index (Δt) through
a field controlled experiment (Table 1). Most recently,
Cui et al. (2012) correlated the biomass (g) and fresh
weight (g) of single buried root with the strength of root
radar reflectance (Table 1). In addition, Hirano et al.
(2012) and Cui et al. (2011) used the correlation be-
tween root diameter and root biomass/fresh weight to
indirectly predict root biomass and fresh weight from
the root diameters estimated by GPR, respectively.

Root biomass estimation using GPR in several
locations (e.g., southeastern U.S., northern China,
and coastal of Japan) has shown that its perfor-
mance is site-specific (Butnor et al. 2001; Hirano
et al. 2012; Guo et al. 2013a). Soil conditions
(e.g., soil water content, soil texture, and leaf litter
layer) and root properties (especially root water
content) significantly influence the accuracy of
root detection and root biomass estimation using
GPR (Butnor et al. 2001; Dannoura et al. 2008;
Hirano et al. 2009; Guo et al. 2013a). However,
the impact of root water content was seldom rec-
ognized in the previous studies (Hirano et al.
2009). Only Dannoura et al. (2008) found that
the contrast in water content between root and soil
was important for precise root delineation, and
Hirano et al. (2009) confirmed that dried roots
(with volumetric water content <20 %) could not
be detected by GPR in a sandbox with soil volu-
metric water content of approximately 15 %.

According to electromagnetic (EM) theory, di-
electric constant and electrical conductivity are the
most crucial parameters that govern GPR signal
propagation and reflection (Conyers 2004). Specif-
ically, the contrast in dielectric constants between
a root and the surrounding soil determines root
radar reflectance (al Hagrey 2007):

R ¼
ffiffiffiffiffiffi

"r1
p � ffiffiffiffiffiffi

"r2
p

ffiffiffiffiffiffi

"r1
p þ ffiffiffiffiffiffi

"r2
p ; ð1Þ

where R is the reflection coefficient (an indicator
of the reflected energy amplitude with respect to
the total signal amplitude), and εr1 and εr2 are the
dielectric constants of root and soil, respectively.
Electrical conductivity determines the percentage
of radar energy that will be attenuated when prop-
agating through a medium (Conyers 2004). Because of
the high dielectric constant of water (81) compared to
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dry wood (4.5) and air (1), the dielectric constant of root
(i.e., a combination of dry wood, air, and water) is
dominated by its water content (al Hagrey 2007). Fur-
thermore, electrical conductivity of woody material is
strongly correlated with water content (Forest Products
Laboratory 1999; Straube et al. 2002). Therefore, root
water content is an important control of root radar
signal.

In previous studies, root biomass was inferred from
radar-reflectance related GPR indices, including areas
within threshold range, reflector tally (i.e., manual root
reflector counts on radargrams), and pixels within the
threshold range (Table 1). Because root water content
strongly influences root radar reflectance and root
biomass (i.e., a measurement of root dry weight) is
not dependent on water content, previous GPR-based
root biomass estimation is questionable. However, no
study has quantitatively evaluated the impact of root
water content on root biomass quantification using
GPR. Only Hirano et al. (2009) concluded that accu-
rate root biomass could not be estimated using the
single frequency of GPR when the water content of
roots and soils were unknown.

For these reasons, the objectives of this study are
two-fold: 1) to evaluate the impact of root water con-
tent on GPR-based root biomass estimation in a sandy
area; and 2) to improve the accuracy of root biomass
estimation using GPR, especially when studied roots
exhibit a broad range of root water content. It is
hypothesized that root GPR reflectance is determined
by both root biomass and root water content, and the
accuracy of GPR-based root biomass estimation de-
clines as the range of root water content extends. To
test the hypothesis, results from theoretical forward
simulations were integrated into field controlled ex-
periments. The simulations were synthesized following
the protocol presented in our companion paper (Guo et
al. 2013b), based on which specific GPR radargrams
could be simulated corresponding to roots with various
combinations of water contents and biomasses.

Materials and methods

Field root water content investigation in sandy soils

In June 2008 and June 2011, field investigations
of root water content were conducted at the Maowusu
Sandy Land (37º28′~39º22′N, 107º20′~110º30′E) and

the Hunshandak Sandy Land (42º23′~43º56′N, 112º10′
~116º52′E) in Inner Mongolia, China. Theses arid and
semi-arid areas in northern China have deep, excessive-
ly drained, rapidly permeable, and low organic content
sandy soils (Su et al. 2006; Yamanaka et al. 2007),
which provide suitable field conditions for conducting
GPR root investigations as recommended by Butnor et
al. (2001). A total of thirty-six plants belonging to five
species (Artemisia ordosica Krasch, Caragana
microphylla Lam, Caragana korshinskii Kom, Salix
psammophila C. Wang et Chang Y. Yang, and Ulmus
pumila Linnaeus) were collected in the field (Table 2).
In addition to the 254 roots used for developing the Root
Length-Biomass Model in the companion paper (Guo et
al. 2013b), samples from another three C. microphylla
plants and seven C. korshinskii plants were added in this
study, resulting in a total of 409 root samples (Table 2).

Roots of A. ordosica, C. korshinskii, and S.
psammophila were collected at the Maowusu Sandy
Land, where A. ordosica, C. korshinskii dominated the
semi-shifting sand dunes, whereas S. psammophila of-
ten distributed on the relative flat regions between sand
dunes. Roots of C. microphylla and U. pumila were
collected at the Hunshandak Sandy Land, where U.
pumila formed sparse forests in the center of the sandy
land, and C. microphylla dominated the transition zone
between sandy land and grassland. In each sandy land,
five study sites (with at least 30 km between neighbor-
ing sites) were chosen for collecting roots, where a soil
pit (1 m long and 1.5 m deep) was dug beside each
selected plant. Living roots with various diameters were
then randomly collected. Once excavated, fresh weights
and diameters of roots were measured immediately
(Table 2). All samples were then taken back to labora-
tory and oven dried at 65 °C until constant root weights
were reached. Root biomass (i.e., root dry weight) and
root water content (i.e., the gravimetric water content of
the root defined as the ratio of root water mass to root
dry weight) were obtained, providing a reference for the
simulated root water content range in our forward
simulations.

Soil samples were also taken from five depths (0–
15, 15–30, 30–50, 50–70, and 70–90 cm) near each
studied plant (except for U. pumila) using a Dutch
auger (5 cm inner diameter and 1 m length). Soil
gravimetric water contents were calculated by soil
fresh weights measured in situ and over dried weights
determined in laboratory (drying at 105 °C until con-
stant weight was reached) (Table 3).
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Forward simulation

Scenario I: variation of root GPR signals at different
root water content levels

The goal of simulation Scenario I was to examine the
variation of radar signals for roots with same biomass
but different water contents. These scenarios were
conducted using GprMax, which is a Finite-Difference
Time-Domain based GPR simulator that generates radar
responses based on the input EM properties of reflectors
and radar antenna related parameters (Giannopoulos
2005). Because root biomass could not be directly input
as an initial parameter in GprMax, root biomass levels
were represented by various root diameters, based on the
strong one-to-one correspondence between root biomass
per unit length and root diameter (i.e., the Root Length-
Biomass Model presented in Guo et al. 2013b; also see
Hirano et al. 2012). Since only roots with diameters larger
than 0.5 cm could be clearly detected by GPR even under
favorable field conditions (Butnor et al. 2001), three diam-
eter classes of 1, 2, and 5 cm were designed to represent a
root biomass gradient. Eight root gravimetric water content
levels from 10 to 150%,with increments of 20%,were set
to establish a root water content gradient.

Simulations were computed under three high anten-
na center frequencies of 0.5, 0.9, and 2.0 GHz, as they
were commonly selected for root investigations
(Table 1). A total of 72 root GPR radargrams (i.e., 3
root biomass classes×8 root water content levels×3
simulated antenna center frequencies) were simulated
based on the protocol presented in Guo et al. (2013b).

For each simulation, 54 synthetic traces were
generated to represent GPR signals from a root
sample at 30 cm depth surrounded by sandy soil
with a volumetric water content of 10.5 % (based
on measurements at the field experiment site).
Figure 1a illustrates the geometric configuration
of each simulation. A Ricker pulse (the first de-
rivative of a Gaussian pulse) was selected as the
source wavelet. Taking into consideration both nu-
merical stability and model reliability, the spatial
discretization was set to 1.5 mm. The time win-
dow of each trace was set to 20 ns. The third
order Higdon absorbing boundary condition was
selected to simulate the open boundary condition.
The rationales for the simulation parameters are
provided in Guo et al. (2013b) and Giannopoulos
(2005).T
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Scenario II: root biomass estimation using GPR at
different root water content ranges

In accordance with the results of field investigations
(Fig. 2), seven gravimetric water content levels from
90 to 150 %, with increments of 10 %, were set to
represent common water conditions of roots in the stud-
ied sandy areas. Twenty root diameter classes (i.e., 0.4 to
4.2 cm, with increments of 0.2 cm) were set to represent
20 root biomass levels. A total of 420 root GPR
radargrams (20 root biomass levels×7 root water con-
tent grades×3 antenna center frequencies) were simu-
lated. The general settings were kept the same as in
simulation Scenario I.

Three gravimetric root water content spans (110~
130 %, 100~140 %, and 90~150 %) were selected to
stand for roots with narrow (<20 %), medium (20~
40 %), and wide (>40 %) water content ranges, re-
spectively. Taking into consideration the normal dis-
tribution pattern of root water contents in the study
areas (Fig. 2), 45 simulated root radargrams were
resampled from simulation Scenario II for each inves-
tigated root water content range following the strategy
shown in Table 4 to ensure that the simulated root
samples would have a similar water content distribu-
tion to those collected in the field.

Field controlled experiments

The field controlled experiments were conducted in the
southern part of the Hunshandak Sandy Land (42º26′N,
116º11′E). Roots of U. pumila were grouped into six
classes (with average diameters of 0.5, 1, 1.5, 2, 2.5, and
3.5 cm) and then were inserted into ground as target
reflectors at known depths. A field portable GPR system
Zond-12e (Georadar Systems, Inc., Latvia) with three
shielded antenna pairs with center frequencies of 0.5,
0.9, and 2.0 GHz was used for data collection. After
field experiments, all roots were taken back to laborato-
ry and oven dried at 65 °C until constant root dry weight
reached to measure root biomass and water content
(Table 5). Detailed description of field experiment can
be found in our previous study, Cui et al. (2012).

Post processing of GPR data and extraction of GPR
indices

The post-processing procedures performed on raw
simulated radargrams included background remov-
al, Kirchhoff migration, and Hilbert transform. A
referential background radargram was simulated
corresponding to the computing domain with the
same geometric configuration shown in Fig. 1a but

Table 3 Soil water content at different depths in the sampling plots of four studied species in the sandy land of northern China

Speciesa No. of soil cores sampled Gravimetric soil water content (mean ± S.D.) at each depth interval (cm)

0–15 15–30 30–50 50–70 70–90

A. ordosica 8 2.4±0.4 % 3.9±1.5 % 5.6±1.8 % 7.6±1.3 % 7.0±2.0 %

C. microphylla 12 1.5±0.5 % 2.4±0.6 % 2.3±0.5 % 2.1±0.5 % 1.5±0.6 %

C. korshinskii 17 1.3±0.7 % 2.7±1.2 % 2.6±0.5 % 3.3±0.9 % 3.8±1.2 %

S. psammophila 10 7.1±2.2 % 5.7±1.8 % 14.5±2.6 % 24.6±0.6 % 25.8±0.9 %

a Soil cores were not sampled in the U. pumila plots

Fig. 1 a) Illustration of geometric domain used in forward
simulation; b), c), d), and e) are synthetic radargrams for roots
with the same diameter (2 cm) and buried depth (30 cm) but
different water contents (10 to 150 %), simulated with 0.9 GHz

antenna center frequency and volumetric water content of sandy
soil background at 10.5 %. Reflected parabola on each
radargram is root GPR signal
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excluding root reflector. Background removal was
then achieved using a program compiled in MATLAB
(The MathWorks, Inc., USA), which deleted the back-
ground radargram from the simulated root radargram.
Kirchhoff migration was performed on each root
radargram to trace the hyperbolic root GPR signal to
its source (Daniels 2004). Radar wave velocity, an input
parameter of Kirchhoff migration, was estimated by
hyperbola fitting (Barton and Montagu 2004). Finally,
the Hilbert transform was performed to reconstruct the
phase of the signal from its amplitude (Oppenheim and
Schafer 1975; Stover et al. 2007). Kirchhoff migration
(including wave velocity estimation) and the Hilbert
transform were processed with Reflex-Win 5.0
(Sandmeier Scientific Software, Karlsruhe, Germany).

The sequence of raw field GPR data processing
included break correction, background removal,
amplitude compensation, Kirchhoff migration, and
Hilbert transform. The first step was to detect the
first break time of each trace and correct the drift
of first breaks along all the traces. Then, a high-
pass filter and a low-pass filter were successively
applied to the field radargram to remove horizontal

bands and high-frequency noise, respectively. The
impact of radar energy attenuation was calibrated
by amplitude compensation (Cui et al. 2012). Gen-
erally, GPR wave amplitude decays exponentially
with propagation time (al Hagrey 2007). The mea-
sured amplitude, A(f,t), and the compensated am-
plitude without energy attenuation, A0, have the
following relationship (Turner and Siggins 1994;
Neto and de Medeiros 2006):

A f ; tð Þ ¼ A0 exp �a�tð Þ; ð2Þ

where f is the antenna center frequency, t is the
travel time of radar energy, and α* is a frequency
dependent attenuation factor that determines the
extent of radar energy attenuation within a partic-
ular medium. The value of α* of the experimental
soil was estimated based on a smoothed Hilbert
transform of a representative data volume for each
investigated antenna center frequency (Truss et al.
2007). Field root radargrams were calibrated using
the calculated attenuation factor. Finally, Kirchhoff
migration and Hilbert transform were performed on

Fig. 2 Frequency of roots
in each root water content
class for five species sam-
pled in the sandy soil of
northern China. Gravimetric
root water content (average
± S.D.) is indicated for each
species. n is total root num-
ber of the five species in
each water content class

Table 4 Number of simulated root radargrams resampled from simulation Scenario II for assessing root biomass estimation accuracy
using GPR at each root water content range investigated

Gravimetric root
water content range
investigated (%)

Total number
of resampled
root radargrams

Number of root radargrams resampled from simulation Scenario II at each simulated
gravimetric root water content level

90 % 100 % 110 % 120 % 130 % 140 % 150 %

110~130 45 0 0 19 16 10 0 0

100~140 45 0 6 14 12 7 6 0

90~150 45 3 5 12 10 6 5 4
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the field collected radargrams. All these processes
were completed using Reflex-Win 5.0.

In previous studies (e.g., Butnor et al. 2001, 2003;
Stover et al. 2007; Samuelson et al. 2008), the number
of pixels within the threshold range extracted on the
gray scaled radar images (converted from root
radargrams after Hilbert transform) was most com-
monly used for root biomass estimation (Table 1). This
GPR index measures the intensity (a measurement of
relative signal strength) of each pixel on the radar
image and counts the number of pixels with intensities
above a threshold value (Cox et al. 2005). Thus, the
number of pixels within the threshold range is radar
signal-strength related. In other words, it was the root
radar reflectance that was used for root biomass esti-
mation. In order to achieve a better characterization of
root radar reflectance, both pixels within the threshold
range and the high amplitude area (a direct indicator of
radar reflectance, which is also used for sizing roots)
were analyzed in this study.

To increase the comparability of our results with
other studies, before GPR indices extraction, reflection
amplitudes of the simulated data and the field collect-
ed data were first divided by the simulated maximum
reflected amplitude and the detected maximum reflected
amplitude after energy attenuation compensation, re-
spectively, to linearly normalize the amplitude data. After
amplitude normalization, high amplitude areas of the max-
imum and minimum reflected waves were extracted from
the trace passing through the center of each root after
migration (Fig. 3) and the sum of their absolute values
was defined as Parea. Then, pixels within the threshold
range (i.e., Pixels) were measured on 8-bit gray scale root
radar images converted from radargrams after Hilbert
transform. Radar image conversion was accomplished
using Reflex-Win 5.0. Parea and Pixels were extracted
using a code compiled in MATLAB and Sigma Scan Pro
5.0 (Systat Software Inc., USA), respectively. In addition
to the radar-reflectance related GPR indices, the time in-
terval index (i.e., dT, the sum of the time interval between
zero crossings of themaximum and theminimum reflected
waves; see illustration in Fig. 3), which is a GPR index
originally designed for root diameter estimation (e.g., Bar-
ton and Montagu 2004; Cui et al. 2011), was extracted
from the trace passing through the center of each root using
the code developed in MATLAB after the process of
Kirchhoff migration. For our field data, average indices
extracted for each root on six transects were used in the
following statistical analysis.T
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Linear and quadratic regression models of root
biomass on GPR indices and root fresh weight on
GPR indices were developed using SPSS for Windows
13.0 (SPSS Inc., USA). Data used for regression mod-
el development and correlation analysis all passed the
normal distribution test. For the simulated data, root
fresh weight was calculated from root biomass and
root water content based on the Root Length-
Biomass Model and the Root Composition Model,
described in Guo et al. (2013b). The coefficient of
determination (R2) and root mean square error (RMSE)
were used for evaluating the correlation between GPR
indices and root biometric parameters (i.e., root bio-
mass and fresh weight) and the estimation accuracy of
each model, respectively.

Results

Root water content in sandy soils of northern China

In general, all studied species exhibited a broad
variability in root water content (Fig. 2). The
smallest root gravimetric water content variation
was over 125 %, seen in U. pumila, while the
largest variation reached 204 %, seen in C.
korshinskii. Regardless of root diameter class, most
studied species revealed similar average root gravi-
metric water contents of ~115 % except for A.
ordosica (which had an average water content of
153 %) (Fig. 2). Figure 2 also demonstrates a normal

distribution pattern of root water content, with majority
varying from 90 % to 150 %.

Most root samples (over 45 %) of shrub species
(i.e., A. ordosica, C. microphylla, C. korshinskii,
and S. psammophila) were between 0.5 and 1.0 cm
in diameter, with the average root diameters rang-
ing from 0.69 to 0.87 cm. In comparison, for the
tree species (i.e., U. pumila), 42 % of root samples
were between 1.0 and 2.0 cm in diameter, with an
average diameter of 1.92 cm (Table 2). Correlation
of root diameter to root water content was poor
(P>0.5), as all studied species showed broad water
content ranges in any diameter class (Table 2). We
were unable to correlate root water contents of
each species to in situ soil water contents (Fig. 2
and Table 3). These results of field root water
content investigations suggested that the wide var-
iability in root water content is common for roots
in the sandy lands of northern China, regardless of
species, root diameters, and soil water contents.

Impact of root water content on root radar signal

Based on simulation Scenario I, waveforms of traces
passing through the center of simulated roots were
extracted after background removal. In any root water
content level, the series of waveforms shared a similar
oscillation pattern that the polarity of radar pulses
changed when radar wave reached the root-soil interface
(Fig. 3). However, the normalized amplitudes and high
amplitude areas of the waveforms were divergent among

Fig. 3 Waveform variation of radar reflections for roots with
the same diameter (2 cm, indicating the same root biomass) but
different root water contents (10 to 150 %, with increments of
20 %), simulated with 0.9 GHz antenna center frequency and
water content of sandy soil background at 10.5 %. Vertical

dashed lines define the time interval between zero crossings of
the maximum and minimum reflected waves (i.e., dT). The
oblique dashed lines define the high amplitude area of the
maximum and minimum reflected waves
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different root water contents: roots with a gravimetric
water content of 50 % showed the minimum magnitude
of radar signal; when root water content was below 50%,
radar signal amplitudes negatively correlated with root
water content; whereas radar signal amplitudes magnified
with increased root water content when root water con-
tent was above 50 % (Fig. 3). Phase positions of wave-
forms were opposite for roots with water content below
and above 50 %. These results of waveform variations
closely followed the trend observed for root signals (i.e.,
hyperbolic reflections) on simulated radargrams (Fig. 1b,
c, d, e). Different from amplitude and high amplitude
area, time intervals between the zero crossings of both the
maximum and minimum reflected waves vary slightly
along root water content gradient (Fig. 3).

For all synthesized radargrams in simulation
Scenario I, three GPR indices (Parea, Pixels, and
dT) were extracted. To avoid interference from GPR
detection resolution, data simulated for roots with the
diameter of 1 cm and with 0.5 GHz antenna frequency
were excluded in Fig. 4. At all root biomass levels and
simulation frequencies, when root water content was
below 50 %, reflectance related GPR indices (Parea
and Pixels) decreased as root water content increased
and reached the minimum when root water content was
at 50 %; however, when root water content was above
50 %, Parea and Pixels positively correlated to root
water content (Fig. 4a, b).

The sensitivity of the time interval index (dT) to
root water content differed among various root bio-
mass levels and simulation antenna frequencies
(Fig. 4c): for larger root (5 cm in diameter), a clear
increase of dT with the increase of water content was
found at all simulation frequencies when root water
content was above 50 %; for root with a simulated
diameter of 2 cm, the increase of dT along the root
water content gradient was observed at higher simula-
tion frequencies (0.9 and 2.0 GHz) when root water
content was above 70 %; and for the smaller root
(1 cm in diameter), dT increased slightly with in-
creased root water content only at the highest simula-
tion frequency (2.0 GHz) and when root water content
was over 110 %.

In the field controlled experiments, 0.5 GHz GPR
system achieved a better penetrating depth but a coarser
detection resolution such that all rootswith a diameter class
of 1 cm were unable to be resolved by antenna (Table 5).
2 GHz GPR system had a finer detection resolution but a
shallower observation depth, and all the roots buried at

80 cm could not be detected by antenna (Table 5). The
0.9 GHz GPR system achieved the best detection outcome
with only one small root buried in deep soil being
undetectable. All the undetected roots were excluded from
further analysis (Table 5).

Table 5 lists the values of Parea, Pixels, and dT
extracted from the field collected radargrams. At each

Fig. 4 a) High amplitude areas (Parea), b) pixels within the
threshold range (Pixels), and c) time interval (dT) extracted from
reflected waveforms and radar images of roots, with simulations
being computed along root water content gradient (10 to 150 %,
with increments of 20 %), at different root diameter levels (1, 2,
and 5 cm, indicating three root biomass levels), and under three
antenna center frequencies (i.e., 0.5, 0.9, and 2.0 GHz). Data
simulated for roots at 1 cm diameter and with 0.5 GHz frequen-
cy are excluded to avoid the bias from GPR resolution
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antenna center frequency, roots from larger diameter
classes (indicating higher root biomass) resulted in
higher GPR indices. However, within each diameter
class (indicating similar root biomass), root water con-
tent had a significant effect on reflectance related GPR
indices (Parea and Pixels). For example, within the five
root pairs (i.e., 1b and 1c, 2a and 2e, 3b and 3d, 4a and
4b, and 5b and 5d), roots with a smaller biomass but
higher root water content (roots 1c, 2e, 3d, 4a, and 5d)
resulted in higher Parea and Pixels than roots with a
larger biomass but lower root water content (roots 1b,
2a, 3b, 4b, and 5b), regardless of antenna center fre-
quency (Table 5). Results from forward simulation and
field experiment both supported our hypothesis that GPR

indices depend on both root biomass and root water
content.

Impact of root water content on root biomass
estimation using GPR

Root biomass was correlated to GPR indices at
four root water content levels (Fig. 5). Figure 5
clearly shows that the relationships between GPR
indices and root biomass diverged at different
root water content levels. This suggests that any
GPR index value could result from various com-
binations of root biomass and root water content.
Consequently, larger residual errors (or lower predictive

Fig. 5 Regression relation-
ships between root biomass
and GPR indices (a, b, and
c: Parea; d, e, and f: Pixels;
and g, h, and i: dT) at dif-
ferent root water content
levels (90 to 150 %, with
increments of 20 %) and
different antenna center fre-
quencies (0.5, 0.9, and
2.0 GHz)
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accuracy) of the fitted regression model between root
biomass and GPR indices would be expected with great-
er variability in root water content.

Among three selected indices, the variation of
correlation between GPR indices and root biomass
at different root water content levels was the least
for dT (Fig. 5), which implies a higher accuracy of
root biomass estimation using dT. For Parea and
Pixels, their correlation with root biomass became
nonlinear with increased root water content and
antenna center frequency (Fig. 5). However, all
previous studies that used GPR to estimate root
biomass restricted their models to linear regression.

According to the resampling strategy listed inTable 4,
linear regression models were developed between root
biomass and GPR indices at three root water content
ranges (110~130 %, 100~140 %, and 90~150 %). For
all GPR indices at each simulated frequency, the coeffi-
cient of determination (R2) decreased when root water
content range increased (Table 6). Thus, the prediction
accuracy of such regression model was negatively cor-
related with the range of root water content. Among
different GPR indices, time interval index (dT) achieved
a better predictive accuracy (indicated byhigher R2

values) than Parea and Pixels. Moreover, for Parea
and Pixels, R2 decreased with the increase of simulated

frequency, whereas R2 minimally varies with simulated
frequency increasing for dT (Table 6).

Regression analysis revealed a higher R2 be-
tween GPR indices and root fresh weight for all
studied root water content ranges (Table 6). As
root water content range extends, improvement of
R2 resulted from using root fresh weight instead of
root biomass was more significant (Table 6), prov-
ing the impact of water content on root biomass
quantification. Among the selected GPR indices,
correlating fresh weight to root biomass led to
the least R2 change for dT (Table 6), which indi-
cated a relatively limited sensitivity of dT to root
water content.

Limited by sample numbers, root fresh weight from
our field data were correlated to root biomass without
differentiating root water content ranges (Table 6).
Consistent with results from the theoretical forward
simulation, higher R2 values were obtained from re-
gression models between GPR indices and root fresh
weight for any antenna center frequency. As shown in
Tables 6, the linear correlation between Parea/Pixels and
root biomass/fresh weight decreases with the increase in
antenna center frequency; however, the correlation be-
tween dT and root biometric parameters strengthens with
the increase in antenna center frequency.

Table 6 The coefficient of determination (R2) of fitted regres-
sion models between selected GPR indices (high amplitude
area, Parea; pixels within threshold range, Pixels; and time
interval, dT) and root biometric parameters (root biomass and

fresh weight) obtained from both simulated and field collected
GPR data under three antenna center frequencies. All R2 passed
the 0.001 significance test

Antenna center
frequency (GHz)

GPR index Simulation data Field collected data

110 %~130%a 100 %~140%a 90 %~150%a

Biomass Fresh weight Biomass Fresh weight Biomass Fresh weight Biomass Fresh weight

0.5 Parea 0.92 0.94 0.90 0.93 0.82 0.89 0.84 0.90

Pixels 0.94 0.96 0.91 0.95 0.84 0.91 0.86 0.92

dT 0.96 0.97 0.94 0.97 0.91 0.96 0.87 0.91

0.9 Parea 0.81 0.82 0.73 0.78 0.61 0.70 0.78 0.85

Pixels 0.92 0.94 0.82 0.88 0.69 0.80 0.83 0.89

dT 0.98 0.99 0.95 0.98 0.91 0.97 0.91 0.92

2.0 Parea 0.75 0.77 0.71 0.75 0.67 0.74 0.73 0.81

Pixels 0.88 0.90 0.83 0.88 0.76 0.84 0.81 0.87

dT 0.97 0.98 0.95 0.98 0.93 0.97 0.91 0.93

a Gravimetric root water content range investigated
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The above results from both theoretical forward
simulation and field controlled experiment confirm the
significant effect of root water content on root GPR
indices and the estimation of root biomass using GPR.

Two new approaches of root biomass estimation using
GPR

Based on the data from simulation Scenario II, Fig. 6
compares the accuracies of root biomass estimation
using three types of regression model, including 1)
the linear regression model between Pixels and root
biomass (Linear Pixels Model), 2) the linear regres-
sion model between dT and root biomass (Linear dT
Model), and 3) the quadratic regression model be-
tween Pixels and root biomass (Non-linear Pixels
Model). The Linear Pixels Model, broadly applied in
previous studies to GPR-based root biomass estima-
tion was set as the reference for evaluating the perfor-
mance of our proposed new approaches. Given that
the accuracy of the Linear Pixels Model is higher at
lower antenna center frequency, 45 root radargrams
simulated with 0.5 GHz were selected for model de-
velopment following the resample strategy, shown in
Table 4. Another 45 root radargrams simulated with

0.5 GHz were resampled following the same strategy
for model validation. The predicted root biomass from
the three estimation models were plotted against the
actual root biomass at various root water content
ranges (calculated from the root diameter and root
water content) (Fig. 6). The Linear dTModel achieved
the best estimation accuracy, regardless of root water
content range investigated (Fig. 6b, e, h). Under narrow
root water content range (from 110 % to 130 %), the
difference in estimation accuracy is not noticeable be-
tween the Linear PixelsModel and the Non-linear Pixels
Model (Fig. 6a, c). However, under medium and wide
root water content ranges (from 100 % to 140 %, and
from 90% to 150%, respectively), the Non-linearPixels
Model yielded more accurate estimates than the Linear
Pixels Model (Fig. 6d, f, g, i).

Limited by sample number of the field collected
data, leave-one-out cross validation method (LOOCV)
was applied to evaluate the accuracy of the three
methods. Regardless of antenna center frequency, the
Linear dT Model and the Non-linear Pixels Model
achieved a higher estimation accuracy than the Linear
Pixels Model (Table 7). Simulated and field collected
data together suggest that the new methods (the Linear
dT Model and the Non-linear Pixels Model) out-

Fig. 6 Accuracy compari-
son among three root bio-
mass estimation methods at
three different root gravi-
metric water content ranges
(a, b, and c: 110 to 130 %;
d, e, and f: 100 to 140 %;
and g, h, and i: 90 to 150 %)
with the simulation antenna
frequency of 0.5 GHz: 1)
Linear Pixels Model (a, d,
and g); 2) Linear dT Model
(b, e, and h); and 3) Non-
Linear Pixels Model (c, f,
and i). On each graph, the
sample number (n), correla-
tion coefficient (r), predic-
tion root mean square error
(RMSE), and the 1:1 line are
shown. Actual root biomass
is calculated from root di-
ameter and root water
content
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performed the past GPR-based root estimation approach
(the Linear Pixels Model).

Discussion

The dual dependence of GPR-based root detection and
quantification on root size and root water content

The dependence of root detection by GPR on root size
(both biomass and diameter) has been recognized
(Hirano et al. 2009; Hirano et al. 2012). However,
studies concerning the influence of root water content
on GPR root detection are limited. Under experimental
conditions, Dannoura et al. (2008) and Hirano et al.
(2009) reported that both small roots (<1 cm in diam-
eter) and dry roots (water content of roots being lower
than that of surrounding soils) were not detected by
0.9 GHz GPR. Similarly, forward simulations in this
study suggest that water content gradient between a
root and the surrounding soil determines the magni-
tude of root GPR signals (Figs. 1 and 3), which will
influence the detection frequency of a root by GPR.

Most recently, Hirano et al. (2012) correlated the
detection frequency of roots on radargram to root size
under natural conditions in sandy soils. However, they
also found that the detection of roots of similar-sizes
was inconsistent (Hirano et al. 2012). In addition to
the differences in site-specific soil condition and root
depth, this might be caused by the root water content
variation among roots with similar size. Our field in-
vestigations of 409 roots collected from five common
species (four shrub species and one tree species belonging
to five families with diameters of sampled roots ranging
from 0.2 to 3.9 cm) in sandy lands of northern China
demonstrates a broad variation range in root water content

in any root diameter class (Fig. 2, and Table 2). Therefore,
roots in sandy soils probably always have a broad range of
water content, suggesting that the impact of root water
content on GPR-based root study should be taken into
account seriously.

The impact of root water content on GPR-based
root quantification has not been well recognized
(Guo et al. 2013a). To our knowledge, no other study
has taken root water content into account when
predicting root biomass using GPR. Among previous
studies, only Hirano et al. (2009) reported the influ-
ence of root water content on the magnitude of signal-
strength related GPR indices (including the amplitude
of reflected wave and high amplitude area), and indi-
cated that smaller roots with higher water content
could generate higher GPR indices than those from
larger roots but with lower water content (see Table 1
in Hirano et al. 2009). This study is the first attempt to
quantitatively examine the impact of root water con-
tent on root GPR indices and the accuracy of root
biomass estimation from GPR indices. Forward simu-
lations of roots along a broad water content gradient
(10~150 %) show that the signal-strength related GPR
indices (Parea and Pixels) change greatly at different
root water content levels even though the root size is
the same (Fig. 4). Regression analysis clearly reveals
that the relationships between root biomass and GPR
indices diverge at different root water content levels,
thus proving the double dependence of GPR indices
on both root size and root water content (Fig. 5).

Forward simulation data reveal a decreasing trend
in the coefficient of determination (R2) of fitted regres-
sion models that link GPR indices and root biomass,
as the water content range of studied roots expands
(Table 6). Moreover, both field collected and simulat-
ed data indicate a stronger correlation between GPR

Table 7 Root biomass estima-
tion accuracy using three models
for the field collected GPR data,
listing the correlation coeffi-
cients (r) between predicted and
measured root biomasses and the
average root mean square error
(RMSE) of leave-one-out cross
validation

Antenna center frequency (GHz) Estimation model r RMSE (g)

0.5 Linear Pixels Model 0.895 35.97

Linear dT Model 0.906 33.46

Non-linear Pixels Model 0.900 34.53

0.9 Linear Pixels Model 0.879 40.50

Linear dT Model 0.926 31.05

Non-linear Pixels Model 0.885 38.85

2.0 Linear Pixels Model 0.868 43.32

Linear dT Model 0.923 30.36

Non-linear Pixels Model 0.874 41.18
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indices and root fresh weight (which contains both
root biomass and root water content) than that between
GPR indices and root biomass (Table 6). These results
indicate the potential error of root biomass estimation
using signal-strength related GPR indices without con-
sidering root water content variation.

Estimation accuracy analysis based on simulated
data demonstrates that the prediction error of root
biomass estimation usingPixels doubles from 0.44 g/cm to
0.86 g/cm, when the water content range of studied roots
expands from 110~130 % to 90~150 % (Fig. 6a, c). The
decrease of estimation accuracy could be explained by the
greater influence of root water content on Pixels at wider
root water content range (Fig. 5d, e, f). This indicates that
the past method for root biomass estimation is most ap-
propriate for roots with narrow water content ranges (e.g.,
variation <20 %).

Evidences from field experiment and forward
simulation in this study together suggest that root
water content is not only influential for root de-
tection by GPR but also exerts significant impact
on GPR-based root biomass estimation. Consider-
ing the double dependence of root detection and
quantification by GPR on root size and root water
content, prior tests on root water content range as
well as the detection frequency of roots in differ-
ent size classes and water content classes are nec-
essary for specific species and sites. In this way, a
compensation coefficient for each diameter×water con-
tent class can be estimated and thus can increase the
estimation accuracy (Hirano et al. 2012).

Improvements in root biomass estimation using GPR

Because of its independence of root depth and
radar signal strength, time interval index was
originally developed for root diameter quantifica-
tion (Barton and Montagu 2004). Recently, Cui et
al. (2011) successfully correlated time interval
index to root fresh weight. We tested the feasibil-
ity of using time interval index (dT) for root
biomass estimation. Results from forward simulations
indicate that dT is not as sensitive to root water content
variation as signal-strength related GPR indices are
(Figs. 3 and 4), and the relationships between root
biomass and dT at different root water content levels
are more convergent than those between root biomass
and signal-strength related GPR indices (Fig. 5). All
these observations suggest a relatively limited impact

of root water content on dT. Both field and simulated
data reveals a higher accuracy of root biomass estima-
tion using dT than Pixels (Table 6). Under field condi-
tions, the Linear dT Model can decrease root biomass
estimation error (RMSE) by 4 % to 30 %, when com-
pared to the Linear Pixels Model (Table 7). Moreover,
simulation data show that the wider the investigated root
water content range is, the better the Linear dT Model
performs as compared to the Linear Pixels Model
(Fig. 6).

However, using time interval index for root
quantification has not been tested under natural
conditions. Good extraction of time interval re-
quires roots being traversed by GPR antenna at
90°, having a level orientation and with no other
nearby roots (Barton and Montagu 2004). These
limitations prohibit the use of the time interval
index under natural conditions (under which roots
grow in all directions with varying angles, and
often in clumps, and with heterogeneous interac-
tions with soils) (Barton and Montagu 2004).
Therefore, this GPR index might be more appro-
priate for time-lapsed study on lateral roots (with
known branching directions).

In comparison to the time interval index, Pixels
could be suitable for root biomass estimation for
roots of any size, angle, and orientation. Based on
the finding that Pixels nonlinearly correlate to root
biomass at high frequency and high root water
content (Fig. 5), we tested the accuracy of root
biomass estimation using quadratic models of root
biomass and Pixels. Results from both field and
simulated data indicate that the Non-linear Pixels
model achieves more accurate estimations, espe-
cially for roots with wider water content range
(>40 %) (Table 7 and Fig. 6).

The form of regression model that links root
size into Pixels lacks clear physical interpretation.
The nonlinear model suggested here is based on
the nonlinear correlation between GPR indices
and root biomass. Similarly, Hirano et al. (2012)
found that root diameter nonlinearly correlated to
Pixels. For our data, it was the quadratic model
that achieved the highest determination coefficient
in the regression. Data collected under other con-
ditions may possibly lead to other non-linear re-
gression functions. Therefore, specific nonlinear
model should be selected based on specific site
and species investigation.
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The two optimized methods of root biomass
estimation by GPR were developed based on for-
ward simulation and controlled experiments. Our
results reveal a better performance of the presented
methods in predicting root biomass per unit length
(g/cm). However, the accuracy of estimating root
biomass per area (g/cm2) using such improved
methods should be tested under natural field con-
ditions in future. The complex root branching pat-
terns and the variation in lengths of roots
harvested in each soil core would decrease the
accuracy of root biomass per area (g/cm2) estima-
tion in the field with the proposed methods.

Other possible improvements in root biomass
estimation using GPR

This study indicates that none of the GPR indices used
for root biomass estimation is fully independent from root
water content. Differentiating the contribution of root size
and root water content on root radar signal will improve
the accuracy of GPR-based root biomass estimation.
Because of the difference in sensitivity to root water
content variation between time interval index and
signal-strength related indices, one possibility is to estab-
lish multiple regression models linking root size and
root water content to different GPR indices. For exam-
ple, based on a small amount of excavation, regression
models between GPR indices extracted on radargrams
and measured root biomass and root water content can
be established:

dT ¼ f RB;RWCð Þ; ð3Þ

Pixels ¼ f RB;RWCð Þ; ð4Þ
where RB is root biomass, and RWC is root water
content. The forms and parameters of regression
models should be optimized based on site-specific
conditions. Then, root biomass and root water content
of any detected root can be solved by dT and Pixels
extracted from its radar signal.

Another possible improvement is indirect predic-
tion of root biomass by GPR, such as by converting
the root fresh weight per unit area estimated by GPR
into the root biomass with the root water content status
of the survey area, or calculating root biomass from
root diameters that are estimated by GPR. Moreover,

given the fact that the time interval index can be used to
estimate both root biomass and fresh weight, water
content of roots can be approximated (Table 6). Based
on the estimated root fresh weight and root water con-
tent, the specific root biomass of each root reflector can
be predicted.

Finally, up to now, all the GPR indices used for root
quantification are extracted from the time domain. De-
veloping new index in the frequency domain may be
another approach to suppress the root water content’s
impact on root biomass estimation.

Conclusions

Both theoretical forward simulation and field con-
trolled experiments conducted in this study confirmed
the impact of root water content on root biomass
estimation using GPR, and suggested that using the
linear regression model between root biomass and
radar reflectance related GPR index for root biomass
estimation would only be feasible for roots possessing
a narrow range of water content. Accuracy comparison
among different estimation models indicated that the
two new estimation models (one using the time inter-
val index, Linear dT Model, and the other using non-
linear regression, Non-linear Pixels Model) could in-
crease root biomass estimation accuracy, especially for
roots with greater root water content variability. For this
reason, we suggest conducting a root water content
investigation before beginning a root GPR survey. Ap-
propriate GPR index and regression models can then be
selected based on the water content range and orienta-
tion pattern of roots. Future efforts are needed to test
the feasibility of the methods proposed in this
study for discerning the effects of root size and
root water content on root radar signal. Findings in
this study can enhance the overall application of GPR
for in situ root quantification.
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