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Abstract
Aims To determine soil water diffusivity, D(θ), on un-
disturbed field soil at medium to low water content
(suction range from 10 to 150 m of water), for the
purpose of modeling the uptake of water by plant roots.
Methods The method is based on the analysis of one-
step outflow induced by a turbulent stream of dry air
over the exposed end of a soil core, with the other end
of the core enclosed. The outflow is measured through
time as the change in the weight of the core as it sits on
a recording balance. D(θ) is calculated by deconvolut-
ing the measured outflow function.
Results Over the suction range of 10 to 150 m of water,
D(θ) calculated on the undisturbed soil ranged from
20×10−9 to 10×10−9 [m2s−1], substantially higher than
other published estimates over this range in suction.

Conclusions These unusually large values cast doubt
on the view that flow of water to roots limits uptake of
water from the targeted subsoil.

Keywords Root water uptake . Plant water
uptake . Undisturbed soil . Outflow . Evaporation .

Numerical analysis . One-dimensional flow equation

Introduction

Uptake of water from the subsoil markedly increases
the yield of crops that are relying on such water during
grain filling (Kirkegaard et al. 2007; Angus and van
Herwaarden 2001). Yet, crops typically fail to extract
substantial amounts of seemingly available water from
the bottom third of their rooting zones by the time they
have matured (Schultz 1972, 1971; Hurd 1974; Walter
and Barley 1974; Jordan and Miller 1980; Kirkegaard
et al. 2007; Robertson et al. 1993a, b; Thomas et al.
1995; Christopher et al. 2008). Mechanistic understand-
ing of what limits the uptake of this residual water
remains poor (Passioura and Angus 2010). Popular
simulation models rely on empirical time constants for
describing the rate of uptake from a given layer of soil
(APSIM (Keating et al. 2003), CERES (Ritchie 1985))
but these time constants typically have to be determined
anew for new circumstances.

Intriguingly coherent patterns of rates of water up-
take across the whole root zone suggest that the dis-
position of water uptake may be primarily under the
control of the plants (Dardanelli et al. 2004). However,
the usefulness of empirical time constants, which
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implies that the rate of uptake from a given soil layer is
proportional to the amount of available water remain-
ing, suggests that the rate of movement of water
through the soil may be limiting. If that is so, then
the values of soil water diffusivity, D(θ), would be
important. Paradoxically, theoretical estimates of what
the time constants might be, given typical published
values of D(θ) in soil at medium to low water content
(Rose 1968) and measured root length density (length
of root per unit volume of soil), are of the order of a
few days, which would give ample time for all but
very sparse roots to extract almost all of the available
water (Passioura 1983).

However, published information on D(θ) on undis-
turbed soil is scant, especially on subsoil, and the values
could be substantially lower than those in repacked soil.
Further, given the strong clumping of roots in Kandosol
subsoil (White and Kirkegaard 2010), the characteristic
distance for the flow of water to absorptive roots, and
hence the characteristic time for uptake, may be much
larger than a simple analysis based on randomly distrib-
uted roots (Passioura 1991). Such clumping increases
the likelihood that flow through the soil, and hence the
values of D(θ), may be limiting uptake.

Accordingly, we set out to determine D(θ) in an
undisturbed Kandosol subsoil on which much agro-
nomic information, including rate of uptake from the
subsoil, was available (Kirkegaard et al. 2007). This
paper on D(θ) in the subsoil is the first part of a series
of two. The second part explores factors controlling
the uptake of water by plant roots from large cores of
the same undisturbed subsoil in controlled conditions.

Soil water diffusivity, D(θ)

Soil water diffusivity, D(θ) [m2s−1], is the product of
the hydraulic conductivity, K [ms−1], and the slope of
the soil water retention curve, dh/dθ [m], at a particu-
lar soil volumetric water content, θ, where h [m] is the
soil matric suction:

D θð Þ ¼ K θð Þ � dh dθ= ð1Þ

Neglecting gravity, the relationship between the
flux of water, q, K and D(θ) is:

q ¼ �D θð Þ dθ
dx

¼ KðhÞ dh
dx

ð2Þ

where x [m] is distance. For modeling uptake of
water by roots from the soil, the range of suction
over which the soil is most likely to be limiting
this uptake is from about 10 m to 150 m, for D(θ)
is close to minimal over this range in a variety of
repacked soils (Rose 1968).

The method of Rose (1968), essentially one-step
outflow, gives the most reliable measurements. It
uses evaporation from one end of an otherwise
enclosed cylinder of soil under a turbulent condi-
tion, and destructively samples the soil core to
determine the water content profile. D(θ) is then
determined using the analytical solution of Matano
(1933) and employs the Boltzmann transform
(Boltzmann 1894), whereby the absolute integrity
of the data can be verified and one can be sure
that the calculated D(θ) is a function of water
content alone. However, on undisturbed soil, this
technique is experimentally difficult as the soil
becomes very hard when air dry and difficult to
section. Also, the effects of heterogeneity on water
retention, even at small scales, limit the reliability
of the analysis.

Many attempts have been made to determine D
(θ) using one-step outflow without sectioning the
soil (Crescimanno and Iovino 1995; Doering 1965;
Gardner 1956; Gupta et al. 1974; Hopmans et al.
1992; Londra and Valiantzas 2011; Muazu et al.
1990; Passioura 1977; Valiantzas et al. 2007; van
Dam et al. 1992; Zia-ul-Haque 1990), but most
have dealt only with low to medium water suc-
tions and many are unsuitable for undisturbed soil.
The analysis of Passioura (1977) has been used to
determine D(θ) at h from 10 to 70 m of water on
repacked soil, and works well if the D(θ) function
is monotonic, approximately exponential, and does
not increase with decreasing θ, as sometimes hap-
pens when h exceeds about 100 m (Philip 1955;
Rose 1968).

The method described here is based on decon-
volution of the measured outflow during evapora-
tion into turbulent dry air by numerically solving
the one-dimensional flow equation (explained in
detail below). Because of the initially rapid evap-
oration, the method necessarily generates large
gradients in temperature near the soil surface but
these soon become negligibly small as discussed
below.
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Materials and method

Theory

Water evaporates from the surface of wet soil in
three stages (Idso et al. 1974) . In stage one, the
rate of evaporation depends on energy exchange at
the surface, and is approximately linear with time,
approximately, because of the limited flow of sen-
sible heat to the soil surface during the early part of
this stage. In stage two, the evaporation boundary
condition is replaced by a constant soil water con-
tent at the surface, the soil core can be treated as
semi-infinite, and cumulative evaporation proceeds
as √t (neglecting gravity and assuming homoge-
neous conditions). In stage three, the finite length
of the core becomes evident, and a zero flux
boundary condition at x = L, the bottom of the
core, results in θ falling increasingly below its
initial value.

Evaporation takes place at the top end of a
vertical core, x = 0, where, for the analysis de-
scribed herein, it is assumed that the water content
is reduced to θf at the onset of evaporation.
Neglecting gravity for the short columns used in
this study, the diffusion equation for one-
dimensional flow of water in a stable soil of finite
length is Eq. 3 subject to the conditions in Eq. 4.
The influence of gravity was tested using the
HYDRUS-1D (one-dimensional) numerical soil wa-
ter flow model (Simunek et al. 2008) (which
accounts for gravity), where the experiment was
simulated twice: Firstly with the evaporation bound-
ary condition at the top and secondly with the
evaporation boundary condition at the bottom. The
flux was the same for both simulations (data not
shown).

@θ
@t

¼ @

@x
D θð Þ @θ

@x

� �
ð3Þ

θ ¼ θi; 0 � x � L; t ¼ 0
θ ¼ θf ; x ¼ 0; t > 0
@θ
@x ¼ 0; x ¼ L; t > 0

ð4Þ

In practice, θf is not attained at x=0 instantly,
because evaporation is at first only limited by the
ability of the atmosphere to remove water from soil.

Initially, therefore, the rate of evaporation, dE/dt, is
proportional to the difference in humidity between the
soil surface, ws, and the adjacent atmosphere, w0:

dE
dt ¼ k w0 � wsð Þ x ¼ 0 ð5Þ

Where κ is a proportionality constant that incorpo-
rates the boundary layer resistance between the evap-
orating soil surface and the air stream. Equation 5
defines stage one evaporation, and in the experimental
system described herein, typically lasts less than
5 min. Thereafter, the evaporation rate is determined
by the soil hydraulic properties.

Experimental overview

Undisturbed field soil

Undisturbed soil samples were collected from a field
(30 cm depth) located in south-eastern Australia
(34o 43’ S, 147o 48’ E), the soil is a red Kandosol
(Isbell 2002) of light clay texture.

Three replicate undisturbed soil cores (length =
6.0 cm, inside diameter = 3.0 cm) were used for the
evaporation experiment described below. In order to
test the repeatability of the evaporation method, evap-
oration was measured twice from each undisturbed
soil core at two different initial suctions: Firstly the
cores were equilibrated at a suction of 0.5 m of water
and the evaporation was measured, then the cores were
equilibrated at a suction of 1.0 m of water and the
evaporation was measured again.

Soil water retention

The soil water retention was measured using two
methods: (1) for suctions at 0.5 and 1.0 m of water, a
porous ceramic tension table was used and (2) for
suctions at 10, 50, 100 and 150 m of water, pressure
plate apparatus was used.

Evaporative procedure

The samples were allowed to saturate from the base up
and then drained to a suction of either 0.5 or 1.0 m of
water and weighed, giving the initial water content, θi.
The base of the core, x = L, was then sealed, and the
top, x=0, subjected to rapid evaporation. An air outlet
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was devised to supply a controlled, continuous flow of
air (nominally 50 Lmin−1) onto the top of the soil
sample. The outlet of the air stream was positioned
20 cm directly above the soil surface. The velocity of
the air stream was sufficiently fast to create a highly
turbulent atmosphere just above the soil surface, there-
by reducing the boundary layer between the air stream
and the evaporating soil surface.

To ensure that the viscosity of the soil water
remained constant, at least once the rapid evapora-
tion during the first stage was over, the experiment
was housed in a temperature controlled cabinet,
maintained at 29 °C±0.5, a few degrees higher than
that of the laboratory. This was checked by logging
the temperature using copper constantan thermocou-
ples positioned in two locations: inside the temper-
ature controlled cabinet and at the air outlet inside
the air stream. The diurnal fluctuation in ambient
laboratory temperature was between 2 and 3 °C and
the temperature of the air stream was typically
within 0.5 °C of the ambient temperature inside
the cabinet. To test for cooling on expansion, the
thermocouple located at the air outlet was placed
3 cm below the air outlet, in the air-stream: the
cooling on expansion was typically 1.0 to 1.5 °C.
The airstream was provided by a compressor and
its dewpoint did not exceed 1 °C.

The sample was positioned on a recording balance
and the air stream was automatically turned off with a
solenoid and timer for 10 s periodically. During this
time the balance stabilized and the weight was mea-
sured automatically to generate a time series of
weight. For the first 15 min of evaporation, when the
rate of evaporation was changing rapidly, the weight
was measured approximately every 150 s. Thereafter,
the sampling interval was manually increased to
5 min, then 10 min and 20 min as the rate of evapo-
ration diminished. The measurements ended when the
rate of water loss became undetectable by the balance
(10 μg resolution), at which point θ was assumed to be
constant throughout the core and the final water con-
tent, θf, was then known.

Estimation of D(θ) by deconvolution of cumulative
water loss through time

The data of cumulative water loss through time was
deconvoluted to estimate D(θ) by numerically solving
the one-dimensional flow equation, Eq. 3, subject to

the conditions in Eq. 4, where a constant boundary
condition was set at the evaporating surface by fixing
θ at x=0 equal to the θf measured in the experiment,
and a zero flux boundary condition was set at x = L.
Two simple functions were chosen to represent D(θ),
each with three tunable parameters, a quadratic, Eq. 6,
and an exponential, Eq. 7.

D θð Þ ¼ a0 þ a1θþ a2θ
2 ð6Þ

D θð Þ ¼ b0 þ b1 exp b2θð Þ ð7Þ
These functions were chosen because their shapes

approximate the D(θ) calculations made by Philip
(1955) and the measurements by Rose (1968).

A program to solve Eq. 3, subject to the initial and
boundary conditions in Eq. 4, was written in MAT-
LAB®, modified from Campbell (1985) . Equation 3
was expressed in finite difference form and the deriv-
ative at the three space coordinates (i−1, i, i+1) used
to form a Jacobian matrix. The system of linear equa-
tions was then solved using the Thomas algorithm
(Conte and De Boor 1972).

Each evaporation experiment was simulated using
the experimental values of θi, θf, the length of the
sample and an initial estimate of the parameters in
either Eqs. 6 or 7 chosen to approximate the form of
D(θ). An objective function was thereby created for
the error between the cumulative evaporation from the
experiment and simulation at each time point. These
errors were minimized, using the least squares criteri-
on, by optimizing the three D(θ) parameters in either
Eqs. 6 or 7, using the downhill simplex optimization
routine (Nelder andMead 1965). The code we used was
based on the “amoeba” of Press et al. (1986), converted
from Fortran to MATLAB® by Keffer (1999). The
iterative procedure was continued until the minimum
error was reached or the maximum number of iterations
was exceeded, both user defined.

We tested the ability of the downhill simplex to
optimize to a unique solution by numerically generat-
ing evaporation data, using both eqs. 6 and 7, and
starting the downhill simplex optimization routine
with D(θ) parameters 75 % above and below the
original parameters. In all cases the optimized D(θ)
parameters were the same as those used in the original
simulation.

The model was tested by comparing, at each time
step, two different calculations of the quantity of
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water, E [m], lost by evaporation: (1) by subtracting
the integral of θ with space at a particular time, t = i,
from the initial quantity of water in the soil, W0,
(Eq. 8), and (2) the integral of the flux density with
time at the evaporating surface using Eq. 9.

E ¼ W0 �
Z x¼L

x¼0
θ x; tð Þdx

� �
t¼i

ð8Þ

E ¼
Z t¼i

t¼0
D θð Þdθdxdt

� �
x¼0

ð9Þ

The accuracy of the program was tested by calcu-
lating the absolute difference between Eqs. 8 and 9
and expressing it as a percentage of the quantity of
water lost as calculated from the integral of water
content with space (Eq. 8). This error decreased with
the number of space steps used and also with increas-
ing time, as the major perturbations in θ in the first
few distance steps at the start of the analysis became
progressively damped. After 1000 s the error was less
than 1 % with 100 distance steps, and less than 0.01 %
with 1000 steps. We used 100 steps as the default in
the analysis.

Summary of the procedure for obtaining D(θ)
is as follows

Experiment

1. Equilibrate soil core at a given soil water suction
and calculate θi from the soil water retention curve.

2. Seal the base of the core and place core on a
recording balance.

3. Expose the top of the core to a turbulent atmo-
sphere of constant vapour pressure and record the
cumulative evaporation with time, E(t), until dE/dt
becomes negligibly close to zero and determine θf.

Analysis

1. Set up the objective function as the error between
the cumulative evaporation from the experiment
and simulation at each time point.

2. Set up the simulation by numerically solving
Eq. 3 subject to the conditions in Eq. 4, using
θi and θf determined above from the evapora-
tion experiment and an initial guess at the D(θ)

parameters a0, a1 and a2 in Eq. 6 or b0, b1 and
b2 in Eq. 7.

3. Minimize the objective function using the least
squares criterion by optimizing the D(θ) parame-
ters a0, a1 and a2 in Eq. 6 or b0, b1 and b2 in Eq. 7,
using the downhill simplex optimization routine
(Nelder and Mead 1965).

Validation against the analyses of Doering (1965)
and Passioura (1977)

The analysis described above was compared against
the analyses of Doering (1965) and Passioura (1977).
Neither of these is restricted to a specific function
(such as quadratic or exponential) and both have been
shown to accord reasonably with the analysis of Rose
(1968). Doering’s method works well when D(θ) is
fairly flat, and Passioura’s works well when D(θ) is
strongly exponential, but overestimates D(θ) by about
25 % when D(θ) is flat, as happens especially when
mean θ approaches its final value (Passioura 1977).
Both of these methods estimate D at successive mean
water contents during the outflow. By contrast, the
deconvolution method estimates the parameters over
the designated functions, quadratic or exponential,
over the whole range of water contents, from initial
to final, simultaneously.

Doering (1965) estimated D(θ) from one-step
outflow by assuming that D was constant with
distance in the core at a given time, but varied
with time as the core dried. His approximate equa-
tion, derived from analysis of the one-dimensional
diffusion equation is:

D θð Þ ¼ � 4L2

p θ� θf
� � � dθ

dt
ð10Þ

Passioura (1977) estimated D(θ) where it is
expected to be rising strongly exponentially, by noting
that θ varies little with x at any given time, except
where x is small, and that therefore, during the third
stage of evaporation or liquid outflow, dθ/dt will be
approximately constant where x is large enough—in
practice, larger than about 0.2L. This led to the fol-
lowing procedure:

1. Cumulative outflow is plotted with t1/2 and the
third stage identified.
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2. From the third stage outflow data, D(θ) is calcu-
lated using Eq. 11.

D θð Þ ¼ dF dWR= � L2 2= ð11Þ

Where F is the rate of outflow and WR is the water
remaining in the soil.

3. The natural log of D(θ) is plotted against mean θ,

θ, and the slope, B, of this curve calculated at:

θ ¼ θi þ θf
� �

2= ð12Þ

4. Approximations of small and large θ are made

using Eq. 13 for small θ and Eq. 14 for large θ,
where d � 0:61 B= .

θ ¼ θf þ p 2= θ� θf
� � ð13Þ

θ ¼ θþ d ð14Þ

5. The actual θ for D is determined by plotting the

small and large θ s against θ and the region where
the two lines meet is then smoothed by drawing a
third line between the midpoints of the first two.

Boundary condition analysis

Evaporation was measured from the top of the core, x
=0, where, for the analysis, it was assumed that the
water content was reduced to θf at the onset of evap-
oration. The acceptability of this assumption was test-
ed by measuring the temperature at the soil surface
(Fig. 1): there was an initial temperature depression of
about 9 °C, that lasted for approximately 5 min, before
the temperature started to increase back toward the
ambient temperature.

The large initial temperature depression at the soil
surface was due to latent heat required to change liquid
water to vapour. The maximum temperature depression
was steady for approximately 5min and during this time it
is reasonable to assume that liquid water was evaporating

fairly steadily from the soil surface and the system was
behaving like a “wet bulb” thermometer. Thereafter, the
temperature at the soil surface increased sharply and did
so at the same time as the rate of evaporation was falling
rapidly, as stage one ended and stage two began (Fig. 2).

The temperature of the air stream was between 28
and 29 °C and the dewpoint was between 0 and 1 °C,
which corresponds to a vapour pressure of about
0.7 kPa. Assuming initially that the relative humidity
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of the soil surface was very close to 100 % (con-
sistent with h of 1 m of water), at 28 °C the vapour
pressure at the soil surface would be 3.8 kPa. When
the initial rapid evaporation lowered the surface
temperature to about 18 °C, it thereby reduced the
saturated vapour pressure at the soil surface from
3.8 kPa (at 28 °C) to 2.1 kPa (at 18 °C). This
effectively decreased the difference in vapour pres-
sure across the boundary layer by about 50 %,
which was maintained during the “wet bulb” phase
(Fig. 1). The subsequent rise in temperature implies
that the relative humidity at the soil surface was
falling, consistent with the transition from the first
to the second stage of drying, where the surface
water content is constant: a 5 % fall in the relative
humidity at the soil surface, from 100 to 95 %,
corresponds to a suction of 700 m of water, at
which the soil water content is typically within
5 % of its final value.

Figure 1 shows that eventually the soil surface
temperature comes to within 1 °C of the ambient
cabinet temperature (29 °C) after 104s, about 1 % of
the total time taken for the determination of D(θ). The
difference of 1 °C between the soil surface tempera-
ture and the ambient temperature of the cabinet, was
due to the cooling on expansion of the air stream,
which was typically 1.0 to 1.5 °C (data not shown).

Results

D(θ) of undisturbed field soil

Figure 3 shows a typical plot of: (1) evaporation
measured from an undisturbed field soil and (2) the
absolute model error expressed as a fraction of the
experimental data (error = |exp.−model|/exp.) when
using a quadratic (Eq. 6) and exponential (Eq. 7)
function for D(θ). In most cases the error of the
exponential D(θ) and quadratic D(θ) models is large
and variable at small times, consistent with the as-
sumption that the second stage of evaporation starts
at time zero, but then falls to less than 1 % after 1×105

s (~300 s/2) (Fig. 3).
Figure 4 shows: (1) the means for the optimized

quadratic and exponential D(θ) functions used to sim-
ulate the evaporation data as well as those for the
Doering (1965) and Passioura (1977) analyses (n=6,
three replicate soil cores ran twice each), and (2) the

soil water retention data from 10 to 150 m of water
suction, the range of interest for modeling the flow of
water to the plant roots (the drained upper limit of
plant available water for this soil is 0.25 [m3m−3] and
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is reported in Fig. 1 of Kirkegaard et al. 2007). The
quadratic and exponential D(θ) functions shown in
Fig. 4 are:

quadratic (Eq. 6) a0=1.682×10
−8, a1= −1.917×

10−7 and a2=1.038×10
−6

and exponential (Eq. 7) b0=1.035×10
−8, b1=

8.238×10−13 and b2=4.096×10

In the suction range from 10 to 150 m of water, the
mean quadratic D(θ) ranged from 22×10−9 to 10×10−9

[m2s−1] and the mean exponential D(θ) ranged from
14×10−9 to 10×10−9 [m2s−1].

Discussion

The rationale for this work was to measure soil water
diffusivity, D(θ), on undisturbed field soil, which is a
necessary function for understanding what may limit
the uptake of water by crops from the subsoil. Crops
often leave substantial amounts of seemingly available
water in the subsoil at harvest (e.g. most recently
Christopher et al. (2008) and Kirkegaard et al.
(2007)), and the reasons why are unclear. It is often
assumed that flow of water through the soil may be
limiting uptake when the available water is starting to
run out, at suctions above about, say, 50 m, but
common estimates of D for this stage are in the order
10−9m2s−1 (e.g. Rose 1968; Passioura 1977, 1980 and
Stirzaker and Passioura 1996), which is large enough
to provide almost complete uptake by even sparse
roots during the few weeks of grain filling (Passioura
1983, 1991).

This can be illustrated using the framework provided
by Passioura (1991), where the time constant for the
uptake of water by a root in a cylinder of soil of radius b
(i.e. average distance to the water shed between adjacent
roots) is 2b2/D. The time constant is the time taken for
the average water content between adjacent roots to fall
to 1/e (i.e. ~0.37) of a given starting value. Assuming
the root length density to be approximately 0.1 [cm
cm−3] (resulting in b of about 2 cm), as was measured
in the same field from which the soil samples used in
this study were taken (White and Kirkegaard 2010;
Kirkegaard et al. 2007) and, given that we calculate D
to reach a constant minimum of approximately 10×10−9

[m2s−1] from 50 to 150 m of suction (Fig. 4) or about 10
[cm2 d−1], the time constant would be about 1 day. That
is, the amount of water remaining in the water shed

between adjacent roots, separated by distance b, would
be reduced by a factor of about 2.7 (1/0.37) every day.
Thus, if the roots are maintaining a large suction (say,
150 m) and therefore a low water content at their surfa-
ces, then only about 5 % of the initially available soil
water would be left after only 3 days. If the root length
density was only 0.01 [cmcm−3], then by the same
argument it would take the roots only about a fortnight
to extract almost all of the available soil water. Yet
paradoxically, roots often fail to extract much of the
available soil water in the subsoil by the time of harvest
(Christopher et al. 2008; Kirkegaard et al. 2007).

We hypothesized that D might be much smaller in
undisturbed soil than in the repacked soils that almost
all estimations of D(θ) have been made on, and that
this could account for the slow uptake. Our calcula-
tions showed instead that D was an order of magnitude
larger than had previously been reported at suctions
prevailing during the uptake of the last half of the
available water supply (Fig. 4)—cf. Rose (1968),
who showed that D(θ) obtained a minimum value of
approximately 10−9 [m2s−1] at a suction of approxi-
mately 150 m, for several soils. Further, this was not
because the samples were undisturbed, because the
same samples broken up and repacked to the same
bulk density gave similar D(θ) (data not shown).

We explored the possibility that the large values
of D might be an artifact arising from the large
depressions of temperature at the surfaces of the
cores of soil during the rapid evaporation into dry
turbulent air that occurred at the start of each
experiment. However, the temperatures returned to
close to ambient within a sufficiently short time
(Figs. 1 and 2), thereby avoiding temperature in-
duced water flow and the associated errors dis-
cussed in detail by van Grinsven et al. (1985).

We tested the technique, introduced in this paper, of
deconvoluting the evaporation data to arrive at values
of the parameters in likely approximate functions for
D(θ) (quadratic and exponential) by comparing it with
the techniques of Doering (1965) and Passioura
(1977), which had previously been shown to agree
tolerably well with the technique of Rose (1968),
which still remains the standard for accurate measure-
ment of D(θ), but is restricted to repacked soil.

The deconvolution technique estimates D(θ) as a
function covering the complete range of θ, from its
initial value to its final, in a way that gives equal value
to the data at every stage of the drying, whereas the
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techniques of Doering (1965) and Passioura (1977)
estimate D(θ) independently at any given mean water
content. It is therefore possible that they may not
converge over the range of suctions of most interest
(50 to 150 m). Nevertheless, they did converge within
a range of about ±30 % at these large suctions.

As discussed above, these unusually large values
of D(θ) we calculated in the Kandosol subsoil, cf.
Rose (1968), cast doubt on the possibility that flow
of water through the soil on the scale of the rhizo-
sphere (mm) is in itself limiting the rate of uptake
of water by the roots. Nevertheless, strong clump-
ing of the roots into pre-existing pores (Passioura
1991; White and Kirkegaard 2010), which may be
tens of mm apart, could still generate limiting flow
rates in the soil. This and other possibilities are
explored in part II of this series.
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