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Abstract

Background The need to enhance the sustainability of
intensive agricultural systems is widely recognized One
promising approach is to encourage beneficial services
provided by soil microorganisms to decrease the inputs
of fertilizers and pesticides. However, limited success of
this approach in field applications raises questions as to
how this might be best accomplished.

Scope We highlight connections between root exudates
and the rhizosphere microbiome, and discuss the possi-
bility of using plant exudation characteristics to selec-
tively enhance beneficial microbial activities and
microbiome characteristics. Gaps in our understanding
and areas of research that are vital to our ability to more
fully exploit the soil microbiome for agroecosystem
productivity and sustainability are also discussed.
Conclusion This article outlines strategies for more
effectively exploiting beneficial microbial services on
agricultural systems, and calls attention to topics that
require additional research.
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Introduction

Agricultural productivity rests on a foundation of
microbial activity, much of which takes place in soil.
The soil has long been understood to harbor enormous
microbial diversity (Torsvik et al. 1990), and contempo-
rary research has reinforced this fact (Roesch et al.
2007). There is a growing appreciation of the genetic
potential and the functional importance of the soil
microbiome (Morales and Holben 2011). Within a given
soil type, resident plants exert selective forces on this
enormous pool of biodiversity, shaping and restructur-
ing microbial communities in the rhizosphere [reviewed
in (Berg and Smalla 2009)]. At the same time, plants are
also sensitive to microbial activity, and may experience
either enhanced or compromised performance depend-
ing on the activities of associated microbes. This
dynamic, two-way exchange of effects between plants
and soil microbes is significant in agricultural systems,
and enhancing our ability to manipulate or direct these
interactions could offer progress toward sustainability
through development of crop varieties that selectively
enhance beneficial functions within the soil micro-
biome. However, significant gaps in our understanding
of the forces that influence the structure and functioning
of plant-associated soil microbial communities pose an
obstacle to realizing this goal. In this article, we review
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the current state of knowledge and highlight areas of
future research that are vital to our ability to more fully
exploit the rhizosphere microbiome for maximum,
sustainable agricultural crop production.

Plants and the soil microbiome
Root exudation

In the rhizosphere of actively growing plants, root
exudates are of particular importance to plant-
microbe interactions (Badri and Vivanco 2009). The
composition of root exudates varies by plant species,
and even cultivars within a species (Kowalchuk et al.
2002; Hogberg et al. 2006; Micallef et al. 2009), and
as a result so does the soil microbial community
(Grayston et al. 1998; Kuklinsky-Sobral et al. 2004;
Salles et al. 2004). Variation in root exudation among
plant species and genotypes suggests the potential for
manipulation of root exudation in agricultural culti-
vars, in order to create specific selective effects on the
rhizosphere microbiome.

Root exudates are made up of sugars, amino acids,
flavonoids, proteins, and fatty acids (Badri and Vivanco
2009). These substances can serve as growth substrates
or signals for suitable microbial partners, and as anti-
microbials or growth deterrents for other microbes (Bais
et al. 2006). In several classic examples of symbiosis, a
very sophisticated interplay of chemical signaling medi-
ates plant-microbe interactions. For example, legumes
release flavonoids that alter patterns of gene expression
in rhizobia, initiating a series of complex and specific
interactions that ultimately lead to the fixation of atmo-
spheric nitrogen inside of nodules (Oldroyd and Downie
2008). An important task ahead is to determine whether
chemical signaling also has a role more broadly in plant-
microbiome interactions in the rhizosphere. Evidence
supports the idea that cross-kingdom interactions may
be commonly mediated by chemical signaling. For
instance, plants have been shown to interact with the
acyl-homoserine lactone signaling mechanisms involved
in bacterial cell-to-cell communication (Teplitski et al.
2000; Gao et al. 2003; Mathesius et al. 2003; Delalande
et al. 2005) and to enhance anti-fungal gene expression
in root-associated bacteria (Jousset et al. 2011). Plants
have also been shown to perceive and respond to signals
of microbial origin. For instance, the rhizobacterium
Pseudomonas fluorescens CHAO was shown to trigger
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induced systemic resistance in Arabidopsis thaliana,
through the production of the compound 2,4-diacetyl-
phloroglucinol (Iavicoli et al. 2003).

Whether mediated through differential provision of
energy- and nutrient-rich substrates [as in (Oger et al.
2004)], or through more complex inhibitory and sig-
naling interactions, chemical compounds released by
the roots are likely the basis for the selective effect of
host plant genotype on the rhizosphere microbiome.
Comparative studies across plant hosts have provided
clues to root exudation traits that may be relevant to
the shaping of soil microbial communities (Lesuffleur
et al. 2007). Stable isotope probing techniques have
been employed to address questions related to root
exudation and rhizosphere microbial communities
(Prosser et al. 2006). However, this technique has been
focused on identifying microbial taxa that respond to
plant hosts (Paterson et al. 2006), rather than on iden-
tifying particular exudation characteristics that are
most important in plant-driven restructuring of soil
microbial communities. Stable isotope probing has
been helpfully applied to the study of spatial variation
in exudation (Lu et al. 2007) and of the fate of partic-
ular compounds in soil. Though these compounds
have most often been contaminants (Mahmood et al.
2005), the technique could also be applied to study
incorporation of exudate components into microbial
biomass.

There is a need for a much more detailed under-
standing of the relative importance of various root exu-
date components. Can selective effects be explained by a
small number of high-impact compounds? How impor-
tant are the diversity, quantity, or consistency of exuda-
tion to host plant selective effects? The impact of
particular aspects of root exudation on soil microbes has
begun to be addressed for model plant species (Badri et
al. 2008, 2009), but this should be made a priority for
agriculturally relevant species as well.

An important bottleneck to advancing concepts re-
lated to interactions between root exudates and soil
microbes has been the ability to study root exudation
in situ. However, recent developments are advancing
this area. For instance, anion exchange membranes
have been used to capture exudates, with comparisons
between bulk and rhizosphere soil accounting for
compounds coming from soil (Chiang et al. 2011).
Putting anion exchange membranes in contact with
roots allows for the repeated sampling of root exudates
from the same roots over a period of time, and when
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coupled with image analysis, can allow for calcula-
tions of exudation rates (Shi et al. 2011). Exudates
have also been collected from intact live roots by
flushing with an aqueous solution to collect soluble
exudate components (Phillips et al. 2008).

Extent of plant-driven change to the soil microbiome

Host plant effects have been detected in the bulk soil
microbiome (Carney and Matson 2006; Bremer et al.
2009), indicating that it may be possible to use plants
to shape soil microbial communities more broadly
than just in the rhizosphere. This potential is signifi-
cant in agricultural systems: as host plants are
switched during crop rotation, microbial colonizers
for the newly forming rhizosphere are drawn from
the bulk soil community (Jones et al. 2004). The
availability of beneficial colonizers in a newly forming
rhizosphere may depend on the selective effects of the
previous crop. However, agricultural application of
plant-driven influence in bulk soil microbial commu-
nities will require a more detailed understanding of the
mechanistic basis for such effects. For instance, are
bulk soil effects driven more strongly by plant litter
inputs or by downstream outcomes of rhizosphere
effects? The rhizosphere is dynamic in extent, fading
into bulk soil with root death and forming again with
the emergence of new roots (Jones et al. 2004). Thus
rhizosphere turnover offers one pathway for plants to
extend influence beyond the root zone to shape the
bulk soil microbiome. Importantly, the degree to
which rhizosphere populations carry over to impact
bulk soil microbial community structure likely differs
among microbial taxa, depending on the degree of
specialization to the rhizosphere environment and the
capacity for quiescence.

Plant-microbiome co-adaptation

Host plant effects on the soil microbiome become
more pronounced over time, and it is probable that
microbial partners undergo adaptation to their host
plant. At least in cases of tight mutualistic symbioses,
there is evidence of co-evolution between plants and
rhizosphere microbes (Lambers et al. 2009). Although
data demonstrating widespread microbial adaptation
to match root exudation are remarkably sparse, some
suggestive evidence has been reported. For example,
root colonizers more efficiently utilized dominant

exudate components compared to randomly selected
rhizobacteria (Kamilova et al. 2006). In some cases,
soil microbes have also shown an enhanced ability to
degrade the biomass of their host plant species relative
to that of other plant species (Ayres et al. 2009;
Madritch and Lindroth 2011). Pairing near-isogenic
bacterial strains differing in catabolic capacity with
transgenic plants producing novel substrates, has dem-
onstrated that the ability to catabolize plant-supplied
resources impacts rhizosphere population densities under
competition (Savka and Farrand 1997).

The global exchange of agricultural plant species
provides an interesting system for studying plant-
microbiome adaptation (see Fig. 1). Near the center
of origin for a particular crop, long-term association
between plant host and microbial partners is possible.
In contrast, movement of a crop species to a new part
of the world brings together a soil microbiome and a
host plant that may have no shared evolutionary his-
tory. The foreign host plant species may secrete a
novel combination of exudates into the soil, some of
which may have antimicrobial properties or serve as
inefficient substrates for the local microbial commu-
nity. Thus sudden replacement of host plants will
change the selective pressures acting on the rhizo-
sphere microbiome. Competitive advantage among
microbes may switch, leading to a period of rearrange-
ment such as has been observed in studies of invasive
plants in their new habitats (Broz et al. 2007), through
experimental host plant switching (Broeckling et al.
2008), and by using plants with genetic defects related
to root exudation (Badri et al. 2009). Microbial com-
munity dynamics in response to perturbation are enor-
mously complex and there remains tremendous
progress to be made in modeling such changes. It is
clear that microbes enact transcriptional changes in
response to shifts in resource availability (Brandt et
al. 2004), and that environmental conditions and initial
population densities influence the outcomes of com-
petitive dynamics in unpredictable ways (Buchanan
and Bagi 1999; Powell et al. 2004), such that popula-
tion dynamics can be chaotic (Fussmann and Heber
2002).

A lack of shared history between host plant and soil
microbiome may retard the development of niche satura-
tion in the rhizosphere, because of provision of resources
by the plant for which microbial metabolic capacity has
not developed or become common. Common root exu-
date components may be quickly exploited by a naive
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Shared
evolutionary history

Fig. 1 Possible effects of disrupting plant-microbiome coadap-
tation on sensitivity to subsequent disease outbreaks. Colored
shapes below the soil line represent different microbial taxa.
Pathogenic taxa are indicated in red. a A plant growing in a
location where there has been a long shared history between the
plant and the soil microbiome. Although pathogens are present,
their activity is greatly constrained. b A plant growing in

microbiome, but unfamiliar exudate components may be
less readily accessible to extant microbial enzymes.
Importantly, open niches left by incomplete resource
utilization may provide a window of opportunity for
pathogen establishment (see Fig. 1). Although the niches
of pathogens and non-pathogens differ in some important
ways, there are also common features. Pathogens and
non-pathogens may compete, for example, for access to
resources exuded from roots or for physical space on root
surfaces. Rapid colonization of roots by a host-adapted
microbiome may prevent pathogen establishment. We
hypothesize that progressively tighter microbiome adap-
tation to a particular host results in niche saturation and
thus more effective competitive exclusion of pathogens.
This is consistent with the observation that long-term
monoculture may lead to the development of disease
suppressiveness over time. For instance, long-term
monoculture of wheat (Triticum aestivum L.), potato
(Solanum tuberosum L.) and melon (Cucumis melo L.)
have all given rise to pathogen-suppressive soils (Sneh et
al. 1987; Landa et al. 2006; Meng et al. 2012). Clearly
this scenario represents only one possible outcome of
repeated monoculture, and other trajectories are also pos-
sible, as discussed below.
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association with a naive microbiome, which has no shared
history or adaptation (e.g. after movement to a new part of the
world for agriculture). ¢ This un-adapted microbiome is less
effective at preventing pathogen establishment, enhancing sus-
ceptibility to disease. d Management interventions may be able
to foster microbiome characteristics that constrain disease

Plant-soil feedbacks and diffuse mutualisms

Ecological studies of plant-soil feedbacks offer
insights that may be relevant to agriculture. In contrast
to the previously cited observations, accumulation of
pathogens after repeated cultivation has also been
observed in agricultural systems, forming the basis
for crop rotation (Hwang et al. 2009). This type of
negative plant-soil feedback has received more attention
than positive plant-soil feedbacks. Systems have been
observed in nature in which growth of a particular plant
species enhances the subsequent performance of that
same species (Reynolds et al. 2003; Callaway et al.
2004; Bonanomi et al. 2007; Grunsven et al. 2009).
More attention should be given to drawing applications
for agriculture from such systems. By deciphering rele-
vant plant traits and identifying organisms [as in
(Mendes et al. 2011)] or microbiome characteristics that
are responsible for positive plant-soil feedbacks, we
may be able to replicate these processes in agricultural
systems.

Where positive plant-soil feedbacks are rooted in
beneficial microbial services, a kind of associative sym-
biosis may be at play: plant hosts provide resources or



Plant Soil

mediate microbial interactions in a way that favors
particular microbes. In turn, these microbes provide
services that enhance plant performance. Studies of
the canonical plant-microbe mutualisms, such as mycor-
rhizae and the legume-Rhizobium symbioses (West et
al. 2002; Kiers et al. 2011), have demonstrated that the
stability of mutualisms depends on the aligning of fit-
ness benefits for both partners and imposing sanctions
against partners that ‘cheat.” For diffuse mutualisms
between plants and free-living rhizosphere microbes,
this suggests the need for fine sensing of the beneficial
functions provided by microbial partners, with concom-
itant fine control of root exudation. Many aspects of the
exudation process are under active plant control, includ-
ing the potential for re-uptake of exuded compounds
(Jones et al. 2004). Variable exudation characteristics
have been demonstrated among root types, as for lupine
(Lupinus albus L.) cluster roots (Weisskopf et al. 2005),
and in response to particular nutritional demands such as
phosphorus deficiency (Shen et al. 2001). However,
studies of root exudation at the microbial scale are
needed in order to determine the extent and specificity
of plant response to rhizosphere partners. It should also
be noted that plant-beneficial microbial activities may
not always bear a cost to the producer, and so ‘cheaters’
may not necessarily enjoy a fitness advantage. In this
case, the host plant may be able to select for beneficial
microbial functions without the need for sophisticated
ability to impose sanctions against cheaters. Further-
more, even unstable mutualisms may be exploited in
agriculture. For instance, populations of beneficial
microbes can be augmented by external application or
by provision of resources to periodically boost flagging
populations.

Beneficial microbial activity

There are many mechanisms by which rhizosphere
microbes may positively impact plant performance.
Wherever host plants can capture services provided by
the microbiome, agricultural productivity may be en-
hanced by more fully exploiting beneficial microbial
functions. Microbial services may include the produc-
tion of phytohormones (Ping and Boland 2004), provi-
sion of nutrients (Janos 2007), enhanced tolerance to
abiotic stresses (Redman et al. 2002), induction of the
plant innate immune response system (Jain et al. 2011),
alteration of plant functional traits (Friesen et al. 2011)

or tissue chemistry (Larsen et al. 2006), and perhaps
other mechanisms as well.

Specific functions

One strategy is to shape the microbiome for optimal
provision of very particular services (Fig. 2, left side),
such as by offering a competitive advantage to partic-
ular microbes in order to enhance the rate of certain
enzymatic transformations. From this perspective, the
goal is to develop plants able to select particular ben-
eficial microbes from amongst a broader community
that includes many members without beneficial func-
tion. Unfortunately, however, there may be a mis-
match between microbial features that are accessible
to selection, and those that benefit plant performance.
It becomes difficult to devise mechanisms for specif-
ically enriching beneficial microbial functions when
those functions are performed by a subset of the mem-
bers of many different taxa. It would be extremely
valuable to identify characteristics that are linked to
the provision of beneficial services (e.g., phosphorus
solubilization, pathogen suppression) and that are also
susceptible to selection, either by the host plant or
through agricultural management practices. For instance,
is it possible to manipulate environmental conditions in
such a way as to induce the provision of beneficial
services by a disparate collection of organisms?

Broad microbiome characteristics

As an alternate approach to enriching for very partic-
ular microbial functions, it may be possible to develop
plants that shape the soil microbiome in a broadly
beneficial fashion (Fig. 2, right side), defining
community-level characteristics that promote plant
health. For instance, rhizosphere microbial richness
and evenness may be particularly important to plant
performance. Increasing microbial richness equates to
greater community-level trait diversity and/or func-
tional redundancy, and should lead to more consistent
functioning across variable environments (Loreau et
al. 2001). However, because rare members of the
microbiome may be unable to effectively perform
important functions, the evenness (relative abundance)
of members of the microbiome is also important (van
Elsas et al. 2008). In the case of disease suppression,
for instance, maximizing overall microbial activity or
niche saturation may be important to competitive
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Fig. 2 There may be
alternate paths to realizing
the goal of using plants to
enrich beneficial microbial
functions. For instance, one
could target particular
microbial taxa or services
(left side), or one could aim
for broad microbiome
characteristics that may
promote plant performance

(right side). Colored shapes
below the soil line represent
different microbial taxa

Specific Functions

e.g. N fixation,
Antibiosis,
P solubilization

e.g. Functional redundancy,
Competitive exclusion
of pathogens

exclusion of pathogens. Increasing microbial biomass
and/or diversity have been commonly found to accom-
pany enhanced pathogen- or disease-suppressiveness
(Larkin and Honeycutt 2006; Ochiai et al. 2008;
Postma et al. 2008) and to limit successful invasion
by introduced organisms (van Elsas et al. 2012). It has
been noted that only a portion of the soil microbial
pool is in a metabolically active state (Pennanen et al.
2004). This is an important caution, but we expect that
increasing over all diversity will typically correspond
to an increasing diversity of metabolically active
microbes as well.

Although evenness has received less attention than
richness or diversity, evidence supports an important
role for evenness in community functioning, particu-
larly under stresses or perturbations (Wittebolle et al.
2009). A field study showed that increasing evenness
of predators and pathogens was important to the suc-
cessful biocontrol of insect pests of potato (Crowder et
al. 2010). Evenness of plant species abundance
reduces weed invasion (Tracy and Sanderson 2004)
via more complete resource utilization that reduces
niche space available for invaders (Knops et al.
1999; Naeem et al. 2000). Low soil microbial even-
ness has been associated with reduced plant produc-
tivity (Wilsey and Potvin 2000). The richness and
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evenness of the soil microbiome are central to provid-
ing stability, resilience to stress and disease, and high
levels of internal nutrient cycling (Elliot and Lynch
1994). Importantly, soil microbial evenness can be mod-
ified by agricultural management practices (Fliessbach
et al. 2009; Sugiyama et al. 2010).

Future work should investigate plant characteristics
that are related to microbiome richness and evenness.
For instance, how important are adaptation or long-
term association in maintaining evenness among rhi-
zosphere microbes? Over long time scales, does rhizo-
sphere microbial evenness increase as many microbial
community members undergo adaptation or niche dif-
ferentiation in the context of a stable assemblage of
interacting organisms? Does increasing exudate diver-
sity sustain greater microbial richness in the rhizo-
sphere? Or, can simple exudates be transformed by
microbial activity into sufficiently diverse metabolites
to allow for niche differentiation of many microbes? If
so, simply increasing exudate quantity may be as
effective in maintaining a rich microbiome as increas-
ing exudate diversity. The relative importance of car-
bon source quantity, identity and diversity have begun
to be explored through simple studies of resource
amendment using defined compounds (Orwin et al.
2006), but much more work of this sort is needed.
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The soil microbiome in agriculture
Plant breeding

We have highlighted plants as selective agents that
shape the soil microbiome, and how such effects might
feed back to impact plant performance. In agricultural
systems, plant genotype is carefully controlled
through breeding and cultivar selection. It has been
proposed previously that ‘rhizosphere engineering’
could yield many benefits to agriculture (Oger et al.
2004; Ryan et al. 2009). We reiterate this call for plant
breeding to consider the beneficial functions afforded
by the soil microbiome, and extend discussion on the
topic. The strategy of using plants as selective agents
to enrich beneficial microbial functions has the major
advantage of not requiring any change in infrastructure
or management; all of the required work is in the area of
cultivar development, which could then be seamlessly
integrated into existing production systems.

There are limited examples of breeding programs that
have considered rhizosphere-related traits (Wissuwa et
al. 2009), and those that have considered particular root
exudation characteristics have had a very narrow focus,
such as improving nodulation (Rengel 2002). We are not
aware of any breeding program in the world that eval-
uates plant lines for broad interactions with the soil
microbiome. This is unfortunate, as variation certainly
exists for traits related to interactions with soil microbes
(Smith and Goodman 1999). The impacts of transgenic
crops on soil microflora have been evaluated [reviewed
in (Bruinsma et al. 2003)], but this should become a
routine consideration during crop breeding and devel-
opment. For the first time, this is now a feasible propos-
al, as high throughput methods and new sequencing
technologies allow for the simultaneous and economical
profiling of hundreds of microbiomes (Erlich et al.
2009).

Difficulties associated with breeding for interactions
with microbes

Variability across environments, soil types and microbial
communities represents a substantial obstacle to the goal
of using plants as selective agents to enrich beneficial
microbial functions in soil. In fact, these variables com-
pound with each other: different soil types not only shape
the microbial communities present there (Ulrich and
Becker 2006; Wakelin et al. 2008), but also impact plant

physiology (Taiz and Zeiger 2006), which will in turn
further alter interactions with soil microbes. Obtaining a
clear picture of just how difficult it may be to overcome
such variability will require broad surveys that test par-
ticular plant genotypes across treatments in which envi-
ronment, soil properties, and microbial communities are
systematically and independently varied.

The exudation and re-uptake of compounds by
plant roots are very complex processes, and specific
targets for breeding are unclear. Should breeders aim
to enhance the synthesis of particular compounds?
Should they aim to increase the activity of particular
transporter proteins? We do not yet have clear targets
by which breeders might create plants with enhanced
ability to foster beneficial microbial functions. How-
ever, traditional plant breeding often works in igno-
rance of the mechanisms which underlie a desired
phenotype. Breeding for a beneficial microbiome will
likely begin in the same way, with breeders selecting
for outcomes (such as yield), but in an environment
that is suitable for revealing the impacts of associated
microbes. For example, this may mean limiting nutri-
ent availability for plants during selection so that
differences in microbial provision of nutrients become
clear. Plants may not select for beneficial microbes, or
the activity of those beneficial microbes may not be
detectable, under high resource availability.

Breeders assess the performance of a given plant
genotype across variable locations and environments.
The soil microbiome is one aspect of this environmen-
tal variation and interaction with the local microbiome
contributes some component of site-to-site variability
in plant performance. From this perspective, selection
for consistent plant performance across locations may
have the effect of reducing host plant sensitivity to
microbial activities. For instance, mycorrhizal depen-
dence has been shown to be reduced in modern wheat
cultivars relative to older landraces (Hetrick et al.
1993). To the extent that this has occurred, genes
mediating beneficial interactions with associated
microbes (Smith and Goodman 1999; Smith et al.
1999; Schweitzer et al. 2008) may need to be re-
introduced into elite germplasm.

It is also possible that in modern cultivars the poten-
tial for benefit from microbial activity has been reduced
in an absolute sense. For instance, although microbial
production of phytohormones may benefit plant perfor-
mance in some cases [reviewed in (Tikhonovich and
Provorov 2011)], this microbial function overlaps with
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innate plant functions. Overlapping function suggests
that the beneficial microbial activity could be supersed-
ed by fine-tuning of the plant’s own regulatory systems
to optimize hormone production and distribution for
best performance in a given environment. Importantly,
however, many microbial functions are unique rather
than redundant with innate plant capabilities. Thus con-
sidering interactions with microbial partners has the
potential to enhance plant performance beyond the ge-
netic capability of the host plant in isolation. Most
notably, soil microbes possess novel enzymes for scav-
enging nutrients from soil and liberating nutrients from
organic to mineral forms (Cairney 2011; Gaur and
Khare 2011). Breeding for plants that are able to
harness beneficial microbial functions could enhance
agricultural sustainability: for instance, plants that
more efficiently exploit microbial phosphorus solubi-
lization may continue to yield well even when less
exogenous phosphorus is applied.

Context dependence is an important characteristic
of many microbially mediated benefits to plants. For
instance, microbial interference with plant hormone
signaling may be beneficial under drought conditions
(Shaharoona et al. 2011), but is not necessarily so
under other conditions. Thus, for optimal performance,
plants should be able to quickly recruit or enhance
particular microbial functions under conditions where
they will have the greatest net benefit. Such adaptive
plasticity in the host plant may be accommodated by the
spatial and temporal variability that is already known to
exist in root exudation (Baudoin et al. 2002; Mougel et
al. 2006). Ideally, plant breeding would not only em-
phasize the ability to foster a beneficial microbiome,
but also the ability to maximize net benefit by engag-
ing microbial partners in a context-dependent fashion.
For instance, pathogen attack has been shown to
stimulate malic acid exudation by Arabidopsis
thaliana, which in turn promotes colonization and
biofilm formation by a beneficial Bacillus strain
(Rudrappa et al. 2008).

In the future, cultivars or transgenic plants could be
developed with exudation characteristics that encour-
age beneficial microbiome characteristics and micro-
bial functions, while discouraging pathogens. Before
this is possible, however, we will need a much more
detailed understanding of the relative impact of vari-
ous exudate components on shaping the soil micro-
biome. Comparative studies of plant hosts that differ
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in specific root exudation characteristics have begun
to address this deficit. For example, root exudates of
an Arabidopsis mutant were found to contain relative-
ly more phenolic compounds and fewer sugars com-
pared to the wild-type plant, and this change lead to a
relatively greater abundance of beneficial soil bacteria,
including plant-growth-promoting rhizobacteria,
nitrogen-fixing bacteria, and bacteria involved in
heavy metal remediation (Badri et al. 2009). However,
much more work of this sort will need to be done
before plant breeders will have clear and accessible
targets for creating plants that foster their own benefi-
cial microbiome.

At the same time, manipulating root exudation is
likely to create tradeoffs and may produce unexpected
or undesirable outcomes. This is a natural result of our
very incomplete understanding of the complex interac-
tions that take place in the rhizosphere and of the fact
that any one compound is likely to have multiple roles
or activities. The strigolactones serve as a helpful illus-
tration of this difficulty. These compounds were origi-
nally identified as germination stimulants for parasitic
weeds [reviewed in (Xie et al. 2010)]. In isolation, this
function would have suggested that breeding should
attempt to eliminate the production of these compounds.
However, it was subsequently discovered that strigolac-
tones also play a role in establishment of mycorrhizae
(Akiyama et al. 2005; Besserer et al. 2006). More re-
cently, these compounds have been shown to be plant
hormones playing a role in branching (Gomez-Roldan et
al. 2008; Umehara et al. 2008). Since our knowledge is
always incomplete, we may expect unexpected out-
comes of breeding for particular exudation traits.

It should also be noted that additional, previously
unconsidered mechanisms might exist for plants to ben-
efit from associated rhizosphere microbes. For instance,
evidence has recently been proposed to demonstrate
that plant roots may engulf microbial cells for digestion
and use as a nutrient source (Paungfoo-Lonhienne et al.
2010). Thus future research is likely to suggest novel
targets for plant breeding in order to enhance plant
access to nutrient pools, improving plant growth perfor-
mance in limited-input agricultural systems.

Direct microbiome manipulation

In the near term, a more feasible way to harnessing
beneficial microbial functions in agricultural systems
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Fig. 3 A variety of strate- Reducing chemical inputs and increasing yields

gies could be used to

promote beneficial services Plant Strategies
provided by soil microbial Chemical
communities, with the aim ] signaling to
of reducing chemical inputs 0 d“:i*c'r’gggi“"a'
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ing crop yields. Manipulat-
ing plant traits that are
related to interactions with
microbes (left side), or ma-
nipulating soil microbial O F N D:‘;ef’:;z:;i‘:ld;::“
communities directly (right 7 ) T o
side), could improve condi- '
tions for plant productivity
(center mechanisms)

Targeted resource
provision for
selective enrichment
of particular
microbes

would be to attempt to manipulate the soil microbiome
directly (Fig. 3). Inoculation of microorganisms has
been used for some time in agriculture. However,
new approaches may enhance the success of intro-
ducing novel microbes into soil. For instance, delib-
erately imposing disturbances may increase soil
vulnerability to invasion and enhance the establishment
of exogenous beneficial organisms. This might take the
form of disruption by fungicide application, crop rota-
tion or tilling prior to the application of plant growth
promoting rhizobacteria (Fliessbach et al. 2009), my-
corrhizal fungi (Gosling et al. 2006), or other beneficial
microbes in the form of active compost or bio-
preparations (Pérez-Piqueres et al. 20006).

An interesting approach would be to develop con-
sortia of fungi and bacteria that are evolutionarily
adapted to particular host plants. If applied with the
plant, such consortia may serve to reduce the period of
time required for the rhizosphere microbiome to
achieve niche saturation and competitive exclusion
of pathogens.

Hybrid approaches are also possible, tweaking both
plant and microbiome characteristics in order to
achieve a better fit. Attempts have been made to create
plant genotypes that are tailored to particular microbes,
such as engineering plants to produce novel carbon
sources which are readily available to an inoculant
strain (Savka et al. 2002). Alternately, information on
the identity of beneficial microbial taxa could be used

Microbial Strategies

Improved Application of
1 access to soil microbial inoculants
. to fill empty niche
nutrient pools e
Reduced
disease
incidence and o ]
severit isruptions to
y facilitate
introduction of
Increased beneficials
stress
tolerance
Improved Selection for

optimal plant

rhizosphere w
pairing

colonization

to deduce probable substrates that could be supplied
exogenously or via plant root exudation in order to
enrich those particular taxa. For instance, recent work
has identified microbial taxa and antibiotic biosyn-
thetic genes associated with disease suppression
(Mendes et al. 2011). Knowledge of the metabolic
capacity of these organisms could be used to develop
strategies for selective enrichment. At an even finer
level, an understanding of the regulation of antibiotic
biosynthetic gene expression in these organisms may
allow for manipulation of relevant microbial functions
through the introduction of appropriate signaling
molecules.

Conclusion

Chemical pollution, a growing human population,
and the depletion of resource and energy reserves
have accentuated the need for sustainable agricul-
tural practices. One path toward sustainability
involves a greater reliance on the beneficial func-
tions afforded by the soil microbiome. We have
highlighted areas of research that are vital to our
ability to more fully exploit the plant-associated
microbiome in agricultural crop production, wheth-
er through direct manipulation, or by using crop
plants as selective agents to enrich for beneficial
microbes.
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Box 1- Priorities for future research. Greater research attention should be given to
these topic areas in order to advance the goal of more fully exploiting beneficial
microbial functions in agriculture.

Make positive interactions with the rhizosphere microbiome an explicit goal of plant
breeding, and expand our understanding of the mechanistic basis for such interactions.
Understand the impacts of plant genotype on the rhizosphere microbiome and on the
ability of plants to interact with beneficial microbes.

Develop strategies to selectively enrich for indigenous microbes performing beneficial
functions.

Identify root exudate components that have the largest or most consistent effects on
shaping microbial communities. Clarify the relative importance of exudate identity,
quantity, and diversity.

Clarify the importance of chemical signaling (vs. resource provision) in plant-driven
structuring of the rhizosphere microbiome.

Expand study of mechanisms and extent ofplant impacts on the bulk soil microbiome.
Understand the extent and significance of microbial adaptation to host plants.

Expand study of naturally occurring positive plant-soil feedbacks to draw new insights
for agriculture.

Investigate the importance of broad microbiome characteristics (such as richness and

evenness) in promoting plant health.
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