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Abstract
Background Zinc (Zn) deficiency is one of the impor-
tant abiotic factors limiting rice productivity world-
wide and also a widespread nutritional disorder
affecting human health. Given that rice is a staple for
populations in many countries, studies of Zn dynamics
and management in rice soils is of great importance.
Scope Changing climate is forcing the growers to
switch from conventional rice transplanting in flooded
soils to water-saving cultivation, including aerobic
rice culture and alternate wetting and drying system.

As soil properties are changed with altered soil and
water management, which is likely to affect Zn solu-
bility and plant availability and should be considered
before Zn management in rice. In this review, we
critically appraise the role of Zn in plant biology and
its dynamics in soil and rice production systems. Strat-
egies and options to improve Zn uptake and partition-
ing efficiency in rice by using agronomic, breeding
and biotechnological tools are also discussed.
Conclusions Although soil application of inorganic
Zn fertilizers is widely used, organic and chelated
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sources are better from economic and environmen-
tal perspectives. Use of other methods of Zn ap-
plication (such as seed treatment, foliar application
etc., in association with mycorrhizal fungi) may
improve Zn-use efficiency in rice. Conventional
breeding together with modern genomic and bio-
technological tools may result in development of
Zn-efficient rice genotypes that should be used in
conjunction with judicious fertilization to optimize
rice yield and grain Zn content.

Keywords Zinc . Rice . Production systems .

Biofortification . Soil fertilization . Seed priming

Introduction

Rice (Oryza sativa L.) is one of the major staples,
feeding more than half of the world population. It is
grown in more than 100 countries, predominantly in
Asia. Rice provides 21 % of energy and 15 % of
protein requirements of human populations globally
(Maclean et al. 2002; Depar et al. 2011).

To feed ever-rising world population, which is es-
timated to be 10 billion by the end of this century (Lal
2009), an increase in rice production per unit area is
direly needed (Von Grebmer et al. 2008). Although
high-yielding input-responsive varieties are available,
a large yield gap exists between the farmers’ fields and
research stations in developing countries. In addition

to adequate irrigation water, balanced supply of macro
and micronutrients is vital for bridging this yield gap.
After nitrogen (N), phosphorus (P) and potassium (K),
widespread zinc (Zn) deficiency has been found
responsible for yield reduction in rice (Fageria et
al. 2002; Quijano-Guerta et al. 2002). Zinc defi-
ciency symptoms in rice were observed for the
first time in calcareous soils of northern India
(Nene 1966; Yoshida and Tanaka 1969).

Globally, more than 30 % of soils are low in
plant-available Zn (Hacisalihoglu and Kochian
2003; Alloway 2008; Fig. 1). Compared with
legumes, cereals are generally more prone to Zn
deficiency leading to a substantial reduction in
grain yield and nutritional quality (Cakmak et al.
1999). Nonetheless, frequency of Zn deficiency is
greater in rice than other crops, with more than
50 % of the crop worldwide prone to this nutrition-
al disorder (Dobermann and Fairhurst 2000; Fageria
et al. 2002; Quijano-Guerta et al. 2002). Hence, Zn
deficiency is considered one of the most important
nutritional stresses limiting irrigated rice production
in Asia at present (Quijano-Guerta et al. 2002).

Plants grown on soils low in available Zn generally
produce low yield with poor nutritional quality (Welch
and Graham 1999). For instance, a significant de-
crease (80 %) in grain Zn concentration was observed
in cereals grown on soils with low plant-available Zn
(Cakmak et al. 1997). This decrease in grain Zn also
reduces its bioavailability in humans and may

Fig. 1 Zinc deficiency in
crops around the world:
major areas of reported
problems (adapted from
Alloway 2008 with
permission)
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contribute to Zn deficiency in susceptible human
populations (Cakmak 2008; Hussain et al. 2012).
Indeed, Zn deficiency is becoming one of the
major public health problems in many countries,
especially where people rely on cereal-based food
(Welch 1993; Cakmak 2008).

Recently, water crisis has caused moves towards
water-saving cultivation, from flooded to alternate
wetting and drying to aerobic rice systems (Farooq et
al. 2009, 2011a). Importantly, adoption of these water-
saving systems may decrease Zn availability (Gao et
al. 2006). Amongst several causal factors of low plant
availability of Zn in paddy fields, the most important
ones are high soil pH and high carbonate content as
well as low redox potential (Forno et al. 1975; Mandal
et al. 2000; Alloway 2009). Widespread occurrence of
Zn deficiency in traditional lowland (Dobermann and
Fairhurst 2000) and newly developed alternate wetting
and drying or aerobic rice systems (Sharma et al.
2002; Gao et al. 2006) necessitates harnessing of
breeding efforts to increase Zn uptake and utilisation
in these production systems (Quijano-Guerta et al.
2002; Singh et al. 2003).

Application of Zn fertilizers to soils is a general
strategy to cope with Zn deficiency (Rengel et al.
1999) and to increase grain Zn concentration (Yilmaz
et al. 1997; Jiang et al. 2008b; Hussain et al. 2012), but
this approach is not always optimal from the economic
perspectives (Graham and Rengel 1993) and may be
complementary to the breeding approaches (Cakmak
2008). This necessisates development of permanent
and plant-based improvement in Zn uptake and utiliza-
tion through a breeding programme. Moreover, in the
past, little research attention has been given to enrich-
ment of cereals grains, but biofortification of staple
crops with target micronutrients (Zn, iron and vitamin
A) is now a key focus for the Consultative Group on
International Agricultural Research (CGIAR), through its
HarvestPlus programme (Cakmak 2008). Existence of
large genotypic variation (13.5–58.4 mg kg-1) in Zn
grain concentration (Yang et al. 1998; Graham et al.
1999; Gregorio 2002; Shi et al. 2009) and differential
genotypic responses to Zn deficiency also suggest the
feasibility of conventional breeding for development
of rice cultivars with high yield and high grain Zn
density in these rice systems (Welch 2002; Ismail et
al. 2007; Wissuwa et al. 2008).

A number of reviews are available on Zn nutrition
in crops (Anderson 1972; Hacisalihoglu and Kochian

2003; Broadley et al. 2007; Cakmak 2008; Alloway
2009; Gao et al. 2009b) however critical reviews on
studies on soil Zn dynamics and its management in
different rice production systems is lacking. In this
review, we discussed the role of Zn in plant biology,
and Zn dynamics in soil and different rice production
systems. Relative efficiency of different sources of Zn
applied by various methods in improving soil and
plant Zn availability in rice-producing systems are also
discussed. Further, agronomic management and breed-
ing options to improve Zn uptake and partitioning into
rice grain for improved quantity and nutritional quality
are presented.

Zinc in plant biology

Essentiality of Zn as a micronutrient for higher plants
was established for the first time by Sommer and
Lipman (1926). Zinc is generally taken up as free
divalent cation (Zn2+), but at high pH it may be
absorbed as monovalent cation (ZnOH+) (Marschner
1995). Zinc uptake across root plasma membrane is
carrier-mediated secondary active transport. Metal
transporters of ZIP (Zinc Iron Permeases) family are
the primary uptake system in plants, but channel pro-
teins might also be present (Palmgren et al. 2008; Lee
et al. 2010a, b). However, it is not yet clear to what
extent specific membrane channels and specific trans-
porters are involved in Zn transport into root cells
(Fox and Guerinot 1998; Lee et al. 2010a, b).

Zinc is involved in a number of physiological pro-
cesses of plant growth and metabolism including en-
zyme activation, protein synthesis, metabolism of
carbohydrates, lipids, auxins and nucleic acids, gene
expression and regulation and reproductive develop-
ment (pollen formation) (Marschner 1995; Cakmak
2000a, b; Mengel and Kirkby 2001; Chang et al.
2005). In the following section, a brief overview of
Zn in plant systems is discussed.

Enzyme and protein synthesis

Zinc is essential for activity of a number of plant
proteins (Broadley et al. 2007) mainly because of its
role in their stabilization (Christianson 1991). Fox and
Guerinot (1998) asserted that Zn is required for func-
tioning of more than 300 enzymes. Zn is a structural
part of carbonic anhydrase, alcohol dehydrogenase,
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Cu/Zn-superoxide dismutase and RNA polymerase)
and serves as a cofactor for all 6 classes of enzymes
(oxidoreductases, transferases, hydrolases, lyases,
isomerase and ligases) (Auld 2001; for detailed review
see Broadley et al. 2007). A number of molecules
associated with DNA and RNA synthesis are Zn-
metalloenzymes (Wu et al. 1992; Englbrecht et al.
2004; Broadley et al. 2007). Auxin synthesis in plants
is also controlled by Zn (Skoog 1940); hence, its
deficiency leads to leaf distortion and a shortening of
internodes (Irshad et al. 2004).

Structural and functional integrity of plasma
membranes

Zn is invoved in maintaining the structural and
functional integrity of biological membranes
(Brown et al. 1993; Marschner 1995; Sadeghzadeh
and Rengel 2011) mainly due to its binding to SH-
containing compounds (Willson 1988; Rengel
1995a, b). Being an integral part of Cu/Zn-super-
oxide dismutase (SOD), Zn is involved in detoxi-
fying reactive oxygen species (Srivastava and
Gupta 1996; Cakmak and Marschner 1998) and
preventing damage to membrane lipids and sul-
phydryl groups in Zn-deficient plants (Cakmak
2000a, b). It is important to note that the impair-
ment of membranes caused by Zn deficiency can-
not be reversed unlike that caused by calcium (Ca)
deficiency (Welch et al. 1982).

Cell division and reproduction

Auxins are a group of growth regulators known to
play a key role in cell division and elongation
(Teale et al. 2006). Stunted growth and small leaves
are the most distinct Zn deficiency symptoms
(Irshad et al. 2004), which are possibly due to
changes in auxin metabolism, particularly of IAA
(Alloway 2003). Brown et al. (1993) reported that
addition of Zn to rice plants grown on calcareous
soils significantly increased tryptophan concentra-
tion (a precursor for the biosynthesis of IAA) in
rice grains. Moreover, the plants deficient in Zn had
decreased pollen production, leading to an increased
proportion of empty grain positions (Marschner
1995). Zinc is also an integral part of transcription
factors involved in cell proliferation and differenti-
ation (Vallee and Falchuk 1993).

Photosynthesis

Zinc is a constituent of carbonic anhydrase and is re-
quired for the activity of ribulose 1,5-bisphosphate car-
boxylase/oxygenase (Rubisco) Srivastava and Gupta
1996; Storey 2007), the photosynthetic enzymes cata-
lyzing the diffusion of CO2 through the cell to the
chloroplasts (Hatch and Slack 1970). Zn-deficient plants
usually have reduced leaf chlorophyll (Chl) concentra-
tion and lower Chl a:b ratio, which indicates damage to
intrinsic quantum efficiency of the photosystem-II (PS-
II) units (Chen et al. 2008a). It can be attributed to
reduced antioxidant enzyme activities and high oxi-
dative stress damage in chloroplasts due to a block-
age of energy spillover from PS-II to photosystem-I
(PS-I) (Chen et al. 2009). Such damage to photo-
synthetic centers, decreased leaf photosynthetic ca-
pacity due to a decreased number of PS-II units
per unit leaf area, making them susceptible to photo-
damage (Chen et al. 2008b).

In Zn-deficient plants, a decrease in CO2 assimila-
tion is primariliy due to ROS-induced damage to the
photosynthetic apparatus (Sasaki et al. 1998) and a
decrease in Rubisco activity (Marschner 1995; Sasaki
et al. 1998). Nonetheless, accumulation of saccharides
in leaves (Marschner 1995; Cakmak 2000a, b) due to a
decline in CO2 concentration and stomatal conduc-
tance may be a possible reason for decreased photo-
synthetic rate under Zn deficiency (Marschner 1995).

Zinc in soils and its dynamics in rice production
systems

The concentration of Zn in different soils mainly
depends on the parent material, atmospheric deposi-
tions and human activities (addition of farm yard
manures, fertilizers, sewage sludge and industrial
waste products) (Alloway 2003). Zinc is present in
soil in a number of chemical forms with varying
solubilities (Marschner 1995). These forms include
soluble Zn present in soil solution (water soluble),
adsorbed on exchange sites (exchangeable), associated
with organic matter, co-precipitated as secondary min-
erals or associated with sesquioxides and as structural
part of primary minerals (Shuman 1991). These dif-
ferent forms control solubility and availability of Zn to
plants (Almendros et al. 2008). Zinc present in the
soil solution is readily available for plant uptake
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(Marschner 1995). However, adsorbed Zn is in
equilibrium with solution Zn, controlling Zn avail-
ability by adsorption and desorption reactions
(Takkar and Sidhu 1977). Soil chemical properties
i.e. pH, redox potential, organic matter, pedogenic
oxide and soil sulfur contents have strong influ-
ence on these adsorption-desorption reactions and
play a critical role in regulating Zn solubility and
fractionation in soils (Alloway 2009).

Zinc deficiency is common in alkaline soils because
its availability is inversely related to soil pH. Hence,
Zn deficiency has frequently been recorded on calcar-
eous soils of the Indo-Gangetic plains with pH>8.0
(Qadar 2002; Srinivasara et al. 2008). In addition, in
peat and coastal saline soils, soil saturation with water
is the primary factor responsible for Zn deficiency
(Neue and Lantin 1994; Quijano-Guerta et al. 2002).
Average concentration of water-soluble Zn in the
soil solution is low (4×10-10 to 4×10-6 M; Barber
1995) and in uncontaminated soils ranges from
17–160 μg kg-1 (Reed and Martens 1996).

Rice cultivation is in transition in many rice
growing parts of the world, from flooding to aer-
obic culture, alternate wetting and drying, raised
beds or other systems of rice intensification. This
shift towards water-saving rice cultivation may
reduce soil water content, and soil factors affecting
crop Zn availability are expected to change (Gao
et al. 2006) and have a major impact on rice
production in different systems. In the following
sections Zn availability and its dynamics in differ-
ent rice production systems are discussed.

Conventional flooding

Lowland rice with continuous flooding is commonly
practiced in irrigated areas of the world, but predom-
inates in Asia where it represents 70 % of the total rice
production. Traditionally, rice is grown by transplant-
ing seedlings to a paddy field. Land preparation
involves soaking followed by plowing and harrowing
of saturated soils (Farooq et al. 2007). The field is kept
under submerged conditions for most of the crop-
growing season (Bouman and Tuong 2001).

Zinc deficiency in rice occurs after transplanting
and is a widespread phenomenon limiting productivity
under lowland conditions (Neue and Lantin 1994;
Quijano-Guerta et al. 2002). After flooding, rice fields
undergo different physical, chemical and biochemical

changes, which are considered important in determining
suitability for rice production (De Datta 1981). Gener-
ally, submergence of a well-drained paddy soil depletes
oxygen, decreases redox potential and increases pH in
acidic soils (Renkou et al. 2003), whereas in alkaline or
calcareous soils, pH is decreased followed by con-
comitant chemical reduction of some macro and
micronutrients (Renkou et al. 2003). Nonetheless,
extent of these changes is also associated with soil
physical properties, water regime and temperature
in the rhizosphere (Mikkelsen and Kuo 1976).
Zinc concentration in the soil solution decreases
after flooding, though it may temporarily increase
immediately (Mikkelsen and Kuo 1976), but equi-
librates around 0.3–0.5 μM (Forno et al. 1975).

This decrease in available-Zn concentration is usu-
ally associated with high P availability, precipitation
of Zn(OH)2 with an increase in pH, formation of
insoluble franklinite (ZnFe2O4) (Sajwan and Lindsay
1986), ZnS (Kittrick 1976) in acidic soils and ZnCO3

in calcareous soils (Bostick et al. 2001). There is
increased Zn adsorption by oxide minerals such as
sesquioxides, and also carbonates, soil organic matter
and clay minerals, subsequently lowering uptake by
rice roots. The rice seedlings become susceptible to Zn
deficiency within 2–3 weeks after transplanting and
show stunted growth after recovery, with delayed ma-
turity and reduced yield (Neue and Lantin 1994).

Soil sulphur content and redox potential can
also influence soil Zn availability. Low redox po-
tential favors the precipitation of Zn as ZnS due to
reduced soil conditions and thus decreases the Zn
availability to plants in calcareous soils (Johnson-
Beebout et al. 2009).

Low available-Zn concentration, and high contents
of bicarbonate and organic matter, and high Mg:Ca
ratio associated with prolonged submergence are other
soil factors affecting Zn availability to rice (Neue and
Lantin 1994). Zinc deficiency in rice occurs mainly in
calcareous, alkaline soils and gleysols due to high
bicarbonate contents or high soil pH (Qadar 2002).
In fact, high concentration of soil carbonates inhibits
the root growth in rice (Yang et al. 1993) and is the
primary factor inhibiting Zn translocation from roots
to shoots (Forno et al. 1975).

Dobermann and Fairhurst (2000) reported that ac-
cumulation of organic acids in root cells through stim-
ulation of phosphoenol pyruvate carboxylase in the
cytoplasm appeared to inhibit root growth in lowland
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rice with high bicarbonate contents or pH and resulted
in early development of Zn deficiency symptoms un-
der reduced soil conditions (Yang et al. 1994). Poor
root growth would result in the Zn requirement not
being satisfied/achieved, thus causing plant deficiency
under anaerobic conditions (Lockard et al. 1972).
However, this issue is still debatable, and underlying
mechanisms are poorly understood: whether high pH
and bicarbonates alone or in combination have an
inhibitory effect on rice root growth and accumulation
of organic acids.

Nutrient imbalance due to antagonistic effects of
Fe, Mn, P and Cu may be more important than bicar-
bonate concentration for decreased Zn concentration
in shoots (Cayton et al. 1985; Qadar 2002) in calcar-
eous soils. High bicarbonates also inhibit Zn uptake
(Hajiboland et al. 2005), but the effect of nutrient
imbalance on rice growth is still unresolved and might
be due to reduced activity of Cu/Zn superoxide dis-
mutase (Neue and Lantin 1994; Cakmak et al. 1997).
Nonethless, high exudation of organic acid anions, par-
ticularly citrate, appears to be related to Zn deficiency
tolerance in rice genotypes under lowland conditions
(Hoffland et al. 2006). Rice releases phytosiderophores
in small amounts (Takagi 1976; Suzuki et al. 2008),
which are important in regulating Zn uptake by plants
(Arnold et al. 2010). Recently, Morete et al. (2011), in
an agar nutrient solution, found large variation for
grain Zn among rice genotypes with sufficient
(18–38.3 mg kg-1) and deficient Zn tissue concen-
tration (11.8–31.8 mg kg-1) under flooded condi-
tions. The Zn efficiency varied with crop stage
with some of the genotypes susceptible at early vegeta-
tive and some recovered at peak stage. A continous
decrease in redox potential was observed after trans-
planting under flooded condition and inverse relation-
ship was also reported between grain Zn and grain
weight (Morete et al. 2011). This suggests that the
donors with least dilution effects on yield should be
identified for developing high grain Zn genotypes.

Aerobic culture

A newly developed water-saving “aerobic rice cul-
ture” is a system in which rice cultivars adapted to
aerobic field conditions are grown like other upland
crops such as maize and wheat (Bouman et al. 2005;
Prasad 2011). Studies on aerobic rice have mostly
focused on the yield potential and water saving and

are being practiced in some Asian countries such as
China, Phillipines and India (Yang et al. 2005; Gao et
al. 2012). It is important to note that several reports
indicate the development of Zn deficiency under up-
land and/or aerobic conditions (Fageria 2001a, b; Gao
et al. 2005; Farooq et al. 2011a).

Aerobic production would likely change many fac-
tors controlling Zn availability in the rhizosphere, such
as bulk soil pH may decrease or increase depending on
the original soil pH (Liu 1996, Ponnamperuma 1972),
and a concomitant increase in the redox potential (Gao
et al. 2002) causes Fe or Mn oxidation to form their
oxides onto which Zn might be adsorbed. Increased
oxidation under aerobic condition will decrease Zn pre-
cipitation as ZnS (Carbonell-Barrachina et al. 2000).
Population and activity of Fe oxidizing/reducing bacte-
ria may increase under aerobic condition (Chen et al.
2008a, b, c) with significant impact on Zn concentration
and speciation in soil solution. Enhanced nitrification
causing plants to take up NO3

- instead of NH4
+, the

consequent exudation of OH- increasing rhizosphere
pH and thus decreasing the Zn availability (Gao
2007). Additionally, a decrease in organic matter,
onto which Zn can be adsorbed, is due to oxidiza-
tion in the aerobic system.

Transpiration and diffusion had a significant role in
Zn uptake and transport in plants. Under aerobic con-
ditions, a decrease in soil water content may restrict
Zn transport toward roots (Yoshida 1981) because Zn
movement in soil is mainly controlled by diffusion
(Marschner 1995). A decrease in transpiration rate
influences the mass flow, resulting in reduced Zn
transport towards plants and loading into grains as
well. In the field experiments, decreased shoot Zn
concentration, grain yield, and Zn harvest index were
noted in the aerobic rice system; hence, introduction of
aerobic system on calcareous soils with high pH may
exacerbate Zn deficiency (Gao et al. 2005, 2006).

Substantial variation amongst aerobic rice geno-
types has been observed for Zn uptake efficiency in
low-Zn soils, with root uptake being an important
determinant of Zn uptake and translocation from roots
to shoot (Gao et al. 2005). Nonetheless, the mecha-
nisms by which these genotypes thrive on Zn-deficient
soils are not well understood, and further evaluation of
rice genotypes for their responses to Zn deficiency
under different water regimes is required.

Rhizosphere processes due to root induced changes
under aerobic conditions such as increased root
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acquisition area, role of mycorrhiza, particularly the
changes in pH and root released exudates play important
role in Zn uptake by rice roots under aerobic conditions
(Gao et al. 2012). Hajiboland et al. (2005) also estab-
lished the role of root-exuded low-molecular-weight
organic compounds into the rhizosphere in Zn mobili-
zation in rice. Organic acid anions can increase Zn
availability due to their complexing capacity as well as
because of being frequently exuded together with pro-
tons (to balance charges), thereby reducing rhizosphere
pH (Jones and Darrah 1994).

Genotypic variation in root exudation of organic
acid anions among rice cultivars under aerobic con-
ditions was revealed in a rhizotron and solution culture
experiments: Zn-efficient genotypes released more
malate than Zn-inefficient ones, but no direct evidence
for Zn mobilization by increased malate exudation in
rice was provided. Hence, such variation in plant Zn
uptake efficiency cannot solely be explained by dif-
ferential malate exudation in response to Zn deficiency
among rice genotypes (Gao et al. 2009a, b). However,
little or no evidence of root exudation of organic acid
anions or phytosiderophores in aerobic field rather
than flooded conditions under Zn deficiency was
reported. Mechanisms of Zn transport towards roots
need to be explored and may have major implications
in the rhizosphere processes for Zn mobilization to-
ward roots and plant uptake.

Alternate wetting and drying

Alternate wetting and drying (AWD) is a water-saving
rice production system that reduces water inputs by 5–
35 % (Mao et al. 2000; Bouman and Tuong 2001), with
maintained or even increased rice yields compared with
the conventional flooding system (Mao 1993), and is
being widely adopted in China (Li and Barker 2004) and
practiced in India and the Philippines (Mao et al. 2000;
Bouman and Tuong 2001).

Under AWD, after seedling transplantion into
puddle soils, the field is kept flooded for 3–5 days;
the surface is then allowed to dry for 2–4 day and
is re-flooded when groundwater falls to 15–20 cm
below the soil surface (Farooq et al. 2009). De-
creased concentration of available Zn was ob-
served in soils with frequent water saturation; in
addition, an application of organic matter may
further decrease Zn concentration (Haldar and
Mandal 1979). The increased Fe, Mn and P

contents and microbiological immobilization cou-
pled with high organic matter application might be
possible reasons for a decrease in available Zn. In
alkaline soils and those rich in organic matter, Zn
and P availability may be decreased by adsorption
to amorphous Fe hydroxides and carbonates, par-
ticularly under fluctuating water regimes (Kirk and
Bajita 1995).

Alternate wetting and drying is a promising rice
production system in the intensive-agriculture regions
of the world, potentially resulting in decreased water
and labor inputs and lowered methane emissions.
However, fluctuating water regimes pose a threat of
increased nitrous oxide emissions (Dittert et al. 2002)
and also require additional measures to maintain Zn
availability to rice.

Methods of Zn fertilizer application

Zinc application methods and sources are aimed at
improving Zn availability for plant uptake (Tables 1
and 2). Zn can be applied to soil, seed and leaves
(Johnson et al. 2005) and by dipping seedlings into a
fertilizer solution. Zn use efficiency is often deter-
mined based on the ratio of shoot dry matter or grain
yield produced under Zn deficiency to that produced
with Zn fertilization (Graham 1984). Generally, Zn
applied to rice is absorbed through roots or leaves
(Jiang et al. 2007), with grain Zn mainly originat-
ing from root-applied Zn after flowering (Verma
and Tripathi 1983). Different Zn application meth-
ods are discussed below.

Soil Zn fertilization

The efficiency of applied Zn fertilizer is reduced
under continuous flooding due to formation of
insoluble ZnS and zinc franklinite (ZnFe2O4)
(Ponnamperuma 1972; Sajwan 1985), ZnCO3 formation
due to organic matter decomposition (Bostick et al.
2001) and Zn(OH)2 formation in alkaline soils (Brar
and Sekhon 1976). Most common method of Zn fertil-
ization is through soil application. Zinc can be applied to
soil by broadcasting, banding in vicinity of seed, or via
irrigation. Zinc is commonly applied in rice under low-
land condition before flooding or after transplanting to
prevent Zn deficiency and for increased grain yield
(Dobermann and Fairhurst 2000; Naik and Das 2007).
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Selection of appropriate Zn sources for soil appli-
cation can also be an alternative strategy to improve
plant availability of Zn under lowland condition. Zn
Fertilizers with good solubility (such as Zn-EDTA and
ZnSO4) generally results in greater Zn transport to the
roots compared with insoluble ZnO or fritted Zn
(Giordano and Mortvedt 1972; Kang and Okoro
1976). The greater soil transport of Zn increased the
possibility of Zn being intercepted by the fast-growing
roots, which might have been associated with a greater
effect of banding Zn-EDTA than fritted Zn. However,
results may vary according to the soil and application
methods as Kang and Okoro (1976) and Gupta et al.
(1994) found no difference for dry matter production
among placement methods with Zn-EDTA. However,
when applied as fritted Zn, mixing the soil with fertil-
izer was better than broadcast (no mixing) and band-
ing. In terms of Zn uptake by rice, the placement
methods were effective in order of mixed > broad-
cast > banded. Similar surface application of Zn
can be better utilized by rice than deep placement
(Giordano and Mortvedt 1972) in terms of Zn-use
efficiency and dry matter production of rice. Khan
et al. (2003) in a field experiment on an alkaline
calcareous soil found increased paddy yield by each
of the application method, but a higher increase
with Zn soil application in comparison with root
dipping or foliar application (Khan et al. 2003).

In addition to placement and source, time of Zn
application can also affect the availability under low-
land conditions as well in transition towards water-
saving rice cultivation (Beebout et al. 2011; Rehman
2012). In a field experiment, Naik and Das (2007)
found that split application of ZnSO4 was better than
just basal application, whereas split application of Zn-
EDTA did not show any significant differences in rice
yield compared with the single basal dose.

In greenhouse experiments using high-grain-Zn
genotypes on silt clay loam soil with initial DTPA-
extractable Zn of 0.7 mg kg-1, an application of 20 kg
Zn ha-1 at grain filling in nearly all soils increased the
grain Zn content from 30 to 39 mg kg-1 (Beebout et al.
2010). Similarly, in a field paddy experiment on silty
clay (pH 6.3) with initial flooded-soil DTPA-extractable
Zn of 0.8 mg kg-1, Zn fertilization with 10 kg Zn
ha-1 at mid-tillering had a small positive effect on
grain Zn with a range of 21–24 mg kg-1, whereas
similar grain Zn concentration was found in alter-
nate weting and drying and flooded rice systems

using a locally-adapted cultivar not bred for high
grain Zn (Beebout et al. 2010).

In two-year field experiments in slightly alkaline
sandy clay soils with adequate Zn, Rehman (2012)
found increased soil and plant Zn contents when
ZnSO4 was applied at tillering or panicle initiation
than applied at transplanting or without Zn supply
under flooded, alternate wetting and drying and direct
seeded aerobic condition. An increase in grain Zn over
basal was 2.5, 2.8 and 2.3 times in flooded, alternate
wetting and drying and direct seeded aerobic systems,
respectively, when soil Zn fertilization was applied at
panicle initiation. This increase was associated with
high soil Zn availability, improved plant Zn uptake
and high remobilization from leaves during grain filling
in these rice systems (Rehman et al. 2012). However, a
marginal increase in grain Zn was also observed with
soil Zn applied at transplanting under lowland condi-
tions (Srivastava et al. 1999).

In a pot study with five genotypes including two
aerobic, three soil pH levels (5.0, 6.5 and 7.5) and two
water regimes (flooded and aerobic), high plant Zn
uptake was found in aerobic genotypes, with the effect
of moisture regime on uptake and tissue Zn concen-
tration being more signficant at high soil pH. Irrespec-
tive of water regimes, high Zn uptake in all genotypes
was recorded at low soil pH (Subedi et al. 2010).

Genotypic variation in rice grain Zn concentration
might be due to the difference in physiological pro-
cesses determining Zn accumulation in grains (Gao et
al. 2012). Moreover, basal Zn application at trans-
planting can be effective in increasing crop yield, but
may be insufficient at flowering stage for increasing
grain Zn concentration. Under water-saving rice sys-
tems, due to reduced Zn diffusion with limited mois-
ture, Zn should be applied at later growth stages when
redox potential is sufficiently high not to affect Zn
availability (Gao et al. 2010a, b). However, regarding
water-saving cultivation, no recommendation cur-
rently exists for Zn application and combination of
management practices like time, source and rate of
application to achieve synchronization with the
crop demand when high plant Zn concentration is
needed. Also, genotypes particularly developed for
high grain Zn concentration should be developed
for a diverse range of rice systems (Jiang et al.
2008a; Stomph et al. 2009).

Even though soil application is a promising strategy
for improving Zn concentration in tissues as well as
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increasing growth and grain yield in rice (Khan et al.
2003), such application is not effective in increasing
grain Zn concentration (Nattinee et al. 2009), and may
not be economically favourable because of high cost
of the most effective (chelated) Zn fertilizers. Non-
ethless, it should be considered as a complementary
approach to increasing Zn accumulation in crops.

Seed treatment

High seed Zn content has a starter-fertilizer effect
for achieving good crop yield, but not high Zn
concentration in grain. Improvements in rice grain
Zn content results from enhanced Zn uptake by
roots after flowering. Therefore, along with using
seeds with high Zn contents at sowing, supplemen-
tary Zn application is also important for improving
both grain yield and grain Zn content (Jiang et al.
2008b; Stomph et al. 2011).

Zinc application via seed treatment can broadly be
divided into seed priming and seed coating (Farooq et
al. 2012). Seed priming is the simple and low-cost
technique of soaking seeds in solutions of different
salts, nutrients or other osmoticum for a specified time
following by redrying prior to sowing (Farooq et al.
2006, 2011b; Rehman et al. 2011). In contrast, in seed
coating, finely-ground solids or liquids containing
dissolved or suspended solids are applied to form
a more or less continuous layer covering the seed
(Farooq et al. 2012). Compared with soil applica-
tion, seed treatment is a relatively good option due
to small quantities of nutrients required and ease
of operation, resulting in improved germination
and seedling growth (Singh 2003) under various
abiotic stresses (Welch and Graham 1999).

Seed priming with solutions of Zn-EDTA and
fritted Zn resulted in higher yield and Zn uptake
as compared to broadcast or banded soil applica-
tion. The solution with 0.5 % (w/v) Zn concentra-
tion was suitable for direct-seeded rice (Kang and
Okoro 1976).

Seed priming in solutions with high nutrient con-
centration may result in seed damage and suppress
seed germination (Kang and Okoro 1976). These
authors found that seed priming with water-soluble
Zn sources such as Zn-EDTA at high concentration
delayed the germination and depressed early growth of
rice; however, plants may overcome the early growth
depression at later stages. Early seed damage due to

priming may be avoided by using insoluble fertilizer
suspension such as fritted Zn because it adheres to the
seed surface rather than being absorbed into seed
tissues (Kang and Okoro 1976).

Priming of rice seeds with Zn solution significantly
increased seed Zn content, but was not related to
higher yield (Johnson et al. 2005). After conducting
a number of preliminary experiments, Johnson et al.
(2005) used 4 mM Zn (ZnSO4.7H2O) for priming of
rice for a field experiment. Priming rice seeds resulted
in increased seed Zn content, but this increase in Zn
content was not found in progeny seed (Johnson et al.
2005). In contrast, Slaton et al. (2001) reported com-
paratively better dry matter production and higher
tissue Zn concentration and grain yields from rice
seeds primed with Zn than those fertilized via soil-
applied Zn. They also suggested that seed priming is
an economic and better alternative to soil application
(Slaton et al. 2001). Giordano and Mortvedt (1973)
reported that Zn application in rice through seed prim-
ing or fertigation were equally effective as soil Zn
incorporation.

Seed coating treatments with concentrated micro-
nutrient formulation slurry are often employed to
improve Zn-use efficiency in many crops in com-
parison to other Zn application methods (Singh
2007). Seed coating with Zn had no adverse effect
on germination; hence, this method may provide an
effective as well as economic means of preventing
Zn deficiency and improving seedling establishment
in soils with low Zn availability. Coating rice seeds
with low concentrations of ZnSO4 was equally ef-
fective as mixing ZnSO4 with soil (Giordano and
Mortvedt 1973). However, Mengel and Wilson
(1979) found that coating rice seeds with Zn-
EDTA or ZnO or Zn lignosulfonate was more ef-
fective in improving stand establishment and in-
creasing panicle number and grain yield than
foliar Zn application at similar concentration.
Hence, seed treatment with Zn is a promising meth-
od for aerobic rice to support early vigor and
correct Zn deficiency even in calcareous or alkaline
soils during crop establishment period. However, an
increase in rice grain Zn concentration is rarely
found upon seed treatment, especially under field
conditions; further research is required to elucidate
potential reasons and to clarify whether optimisation
of seed treatment is possible to overcome those
reasons.
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Foliar application

Zinc can be absorbed by leaf stomata when applied as
foliar spray and then transported via the vascular sys-
tem to where it is needed (Marschner 1995). A number
of Zn sources [ZnSO4, Zn(NO3)2, Zn-EDTA] have
been used as foliar fertilizers in a number of crops
(Yoshida et al. 1970). Foliar application of ZnSO4 is
effective in correcting Zn deficiency and improving
grain Zn concentration (Yoshida et al. 1970; Wilhelm
et al. 1988; Jiang et al. 2008a; Stomph et al. 2011).
Significant increases in grain yield, straw and grain
Zn contents were observed with foliar application
of Zn as Zn-EDTA and ZnSO4, but the highest
increase was observed with Zn-EDTA application
(Karak and Das 2006).

Both soil application and foliar application of Zn
may be comparable in terms of yield (Yoshida et al.
1970); however, a response to applied Zn may vary
with different production systems. For instance, in
lowland rice, soil application of Zn before transplant-
ing was more effective than foliar application of 0.5 %
w/v ZnSO4 or transplanting the seedlings raised from
seed treated with 2–4 %w/v ZnSO4 solution, or
fertilizing soil in a nursery with Zn, or dipping
seedling roots in 2 %w/v ZnO slurry (Savithri et
al. 1998). On the other hand, in case of direct-
seeded rice, foliar application of Zn (0.5 %w/v
ZnSO4) was effective in ameliorating Zn deficiency
(Abilay and De Datta 1978).

Although foliar application is effective in increas-
ing seed Zn content (Welch 2002; Yang et al. 2007;
Jiang et al. 2008a; Cakmak 2009), time of foliar Zn
application is an important factor in this regard (Jiang
et al. 2008a; Stomph et al. 2011). Generally, large
increases in grain Zn occur when it is foliarly applied
at later stages of plant development. Jiang et al. (2007)
evaluated Zn translocation towards rice grains in a
nutrient solution using aerobic rice genotypes when
Zn was applied to roots or as foliar spray; under
sufficient Zn supply, Zn partitioning from grain was
greater from root-supplied than foliarly-applied Zn.
Similarly, higher translocation of Zn from flag leaves
to grains occurred when Zn had been applied at boot-
ing or anthesis stage in a nutrient solution when gen-
otypes with high or low grain Zn were used (Wu et al.
2010). Foliar application of Zn (0.5 %w/v ZnSO4) at
panicle initiation was effective in increasing whole
grain Zn contents 2-fold (Phattarakul et al. 2011). In

slightly alkaline sandy clay soil with sufficient Zn
under flooded conditions, an increase of 1.8 times in
grain Zn concentration was observed when foliar
spray of 0.5 %w/v ZnSO4 was applied at panicle
initation compared with soil fertilization at the same
stage (Rehman 2012). This increase in grain Zn con-
centration was attributed to improved leaf remobiliza-
tion of Zn during grain filling. Foliar application can
avoid the problems of Zn binding in soil, but the time
of Zn application should be around flowering for
increasing grain Zn concentration. It is also important
to note that various fertilization methods to boost rice
grain content of Zn are supplemental to breeding strat-
egies for biofortifying rice grain with Zn.

Dipping of seedling roots

Dipping seedlings in fertilizer solution may be more
practical and convenient approach than soil or foliar
application of Zn (Yoshida et al. 1970; Katyal and
Ponnamperuma 1974). This method, therefore, is be-
ing used as an attractive alternative to other methods
of Zn application under lowland conditions (Dober-
mann and Fairhurst 2000).

Abilay and De Datta (1978) reported that trans-
planting of rice seedlings root-dipped in 2 %w/v
ZnO solution produced higher grain yield than soil
incorporation of basal Zn; when root dipping was
followed by foliar application of 0.5 %w/v ZnSO4,
an increase in grain yields was higher compared to
only root-dipping (however, no grain Zn contents were
reported). Increased rice grain yield (9.2 tha-1) was
reported with transplanting of nursery seedlings
dipped in 1.0 %w/v ZnSO4 compared to foliar Zn
application (8.5 tha-1) and control with no Zn (6.1 t
ha-1; Khan et al. 2003). An increased yield (up to 41 %
greater than control) by root dipping (1.0 %w/v
ZnSO4) of nursery seedlings was also reported
(Rashid et al. 1999). Root dipping of seedlings is thus
practical and economical approach in transplanted rice
to ameliorate Zn deficiency or achieve gains in yield
during the early stages. Further research is needed to
explore the possibility of increasing grain Zn concen-
tration via root-dipping of seedlins as a means of grain
Zn biofortification. In addition, transplanting of root-
dipped seedlings into ZnSO4 has to be studied in the
alternative wetting and drying system to characterize
regulatory mechanisms underlying Zn uptake and
transport.
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Interaction of Zn with nitrogen and phosphorus

Recent studies have shown that improving N status of
crops may play an important role in root Zn uptake,
distribution and accumulation in edible parts; hence, N
nutrition requires special consideration in crop biofor-
tification strategies along with Zn nutrition (Erenoglu
et al. 2011). In two-year field experiments, Khanda
and Dixit (1996) compared ZnSO4 and Zn-EDTA via
soil and foliar application in combination with four N
levels (0, 30, 60, 90 kg ha-1) in sandy loam soil with
suboptimal soil Zn (0.84 mg kg-1) under lowland
rice conditions. Rice yield increased with an in-
creasing N rate. However, maximum gain in yield,
nutrient uptake and economic returns was observed
with combined application of N and Zn, particu-
larly with 90 kg N ha-1. Among the Zn application
methods, soil application was considered superior
(Khanda and Dixit 1996).

Use of appropriate source of N may be effective in
improving soil Zn availability under flooded condi-
tions. In addition to reduced N losses, application of
urea or ammonium-based fertilizer was more effective
than nitrate-based fertilizers by affecting the cation/
anion uptake ratio and lowering the rhizosphere pH
(Broadbent and Mikkelsen 1968).

Under submerged conditions, increased H+ extru-
sion by rice roots increases plant Zn availability (Kirk
and Bajita 1995). Uptake of NH4

+-N by roots results
in a release of H+ into the rhizosphere; in contrast, a
shift to aerobic rice cultivation results in plants
taking up NO3

--N and releasing OH-, thus increas-
ing rhizosphere pH with a concomitant decrease in
Zn availability. Due to the shift in N dynamics
under aerobic conditions, decreased Zn uptake was
observed under field conditions (Gao et al. 2006).
Nonetheless, at high soil pH, formation of Zn-NH3

complex could directly increase the solubility of Zn
(Lindsay 1972). Therefore, a shift to aerobic or
alternate wetting and drying rice cultivation would
have impact on Zn availability due to increased
nitrification process with enhanced formation of
NO3

− and decreased Zn transport towards roots
due to increasing soil pH. This necessitates the
selection of appropriate N fertilizer source (such
as ammonium sulphate with acidifying effects on
soils to increase Zn availability) and optimization of
fertilizer management practices under water-saving
rice cultivation (Gao et al. 2012).

Although N application may increase Zn uptake
through improved root and plant growth (Giordano
1979), but the effects of N fertilization on mechanisms
involved in increasing grain Zn are still unclear. More-
over, N-use efficiency under alternate wetting and
drying is lower than in the aerobic or lowland flooded
system; the causes of such differential N-use efficien-
cy would need to be clarified. Further, more than 50 %
of the world rice-growing soils are deficient in plant-
available Zn or are calcareous or alkaline in nature
(e.g. in South Asia); therefore, in addition to N source,
it is important to optimize the rate and timing of N
application in combination with Zn to improve soil Zn
availability and consequently Zn loading into grain.
This optimization would also have a significant impact
on nutrition of the next wheat or rice crop in rotation.

Zinc availability is also reduced by high soil P
availability. Phosphorus interacts with Zn in soil
and reduces Zn translocation from roots to the
shoots (Olsen 1972; Haldar and Mandal 1979),
and an imbalanced P:Zn ratio has a negative effect
on yield (Olsen 1972). Growing rice in the water-
saving systems influences soil organic matter and P
availability; hence application of P fertilizer can be
more critical in the water-saving than submerged-
rice systems.

Mandal and Mandal (1999) compared the effect of
different P fertilization on transformation of native and
applied Zn in a rice-growing soil under flooded and
non-flooded regimes in a glasshouse. Application of P
not only decreased water-soluble and exchangeable
Zn, but concomitantly increased bound forms of soil
Zn. These effects were more pronounced under
flooded than non-flooded regime. Application of P
also decreased the shoot and root Zn concentration.
Other studies also showed that P application influ-
enced Zn uptake by rice and translocation into shoots
(Chatterjee et al. 1982; Lal et al. 2000).

The interactive effect of P-Zn was found to be
additive and antagonistic and might vary with exper-
imental conditions. However, these interactions have
not been studied extensively under lowland vs aerobic
or AWD conditions. In addition, most studies only
report Zn-P interaction or individual P or Zn effects
on crop growth, yield and tissue concentration, where-
as studies on Zn availability in rice systems are lacking
particularly in aerobic rice system. In particular, in
addition to P fertilization, application times should
be considered for high Zn grain accumulation in
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the new rice-growing systems. However, more
studies are needed to conclude the P-Zn interaction
in aerobic rice systems.

Role of mycorrhizal colonization

Mycorrhizal association improves host plant capacity to
absorb water and nutrients, particularly nutrients that
move by diffusion such as P, Zn and Cu (Marschner
1995). The hyphae of arbuscular mycorrhizae (AM)
fungi explore the soil volume beyond the rhizosphere
(Marschner and Romheld 1998). Nonetheless, response
to inoculation with AM varies with plant/fungal geno-
types and is attributed to variable mechanisms involved
in nutrient uptake by mycorrhizal plants depending on
the nutrient, plant status and efficiency of genotypes
(Hajiboland et al. 2009).

A large variation exists among lowland rice geno-
types for Zn efficiency (Fageria 2001a, b; Gao et al.
2005; Hajiboland and Salehi 2006; Jiang et al. 2008b;
Hafeez et al. 2009). Moreover, up to 2-fold higher Zn
uptake occurs in efficient genotypes under Zn defi-
ciency upon inoculation with mycorrhiza (Hajiboland
et al. 2009). Aerobic rice plants inoculated with AM
fungi produced greater biomass and took up more Zn
than nonmycorrhizal controls (Gao et al. 2007). Upon
inoculation by AM, an increase in root coloniza-
tion up to 70 % of the total root length was found
in aerobic rice when grown under controlled con-
ditions (Zhang et al. 2005). In contrast, such an
increase in root colonization by mycorrhiza was
much smaller under field conditions, indicating
that the genotypic variation among aerobic rice
genotypes for Zn uptake or Zn efficiency is not
only related to a differential mycorrhizal effect, but
also to increased root surface area and rhizosphere-
related chemical processes (Wissuwa et al. 2006).

Inoculation with AM fungi can increase Zn uptake
by rice grown in low-Zn soils under both aerobic and
flooded conditions. As AM fungi differ in their capac-
ity to take up Zn and P, their interaction with the host
plant at the cellular level needs to be considered,
particularly with respect to the formation of protein-
phytate complex and its influence on Zn stored in the
plant tissues and thus Zn remobilization and efficiency
of loading into grains (Marschner 1995). Moreover,
expression of rice P transporters OsPT11 and OsPT13
is influenced by the changes in the plant Zn status

upon AM colonization, so there is a need to focus on a
pattern of gene expression involved in Zn develop-
mental and molecular physiology in both the AM
fungi and plants (Paszkowski et al. 2002; Guimil et
al. 2005). Even though mobilization of soil Zn via AM
fungi has been documented well (Weiss et al. 2004),
comprehensive field studies are needed, keeping in
mind the soil critical threshold Zn concentration for
enhancing Zn accumulation in edible plant parts, par-
ticularly in the regions where people have low-Zn
diets (Hacisalihoglu and Kochian 2003).

Agronomic approaches to manage Zn in rice
production systems

Tillage

Some studies with small effects of tillage on soil Zn
availability in other crops are available (Shuman and
McCracken 1999; Gao et al. 2010a, b; Grant et al.
2010), but not under different rice systems. However,
Bhaduri and Purakayastha (2011) reported that con-
ventional or reduced tillage had little effect on Zn
availability in rice and can be used as an index of soil
quality. On the other hand, higher soil extractable P, K
and Zn were reported in the no-tillage than conven-
tional system (Franzluebbers and Hons 1996). This
inconsistency in results warrants long-term interactive
field studies with combinations of tillage systems and
water management on Zn nutrition in rice rotations.

Crop rotations and intercropping

Intensive nature of the rice-wheat system over the
decades on the same piece of land has resulted in
deficiency of micronutrients, particularly Zn (Nayyar
et al. 2001). Crop rotation improves water-use effi-
ciency, soil properties such as organic matter content
and cation exchange capacity, and breaks the
insects, pests and weeds cycles. The changes in
soil properties may have an effect on Zn availabil-
ity. Mandal et al. (2000), in a series of experi-
ments on Alfisols and Inceptisols in India, reported
higher Zn desorption under alternate wetting and
drying conditions than continuously flooded con-
trol and indicated that a flooded rice-maize rota-
tion increases Zn fertilizer-use efficiency compared
with continuous flooded rice.
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An addition of forage legume into cereals rotation
had a significant effect on availability of soil Zn. Soon
(1994) observed long-term effects of cropping systems
over 23 years, including continuous barley, continuous
bromegrass; continuous legume alfalfa and barley hay.
The continuous cereal cropping resulted in a decrease in
soil exchangeable and adsorbed Zn, an increase in Zn
associated with reducible Fe and Mn oxides, occluded
by Fe and Al oxides, whereas Zn co-precipitated with Fe
and Al oxides remained constant. Overall mobility of Zn
in agricultural soils was high in legume forage soils than
in grass cereal soils.

Use of organic sources maintained high soil Zn
availability when applied in rice-wheat rotation in-
stead of inorganic ZnSO4 (Kumar and Yadav 1995).
Nonetheless, use of appropriate crop rotations had a
significant impact on increasing soil Zn availability or
utilizing soil micronutrient pools. However, most of
these studies reported increasing crop yields but rarely
mentioned rotation/intercropping effects on micronu-
trient density in grains. However, rotations offer a
sustainable management solution to increasing Zn
bioavailability in different rice systems and should
be subject of intensive research in the future.

Manure application

Manures are a good source of plant nutrients, and their
application improves micronutrient availability by
changing soil chemical, physical and biological prop-
erties (Eghball et al. 2004). Manures contribute to Zn
accumulation through N supply and organic acids
decreasing soil pH and improving mobilization of soil
Zn in calcareous soils (Marschner 1995). Yaseen et
al. (1999) found increased straw and paddy yield
by Zn application in combination with NPK and
green manure or farm yard manure. Combined ap-
plication also increased the straw N and K contents
but reduced that of P, probably due to the antago-
nistic effect of Zn and P.

Zinc usually becomes unavailable under submerged
conditions due to high bicarbonate concentration;
however, incorporation of Azolla as green manure
several weeks prior to transplanting decreased bicar-
bonate content and prevented Zn deficiency within
two weeks after submergence (Mandal et al. 1992).
In addition, Azolla may be supplied with Zn during
growth to provide slow-release organic Zn fertilizer
during its decomposition. This strategy has proved

effective for Zn nutrition in rice under upland condi-
tions, more so when applied in combination with
either poultry or cattle manure than ZnSO4 alone
(Singh et al. 1983). Decomposition of organic
materials releases fluvic and other organic acids
(Marschner 1995) that form complexes with inor-
ganic Zn and increase its solubility and availability
to plants (Maqsood et al. 2011). Neither of these
strategies has been tested sufficiently regarding Zn
nutrition in rice systems for improving grain Zn,
warranting further research.

Breeding and molecular approaches to improve Zn
uptake and use in rice

Breeding approach/exploitation of genetic variability

Genetic variation exists among species and even
among cultivars within species for their sensitivity to
Zn deficiency (Cakmak and Marschner 1998; Neue et
al. 1998; Hajiboland et al. 2003; Irshad et al. 2004).
Cultivation of Zn-efficient crop cultivars on soils
with low plant-available Zn (Cakmak et al. 1999;
Graham et al. 1999) and selection of crop geno-
types efficient in acquisition and utilization of
nutrients may contribute to sustained crop produc-
tivity and increased grain Zn content (Graham et al.
1992; Irshad et al. 2004; Ismail et al. 2007).

Efficiency of rice cultivars in uptake of soil Zn is
associated with tolerance to other abiotic stresses such
as high pH and high bicarbonate. In addition, large-
scale screening of rice germplasm for tolerance to Zn
deficiency also showed cross-tolerance to salinity, P
deficiency and peat soils (Quijano-Guerta et al. 2002).
Large genotypic variation in grain Zn content offers an
opportunity to use conventional breeding for developing
cultivars with improved Zn-use efficiency (Graham et
al. 1999; Ismail et al. 2007; Wissuwa et al. 2008) in both
aerobic and lowland rice.

Increased Zn uptake efficiency from soils with low
plant-available Zn or increased internal Zn utilization
efficiency to withstand low tissue Zn concentration are
two important mechanisms that offer an opportunity to
exploit genotypic variation among crop genotypes for
producing improved crop cultivars using breeding
tools (DellaPenna 1999; Frossard et al. 2000). Screen-
ing of local germnaplasm and later on conventional
breeding approach seems realistic in rice because large
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variation exists for total Zn uptake, uptake kinetics and
a growth response under Zn deficiency (Wang and
Yang 2001; Quijano-Guerta et al. 2002; Adhikari and
Rattan 2007; Gao et al. 2012). As root growth is impor-
tant for Zn uptake, breeding for longer and thinner roots
can increase Zn uptake and its onward translocation to
shoots (Gao et al. 2005). Genetic differences have
been reported for root growth both in aerobic as
well as lowland rice cultivars (Gao et al. 2005;
Matsuo and Mochizuki 2009).

Molecular approaches

Resistance to Zn deficiency (0Zn efficiency) appears
not to be controlled by a single dominant gene (Singh
and Westermann 2002). Instead, several Zn-transporter
genes showed enhanced expression in rice roots under
Zn deficiency i.e. OsZIP1, OsZIP3, OsZIP4, and
OsZIP5 (Ramesh et al. 2003; Ishimaru et al. 2006; Lee
et al. 2010a, b) and OsZIP1, OsZIP3 and OsZIP4 in
vascular bundles for Zn transport to shoot (Ramesh et al.
2003; Ishimaru et al. 2006).

In particular, the expression of OsZIP4 appears to
be responsible for Zn transport in vascular bundles of
roots and shoots in Zn-deficient rice (Ishimaru et al.
2011). Poor remobilization of Zn from rice vegetative
parts usually results in low grain Zn content (Ishimaru
et al. 2007). Development of transgenic rice overex-
pressing OsZIP4 showed the involvement of this gene
in Zn unloading in root xylem and increased Zn
transport to shoot (Ishimaru et al. 2007), whereas
overexpression of OsZIP1 and OsZIP3 showed their
involvement in root Zn uptake and shoot Zn ho-
meostasis, respectively (Ishimaru et al. 2005, 2007).
Developing rice genotypes with overexpression of
specific Zn transporters responsible for Zn uptake
by roots and transport to shoot may improve Zn
content in rice grain.

As phytosiderphore release in the rhizosphere is
related to Fe and Zn uptake in a number of species
(Marschner 1995), overexpression of genes for
mugineic-acid-family phytosiderophores such as bar-
ley HvNAS1 in transgenic rice would be expected to
result in enhanced production and release of phytosi-
derophores. Indeed, overproduction of nicotianamine
enhanced the translocation of Fe and Zn to rice grains
by three and two times, respectively (Masuda et al.
2008, 2009). An increase in grain Zn content
requires targeted overexpression of various genes

associated with Zn transporters and their regulation
at the whole-plant level for development of bio-
fortified rice cultivars.

Several mechanisms influencing differential grain
Zn content in rice, such as root exudation of low-
molecular-weight organic acid anions and activity
of Zn-dependent enzymes have been characterized
in low- and high-grain-Zn genotypes. Similarly,
quantitative expression of several Zn proteins of
different gene families [e.g., ZIP, AKR (Aldo-Keto
Reductase), NAS (Nicotianamine synthase), and
YSL (Yellow Stripe1-Like)] involved in Zn uptake
and transport has been unraveled. This characteriza-
tion will help in identifying processes and mecha-
nisms for increased accumulation of Zn in rice
grains and development of suitable genotypes for
relevant site-specific environments (Impa et al.
2010). In particular, controlling the temporal and
spatial expression of Zn transporters from ZIP fam-
ily for improved uptake, translocation and deposi-
tion into the grain can be exploited in breeding
strategies for a significant increase in Zn content
in rice grains to reduce both plant hidden hunger
and human malnutrition (Ishimaru et al. 2007,
2011). Recently, several rice QTLs for grain miner-
al content have been identified in different chromo-
somal reigons, but require fine mapping for further
dissection of genes to develop understanding re-
quired for producing genotypes with high Zn den-
sity in grain (Stangoulis et al. 2007; Garcia-Oliveira
et al. 2009; Norton et al. 2010).

The above discussion indicates that enhanced
grain Zn content results from continuous uptake
of Zn via roots and its translocation to vegetative
parts and grain as well as remobilization from the
vegetative parts during the grain-filling period.
Basal application of Zn at planting is not as effec-
tive in increasing grain Zn as Zn added during
grain-filling stage. Therefore, the use of both
micronutrient-rich grains and the Zn rhizosphere
management strategies is important in regulating
plant Zn supply when soil redox potential is high
during later growth stages to ensure rice grain with
high Zn content (Beebout et al. 2010). However, a
long-term sustainable solution is to combine judi-
cious use of Zn fertilizers and Zn-efficient rice
genotypes to ensure economic yields and Zn-
dense grain, even under conditions where plant
availability of Zn in soils is low.
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Future research

Most rice soils have low plant-available Zn, resulting
in a yield loss and grain with suboptimal Zn content
for human nutrition. In the conventional rice-
production system, Zn-use efficiency of added fertil-
izers is quite low (1–5 %) (Beebout et al. 2010).
However, Zn dynamics differs significantly in various
soils and rice-production systems. The transition to-
wards water-saving rice cultivation changes the soil
properties, which affects Zn availability to crops.
There is a need to study in detail the performance
and efficiency of various Zn fertilizers under different
rice-production systems, particularly in the water-
saving ones.

Water solubility and mobility of Zn fertilizers in
soil are major determinants of its use efficiency. The
chelated forms of Zn have greater mobility in soil, and
are therefore more effective in correcting Zn deficien-
cy in rice than inorganic forms. Further, compared
with inorganic salts, the amount of chelated com-
pounds recommended for rice is lower, making their
use environmentally friendly. However, there is little
information about the response of these chelated com-
pounds in different rice-production systems.

As most of the Zn is locked up in shoots, increasing
pre- and post-anthesis remobilization would be re-
quired for high grain Zn content in rice, and an in-
creasing sink (grain) capacity can be a useful strategy.
This would not only facilitate improved uptake,
but would also activate mechanisms regulating Zn
homeostasis. Continuous Zn uptake via roots and
xylem loading during grain filling for the transport
to the grain might be the key processes in increas-
ing grain Zn content; these processes require ge-
netic manipulation and enhancement, which should
be combined with maintenance of relatively high
Zn availability in soil.

Improving Zn translocation to seed via enhanced
expression of genes linked to exudation of Zn chela-
tors or biosynthesis of Zn transporters in rice tissues
remains to be fully characterized. High variability in
Zn acquisition and grain Zn content among rice gen-
otypes should be exploited to identify specific donors
with appropriate traits for pyramiding majority of rel-
evant traits into genotypes for specific environments.
Recent developments in identification of physiological
and molecular mechanisms controlling Zn uptake and
regulation as well as accumulation in grains offer great

opportunity to alleviate Zn deficiency in plants by
integrating traditional breeding, marker-assisted
breeding and plant transformation techniques. Further-
more, application of functional genomic will increase
understanding of the molecular basis of genotypic
differences in Zn dynamics expressed in various rice-
production systems.
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