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Abstract
Background and aims Australian herbaceous native
species have evolved in phosphorus (P) impoverished
soils. Our objective was to explore shoot and root
adaptations of two of these species with potential to
be developed as pasture plants, at low, moderate and
high P supply after 4 and 7 weeks of growth.
Methods A glasshouse experiment examined the effect
of 5, 20 and 80 mg Pkg−1 air-dry soil on growth,
rhizosphere carboxylate content, and mineral nutrition
of two Australian native perennials, Kennedia nigricans

(Fabaceae) and Ptilotus polystachyus (Amaranthaceae),
and the exotic Medicago sativa (Fabaceae).
Key results Leaf P concentrations at P80 were 6, 14
and 52 mg Pg−1 leaf dry weight for M. sativa, K.
nigricans and P. polystachyus, respectively. As soil P
concentration increased, rhizosphere carboxylate
content decreased for M. sativa, increased and then
decreased for K. nigricans and was unchanged for P.
polystachyus. For all species, the contribution of malic
acid declined at the second harvest. For all species and P
treatments, the amount of rhizosphere carboxylates per
unit root length decreased as root length of a plant
increased. Plant P content was determined more by P
uptake rate per unit root length and time than by root
length. Uptake of Mo for all species, and uptake of K,
Mg and Mn for P. polystachyus, increased with soil P
concentration. Uptake of Fe and S was higher when the
content of carboxylates in the rhizosphere was higher.
Conclusion Root physiological adaptations (i.e. rhizo-
sphere carboxylate content and P-uptake rate) are more
important thanmorphological adaptations (i.e. root length
and diameter) to enhance the uptake of P and cations.

Keywords Australian native legumes .Mineral
nutrition . Perennial herbs . Phosphorus toxicity . Roots

Introduction

Phosphorus (P) in soil is relatively immobile and often
poorly available to most plants (Vance et al. 2003).
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Therefore, morphological, physiological and biochemical
mechanisms have evolved in plants to allow them to
respond to P deficiency (Vance et al. 2003; Suriyagoda
et al. 2010a). Typical morphological responses to low P
availability include increased root development, higher
root:shoot ratios, finer roots, longer root hairs and
formation of mycorrhizas, all of which facilitate
exploration of a greater soil volume (Wissuwa 2005;
Smith and Read 2008).

In shoots, P deficiency can trigger a reduction of
leaf expansion, photosynthetic rate and stomatal
conductance (Jacob and Lawlor 1991; Ghannoum
and Conroy 2007; Suriyagoda et al. 2010b), and
thereby decrease plant growth. In roots, P availability
can affect root morphological (e.g., architecture) and
physiological (e.g., rhizosphere carboxylate dynamics)
responses (Gahoonia and Nielsen 2004; Ho et al. 2005;
Hammond et al. 2009; Liang et al. 2010; Suriyagoda et
al. 2010a, 2011; Lynch 2011).

Plants can affect P acquisition by altering their root
physiology (Neumann and Martinoia 2002; Wissuwa
2005), such as by an enhanced P-uptake rate (PUR- mg
P cm−1 root day−1), and increased exudation of carbox-
ylates (e.g., malate and citrate) and phosphohydrolases
(Richardson et al. 2000; Wouterlood et al. 2005).
Carboxylates can enhance the solubility of soil P
and this is particularly important when the inherent
soil P fertility is poor and/or most of the soil P is
strongly sorbed. Carboxylates not only increase the
uptake of P, but also contribute to the solubilisation of
cations in the soil and, as a consequence, may lead to
higher contents of these cations in plants (Page et al.
2006). When considering roots, little attention has been
given to study of the relationship between the amount of
carboxylates present in the rhizosphere of a plant
and root length. In most instances the amount of
carboxylates in the rhizosphere is reported per unit
root dry weight (DW) (Pearse et al. 2007; Pang et
al. 2010; Suriyagoda et al. 2010a; 2011). Even in
the few instances where the relationships between
carboxylate content and root length were established,
only a small fraction of the root, near the root tip, was
used (Peñaloza et al. 2002; Wouterlood et al. 2005).
Due to the difficulty in assessing rhizosphere soil and
roots from bulk soil, and because often only a single
harvest was made, changes in rhizosphere carboxylate
content (i.e. the balance between the amount exuded
and that decomposed) with plant age are not well
understood. Moreover, contrasting responses have

been reported (Wouterlood et al. 2004; Marschner et
al. 2011 and references therein). In summary, the
dynamics of carboxylates in the rhizosphere (i.e.
changes in content and composition) as affected by
soil P supply, root length and plant growth (i.e. time)
have rarely been explored and therefore warrant
further investigation.

Australian native plant species have evolved in P-
impoverished environments (Handreck 1997) and in
some of these species, P uptake is little down-
regulated at increased P supply (Shane et al. 2004;
Ryan et al. 2009; Pang et al. 2010). Many native
species, but by no means all, are therefore sensitive
to P toxicity (Handreck 1997; Ryan et al. 2009; Pang
et al. 2010). Because of inherently low fertility, large
quantities of P fertilisers have been applied to agricultural
soils in Australia to improve crop yields; this has resulted
in substantial increases in soil P in many regions (Bolland
et al. 1997). An understanding of the morphological and
physiological traits that affect P acquisition of native plant
species under high P availability is now important to
facilitate the effective revegetation of native Australian
agricultural landscapes with native species (Standish et al.
2007) and the development of native plants as pasture and
crop species (Pang et al. 2010; Bell et al. 2011;
Suriyagoda et al. 2011). However, knowledge to assist
in the selection of species with enhanced P acquisition
under low-P conditions is still required for low-input
agroecosystems (Cornish 2009), and may be utilised to
improve the productivity and sustainability of high-
input agroecosystems (Lambers et al. 2011).

Two perennial herbaceous species native to Australia,
Kennedia nigricans Lindl. (Fabaceae) and Ptilotus
polystachyus (Gaudich.) F. Muell. (Amaranthaceae)
were used in the current experiment. K. nigricans is
considered to have potential for use as a grain
crop due to its large seed size and favourable seed
chemical composition (Rivett et al. 1983; Bell et al.
2011). Kennedia nigricans also has high amounts of
rhizosphere carboxylates (i.e. >100 μmol g−1 root
DW) (Ryan et al. 2012). P. polystachyus exhibits a
remarkable P physiology, being very tolerant of low-P
conditions, for reasons that are not yet known, but can
accumulate very high leaf [P] (40 mg g−1) at high P
supply, without any P-toxicity symptoms (Ryan et al.
2009). In P. polystachyus, high concentrations of Mg
and K (greater than 23 and 136 mM, respectively) were
found in the vacuoles of leaf cells which also contained
high [P] (Ryan et al. 2009). Indeed, for a wide range of
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plant species, uptake of various nutrients is correlated
(Norvell and Welch 1993; Conn and Gilliham 2010),
possibly due to their solubilisation in soil through
release of carboxylates into the rhizosphere by the
plant (Page et al. 2006). Thus it appears thatK. nigricans
and P. polystachyus are both well adapted to grow in
low-P soils and probably possess a range of adaptations
to low soil [P] and, for P. polystachyus, to high soil [P].

The objective of the present study was to investigate
the growth of K. nigricans and P. polystachyus at low,
moderate and high P supply, with a focus on root
morphological (i.e. root length, diameter) and root
physiological (i.e. nutrient-uptake rate, rhizosphere
carboxylates) characteristics after 4 and 7 weeks of
growth. Medicago sativa L. (lucerne), a widely
grown perennial pasture legume, was also included.
We investigated six hypotheses: (i) an increase in soil
[P] and thereby tissue [P] would decrease the amount of
carboxylates in the rhizosphere; (ii) the composition of
carboxylates would not change across P treatments and
plant age/harvests; (iii) the total amount of carboxylates
in the rhizosphere would increase as root length
increased; (iv) higher tissue [P] at increased soil P
supply would be due to both an increased root length
and an increased PUR (mg P cm−1 root day−1); (v) plants
would accumulate high concentrations of mineral
elements (i.e. both cations and anions) at high soil
[P]; and, (vi) the accumulation of high amounts of
mineral elements per plant would also be correlated with
the amount of carboxylates in the rhizosphere.

Materials and methods

Growth conditions

The experiment was a fully crossed factorial design of
two factors: plant species (K. nigricans, M. sativa, P.
polystachyus) and P (P5, 5 mg Pkg−1 air-dry soil; P20,
20 mg Pkg−1 air-dry soil; P80, 80 mg Pkg−1 air-dry
soil). In previous experiments, growth of most of the
Australian native perennial pasture species was
maximum at a soil P supply of ~20 mg Pkg−1, and
growth was reduced at a P supply over 50 mg Pkg−1

(Pang et al. 2010; Suriyagoda et al. 2010a). Therefore,
we expected P5 and P80 to be at the sub- and supra-
optimal range of P supply. There were two harvests, at 4
and 7weeks after seedling emergence, with four replicates
at each harvest. K. nigricans accession NS19026, M.

sativa cv. SARDI-10 and P. polystachyus accession
MGP001 were used in the experiment. A sandy loam soil
was collected from the top 10-cm layer of a native, virgin
forest near Perth (32°2′S, 115°8′E). Soil was air dried and
sieved through a 3-mm diameter mesh to remove debris
such as plant roots and other organic matter. Initial soil
nutrient status as determined by CSBP FutureFarm
analytical laboratories, Bibra Lake, Australia, is
given in Table 1. As the bicarbonate-extractable
soil [P] (Colwell-P) in its native state was 5 mg
P kg−1 air-dry soil, the three P treatments received
0, 15 and 75 mg P kg−1 air-dry soil as KH2PO4,
in order to obtain P5, P20 and P80, respectively.
Additional potassium was supplied in the P5 and
P20 treatments as KCl to balance the level of
potassium. NH4NO3 (40 mg kg−1 dry soil) was
also added to all pots. To prepare the soil for each
P treatment, soil was thoroughly mixed using a
mechanical mixer until homogeneous. Mixing was
done for P5 soil first and then for the P20 and
P80 treatments. Pots of 10-cm diameter and 17-cm
length were filled with 1.8 kg of soil to a bulk
density of 1.4 gcm−3. De-ionised water was added
to each pot to reach the field capacity and left for 3 days.
The experiment was carried out in a glasshouse at the
University of Western Australia, Perth (31°59′S, 115°
53′E) as a randomised complete block design. Three
seedlings, which were raised on a sterilised sand bed,
were planted in each pot and thinned to one plant
at 3–4 days. From week 4, 50 mL of 2 mM
NH4NO3 was added twice a week to ensure adequate
nitrogen supply. Each pot was weighed and watered to
reach the field capacity daily. The glasshouse was
unheated under natural light and had an average
day and night time temperatures of 23 and 13 °C,

Table 1 Initial properties of the soil used in the experiment, n04

Mean±std.err

NH4
+-N (mg kg−1) 2.0±0.1

NO3
−-N (mg kg−1) 2.3±0.3

Bicarbonate-extractable K (mg kg−1) 29.0±8.5

Bicarbonate-extractable P (Colwell-P) (mg kg−1) 5.3±1.9

S (mg kg−1) 1.5±0.06

Organic carbon (g kg−1) 11±1.3

Conductivity (dS m−1) 0.02±0.002

pH (CaCl2) 5.0±0.03

pH (H2O) 5.9±0.03
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respectively during the experiment, which was
conducted from August to September 2010.

Plant analyses

Harvests were conducted 4 and 7 weeks after
establishment. At each harvest, the shoot was removed
from the base (i.e. collar area) and used for leaf area
measurements with a LiCor LI-3000 Portable Area
Meter, which was equipped with a LI-3050A
Transparent Belt Conveyer Accessory (LiCor, Lincoln,
NE, USA). Soil was taken out of the pot and roots were
shaken lightly to remove the excess soil; remaining soil
was defined as the rhizosphere soil (Veneklaas et al.
2003). Roots were transferred to a 200-mL vial and
washed in ameasured amount of 0.2 mMCaCl2 solution
ranging from 20 to 100 mL depending on the root
volume. The root system was gently dunked in the
solution until as much rhizosphere soil as possible was
removed. Care was taken to minimise root damage.
A 1-mL subsample of the rhizosphere extract was then
filtered using a 0.2-μm syringe filter into a 1-mL HPLC
vial. The vial was acidified with one drop of concentrated
phosphoric acid, placed in dry ice, and transferred
to a −20 °C freezer until HPLC analysis. Detailed
methodology for the carboxylate analysis is given
in Suriyagoda et al. (2010a). The root system was
then washed more thoroughly to remove any residual
soil. These roots were used to measure the root length,
diameter and the distribution of the root length
according to diameter classes (i.e. <0.5, 0.5–1, 1–2, 2–
3, 3–4, and >4 mm) using the commercial software
package WinRHIZO 4.1 (Regent Instruments Inc.,
Quebec, Canada, 2000). Calculated root length and
the soil volume in a pot were used to calculate the
root density (i.e. half distance between roots) as
given in Bhadoria et al. (2004).

Root, stem and leaf dry weights (DW) were
determined after drying at 60 °C for a week. Root
mass ratio (RMR) was calculated as the ratio between
root dry weight and total plant dry weight. Roots, stems
and leaves of each plant were ground separately in a
stainless steel ball mill. For analysis of leaf nutrient
concentrations, approximately 100 mg of leaf was taken
and digested in nitric/perchloric acid and analysed using
inductively coupled plasma (ICP) atomic absorption
with a Perkin Elmer Optima 5300 DVoptical emission
spectrometer (OES; Shelton, CT, USA). For stem and
root [P] determination, an approximately 100-mg

subsample was taken and digested in nitric/perchloric
acid, and analysed using the molybdate and malachite
green method (Motomizu et al. 1983). Leaf, stem and
root [P] and DWswere used to calculate the amount of P
taken up by each plant at both harvests. TheΔP uptake
and Δroot length for each treatment combination were
calculated by taking the difference of mean P content
and mean root length, respectively between the second
(7 wk) and first (4 week) harvest. The mean PUR (mg P
cm−1 root day−1) for each treatment combination was
calculated by taking the difference of total amount of P
present in plant tissues (i.e. leaves, stems and roots)
between the second and first harvest and dividing that
value by the difference of average root length at the two
harvests.

Soil analyses

Ammonium-N and nitrate-N concentrations were
determined as described by Searle (1984), “plant-
available” phosphorus (P) and potassium (K) were
measured using the Colwell test (Colwell 1965;
Rayment and Higginson 1992), available sulfur
(S) according to Blair et al. (1991), organic carbon
according to Walkley and Black (1934), with the
remainder of soil analyses using protocols outlined
in Rayment and Higginson (1992). Cation-exchange
capacity (CEC) was calculated from exchangeable soil
cations (Black 1968).

Statistical analyses

Data were subjected to 2-way analyses of variance in
SAS/STAT software Version 9.1 (SAS Institute Inc.,
Cary, NC, USA) to examine the impact of species, P
treatments and their interaction on response variables
at each harvest separately. No transformations were
needed to meet ANOVA assumptions. Comparisons
between means were made using Tukey’s Honest
Significant Difference procedure. Means are presented
with standard errors of the mean (std.err) and
significance is expressed at p<0.05. Shoot and
root DW, root length, root diameter and tissue
nutrient concentrations are presented for the second
harvest only. When estimating net PUR, ΔP uptake
and Δroot length from measured variables, means
of the measured variables within each treatment
combination at each harvest were used.When establishing
the relationship between root length and rhizosphere
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carboxylate content, heteroscedasticity was present.
Therefore, log-transformed root carboxylate data were
used to correct this heteroscedasticity.

Results

For both shoot and root DW there was an interaction
between P treatment and species (Table 2). Shoot and
root DW of K. nigricans and M. sativa increased from
P5 to P20, while P. polystachyus was less responsive
(Fig. 1). At P80, shoot DW of K. nigricans and P.
polystachyus was reduced compared with that at P20.
Root DW of P. polystachyus was reduced at P80
compared with that at P20. At the first harvest, the
impact of P treatment on growth of all species was
similar to that at the second harvest (data not shown).
Leaf area followed a similar trend to shoot DW (data
not shown). Root mass ratio (i.e. root to plant DW
ratio) of K. nigricans (0.17) and P. polystachyus (0.17)
was much lower than that of M. sativa (0.40) and was
unaffected by P treatment (data not shown).

The effect of P treatment on root length varied with
species, with root length of all species increasing from

P5 to P20 and that of P. polystachyus then declining
greatly to P80 (Fig. 2a, Table 2). K. nigricans had a
smaller root system (i.e. total root length and root DW
were less) than that ofM. sativa and P. polystachyus in
most instances (Figs 1 and 2a). Root surface area
showed a similar trend to root length (data not shown).

For root diameter, there was an interaction between
species and P treatment (Fig. 2b, Table 2). For M.
sativa only, root diameter increased from P5 to P80
(Fig. 2b). Due to this change, specific root length
(SRL; root length per unit root DW) of M. sativa
changed among P treatments from 121±11 mg−1 at
P5 to 58±6 mg−1 and 59±9 mg−1 at P20 and P80,
respectively. For K. nigricans and P. polystachyus,
SRL remained at 115±12 mg−1 and 157±11 mg−1,
respectively, across all treatments.

Root length distribution of a plant based on root
diameter classes differed only with species (Fig. 2c,
Table 2), with the distribution for K. nigricans and P.
polystachyus being very similar and including a higher
proportion of fine roots than for M. sativa. For
instance, the proportion of root length with a diameter
of <1 mm was 21 % for K. nigricans, 27 % for P.
polystachyus and 10 % for M. sativa.

Table 2 Significance of different sources of variability after
7 weeks of growth (second harvest)

Variable Source of
variability

R2

P S P×S

Shoot DW *** * * 0.59

Root DW *** *** *** 0.87

Leaf area ** * * 0.46

Root mass ratio *** ns ns 0.90

Root length *** *** * 0.67

Root area ** *** * 0.66

Root diameter ns *** * 0.55

Specific root length (SRL) ns ** *** 0.80

% root length distribution ns *** ns 0.52

Carboxylate content (at first harvest) ** ** ** 0.63

Carboxylate content (at second harvest) ** *** ** 0.59

Leaf [P] *** *** *** 0.98

Total P (plant−1) ** *** *** 0.96

Significant effects are indicated for phosphorus (P) and species
(S) treatments, and their interaction (ns., no significant differ-
ence; * p<0.05; ** p<0.01; *** p<0.001)

R2 for the fitted full model is given
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Rhizosphere carboxylate content measured at 4 and
7 weeks after seedling emergence showed a species
and P treatment interaction (Fig. 3, Table 2). At both
harvests, carboxylate content (μmol g−1 root DW)
of K. nigricans increased from P5 to P20 and then
decreased at P80. ForM. sativa, rhizosphere carboxylate
content decreased as soil [P] increased, while rhizosphere
carboxylate content of P. polystachyus was unchanged
with P treatment. For M. sativa and P. polystachyus
only, there was a reduction in rhizosphere carboxylates
at the second harvest compared with that at the first
harvest across P treatments (F1, 55018.7, P<0.001).
Carboxylates in the rhizosphere mainly comprised
citric, malic, malonic and oxalic acid, with the
contribution from other organic acids (i.e. acetic,
cis-aconitic, fumaric, lactic, succinic and trans-aconitic)

less than 8 % (Fig. 3). Composition differed among
harvests and species. Contribution of malic acid was
reduced from the first to the second harvest for
all species. At the second harvest, malonic, citric and
oxalic acids were the main rhizosphere carboxylates for
K. nigricans,M. sativa and P. polystachyus, respectively
(Fig. 3).

Heteroscedasticity observed in root carboxylate
content with increase in root length could be corrected
for by using the log-transformed root carboxylate data
(Fig. 4a). Root carboxylate content (or log-transformed
root carboxylate content) in the rhizosphere of a plant
increased at a decreasing rate when root length
increased, irrespective of species and P treatment
(Fig. 4a). Moreover, when higher root lengths (see
Fig. 2a) caused roots to be in closer proximity,
rhizosphere carboxylates increased (Fig. 4b).

For leaf [P] there was an interaction between species
and P treatment (Fig. 5a, Table 2). For all species, leaf
[P] increased with increasing soil [P]. However, the
increase from P20 to P80 was much greater for
P. polystachyus than for the other two species. The
total amount of P taken up by each plant showed
a similar response to P treatment as leaf tissue [P]
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(Table 2, data not shown). Therefore, P. polystachyus
achieved a leaf [P] and total P content that was 6.7 and
3.5 times higher, respectively, than those of M. sativa,
and 3.1 and 3.4 times higher, respectively, than those of
K. nigricans.

Net P-uptake rate (PUR- mg P cm−1 root day−1)
increased with P supply for all species (Fig. 5b).
However,M. sativa had the lowest PUR at all levels of P
supply, while P. polystachyus had the highest. The
relationship between ΔP taken up (i.e. amount of
P taken up by a plant between two harvests) and
PUR was stronger (r00.98) than the relationship
between ΔP taken up and Δ root length (i.e.
difference in root length between two harvests)
(r0−0.50) (Fig. 6).

Leaf tissue Fe and S contents per plant were corre-
lated with rhizosphere carboxylate content (Fig. 7).
However, there was no relationship with leaf tissue
concentrations of K, Mg, Al, Co, Na, Ca, Mn, Cu, Zn
or Mo.
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Leaf tissue concentrations of most elements were af-
fected by species and P treatment (Tables 3 and 4, Fig. 8).
For P. polystachyus at P80, [K], [Mg], [Mo] and [Mn]
were higher, and, irrespective of the P treatment, [Na] and
[Zn] were higher than those ofK. nigricans andM. sativa
(Fig. 8). Therefore, the uptake of both cations (i.e. K,Mg,
Mn and Na) and anions (i.e. Mo) of P. polystachyus was
highly correlated with P uptake, irrespective of P treat-
ment (r00.82, 0.51, 0.33, −0.32, and 0.72 for K, Mg,
Mn, Na andMo, respectively, p<0.05). For K. nigricans,
only K and Mo uptake were correlated with P uptake
(r00.65 and 0.62, respectively, p<0.05) and forM. sativa
only Mo uptake was correlated with with P uptake
(r00.36, p<0.02). Moreover, in a narrow range of leaf
[P] (i.e. within each soil P treatment) there were numer-
ous correlations between leaf [P] and other mineral ele-
ments (e.g., Mg, Na and Zn) for all the species (Fig. 8).

Discussion

Only K. nigricans and M. sativa increased growth from
P5 to P20, and only K. nigricans and P. polystachyus

decreased growth from P20 to P80. Therefore, for K.
nigricans P5 and P80 were in the sub- and supra-optimal
range of soil [P], respectively. For M. sativa, P5 was a
sub-optimal soil [P], but plants grew equally well at P20
and P80. For P. polystachyus P5 and P20 can be consid-
ered as optimal, while P80 was supra-optimal. Thus the
growth of both Australian native species was negatively
affected by the higher soil [P], whileM. sativa grew well
even at the higher soil [P] of P80. The contrasting
response of K. nigricans and M. sativa to increasing P
supply is consistent with that reported for K. prostrata,
K. prorepens and M. sativa by Pang et al. (2010). P
toxicity at high P supply is relatively common for Aus-
tralian native plant species that have evolved on P-
impoverished soils (Shane et al. 2004; Pang et al. 2010).

Soil [P] and rhizosphere carboxylate dynamics

Hypothesis (i) that an increase in soil [P] and thereby
tissue [P] will decrease the amount of carboxylates in
the rhizosphere, was only partly supported. Only for
K. nigricans (only from P20 to P80) and M. sativa did
the amount of carboxylates in the rhizosphere decrease
when soil [P] increased. Recently, Pang et al. (2010)
and Suriyagoda et al. (2010a, 2011) reported that
carboxylate composition did not change with soil [P]
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plant, and rhizosphere carboxylate content of Kennedia nigricans,
Medicago sativa and Ptilotus polystachyus grown at 5, 20 or
80 mg Pkg−1 air-dry soil after 7 weeks of growth (harvest 2)

Table 3 Significance of different sources of variability for leaf
nutrient concentrations after 7 weeks of growth (second harvest)

Nutrient Source of variability R2

P S P×S

Na ns *** ns 0.91

Ca ns *** ns 0.52

Mn * *** * 0.66

Fe ns * ns 0.46

Cu *** *** *** 0.86

Zn ns *** ns 0.86

Mo ** ns ns 0.45

Mg * *** ** 0.83

Al * * * 0.56

S ** *** ** 0.77

K *** *** *** 0.92

Co * ns ns 0.29

Significant effects are indicated for phosphorus (P) and species
(S) treatments, and their interaction (ns., no significant difference;
* p<0.05; ** p<0.01; *** p<0.001)

R2 for the fitted full model is given
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for Kennedia spp. and M. sativa. However, using a
range of plant species, Lambers et al. (2002) and

Pearse et al. (2007) showed that the composition of
carboxylates did change with the source of P. Moreover,

Table 4 Effect of P treatments on concentrations of mineral elements in the leaf tissue of Kennedia nigricans, Medicago sativa and
Ptilotus polystachyus after 7 weeks of growth (second harvest), n04 (see Table 3 for statistics)

Species P treatment Mg Na P S K Ca Mn Fe Cu Al Co Zn Mo
(mg g−1) (mg kg−1)

K. nigricans P5 2.5 0.6 2.4 1.31 10.6 14.8 161 65 19.7 17.9 0.057 52 0.2

P20 2.5 0.5 5.2 1.05 12.8 13.0 148 64 8.5 18.7 0.075 37 0.3

P80 2.5 0.7 14.2 1.55 19.7 13.8 153 86 4.2 19.2 0.125 38 1.0

M. sativa P5 6.1 0.2 1.3 2.50 26.9 20.6 174 219 2.8 23.6 0.171 43 0.1

P20 7.6 1.4 2.4 1.07 15.1 20.3 147 107 2.4 17.0 0.075 15 0.3

P80 5.6 0.7 6.2 1.25 26.0 17.4 166 129 2.6 12.0 0.125 20 0.5

P. polystachyus P5 10.7 12.9 2.2 0.97 21.1 8.5 233 53 9.1 24.5 0.067 197 0.4

P20 8.3 8.6 7.2 0.87 24.7 8.6 201 54 8.3 28.7 0.100 174 0.4

P80 12.9 7.0 51.8 1.25 58.5 15.2 330 66 12.7 39.7 0.175 210 1.14

LSD(α00.05)
a 0.7 0.9 3.3 0.14 2.0 1.8 24 28 1.6 7.8 0.022 15 0.19

a LSD for comparison between treatment combinations is given
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Fig. 8 Relationship between
leaf tissue concentrations of
K, Mg, Mo, Mn, Na and Zn
and P for Kennedia nigricans
(diamonds), Medicago sativa
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stachyus (circles) grown at 5,
20 or 80 mg Pkg−1 air-dry
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symbols, respectively). Cor-
relation coefficients (r) for K.
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rM and rP, respectively,
where, ns no significant
difference; * p<0.05; **
p<0.01; *** p<0.001
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Veneklaas et al. (2003) found that composition of Cicer
arietinum L. carboxylates changed when grown in
different soils with varying P availability. When
considering the composition of carboxylates along
the root length of Lupinus albus L., malate was
predominantly exuded from apices of both seedling
taproots and proteoid roots, whereas citrate exudation
was restricted to proteoid root clusters (Peñaloza et al.
2002). Most of these experiments have tested the
amount of carboxylates in the rhizosphere only once
during the growth period (i.e. at final harvest)
and contrasting results are reported. Moreover,
changes in rhizosphere carboxylate composition
with time/plant age have been paid little attention.
Therefore, we tested hypothesis (ii) that composition of
carboxylates would not change across P treatments and
plant age/harvests. When considering soil [P] only for
K. nigricans, carboxylate composition did not change
with soil [P] while for all species, especially K.
nigricans, carboxylate composition changed with
harvest. Overall, the present findings support previous
findings (Lambers et al. 2002; Veneklaas et al. 2003;
Pearse et al. 2007) that the amount and composition of
carboxylates in the rhizosphere is variable and depend
on the plant species, soil [P] and growth stage of the
plant. However, the impact of changes in amount and
composition of rhizosphere carboxylates on P uptake is
not yet clear and needs further attention as not all
carboxylates may have a similar effect on plant P
uptake. For instance, Ryan et al. (2012) found that
plant P content in a range of Kennedia species
was strongly correlated with citric acid, but not
malic or malonic acids.

Root length and rhizosphere carboxylate content

Roots exude carboxylates into the rhizosphere to
enhance uptake of P for plant growth (Lambers et
al. 2002). Therefore, our third hypothesis was that
the total amount of carboxylates in the rhizosphere of a
plant would increase as the root length increased.
However, the hypothesis was only partially supported as
the rate of increase of rhizosphere carboxylate content
decreased and varied (i.e. heteroscedasticity) as the root
length increased (Fig. 4a). This might be due to several
reasons. First, mature and senescing roots may have had
reduced carboxylate exudation compared with active
root tips (Marschner et al. 1997; Marschner et al. 2011
and references there in) as we examined plants that grew

for 7 weeks and had root lengths up to over 150 m. A
decrease in the rhizosphere malate content along the root
length was found in L. albus while the response of
citrate changed depending on the [P] in soil (Peñaloza
et al. 2002). However, Wouterlood et al. (2004) found
that carboxylate content of C. arietinum increased with
increasing distance from the root apex only up to 2.5 cm
from the root tip. Decomposition of carboxylates also
can reduce the amount of carboxylates present in the
rhizosphere (Jones 1998; Van Hees et al. 2002;
Marschner et al. 2011). Second, plants might decrease
carboxylate exudation from root regions where soil P
has already been depleted. Third, the reduced rate of
increase of rhizosphere carboxylate content as the
root length increases can also be affected by root
morphology, soil characteristics and rhizosphere
microbial properties (Suriyagoda et al. 2010a;Marschner
et al. 2011 and references there in). As far as we are
aware this is the first attempt to establish relationships
between total amount of rhizosphere carboxylate content
of a plant and root length and this concept warrants
further testing.

Root growth and morphology

Hypothesis (iv) that increased tissue [P] at higher soil
[P] would be due to both an increased PUR (mg P
cm−1 root day−1) and an increased root length was
only partly supported. Even though there was an
increase in root length from P5 to P20 for all the
species, supporting the hypothesis, root length of
K. nigricans and P. polystachyus was reduced at
P80 compared with that at P20 which did not
support the hypothesis. Reduced root length of K.
nigricans and P. polystachyus at P80 was correlated
with reduced shoot and root growth (Figs 1 and 2).
Reduced root length at P80 might be an adaptive
response to avoid P toxicity at a higher P supply
(Shane et al. 2004). Increased root growth and relative
allocation to root growth (higher RMR) is beneficial
for P acquisition, since inorganic P is relatively
immobile in soil, but may slow overall plant
growth because of the increased respiratory burden
of root tissue (Lynch and Ho 2005, and references there
in). At low- to optimal soil P supply, root length increase
ofOryza sativa L. was better correlated with the amount
of P taken up thanwithPUR (Wissuwa 2005). However,
in the present experiment, as hypothesised, the PUR
increased from P5 to P80 for all species (Fig. 5).
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Therefore, the amount of P taken up between the
two harvests (ΔP) was more strongly correlated with
PUR (r00.98) than with root length (r0−0.5) (Fig. 6).
Moreover, when comparing among species at P80, the
PUR of the two Australian native legumes, K. nigricans
and P. polystachyus was 2–6 times higher than that
of M. sativa. The higher PUR of K. nigricans and
P. polystachyus may reflect a higher proportion of
fine roots than forM. sativa (Fig. 2), and/or reduced root
length as a morphological adaptation coupled with an
inability to down-regulate P uptake proportionately.
However, Shane and Lambers (2006) reported that
the net-P uptake of Grevillea crithmifolia R. Br.
was reduced at higher P supply which was considered
an adaptation to decrease the rate of P influx at increased
P supply.

Nutrient accumulation

Accumulation of one nutrient often has consequences
for the accumulation of others, with changes seemingly
driven largely by a need to maintain charge balance,
although it may also serve as a detoxification mechanism
(Zaharieva and Römheld 1991; Ryan et al. 2003; Conn
and Gilliham 2010). P. polystachyus has previously
been found to accumulate high [P], [K] and [Mg]
in its leaf cell vacuoles (Ryan et al. 2009). Therefore, we
tested hypothesis (v) plants would accumulate high
concentrations of ions (i.e. both cations and anions) at
high soil P supply. As hypothesised, P. polystachyus
accumulated high concentrations of K, Mg and Mo at
P80 (Fig. 8). Furthermore, irrespective of the P
treatment, P. polystachyus accumulated very high
concentrations of Na, Mn and Zn. Therefore, correlations
of ion uptake (i.e. K, Mg, Mo, Mn and Na) of P.
polystachyus with P uptake, irrespective of the P
treatment, were significant (i.e. r00.82, 0.51, 0.72,
0.33 and -0.32 for K, Mg, Mo, Mn and Na,
respectively) (Fig. 7, Table 4). For all the species,
numerous strong positive correlations were present
between a narrow range of leaf [P] (i.e. within
each P treatment) and mineral elements. However,
to test hypothesis (v) we considered correlations
across all P treatments (i.e. wide range of leaf [P])
(Fig. 8) in order to study broad, general trends.
Brennan et al. (2000) found that at the seedling
stage of P. polystachyus, the critical concentration
for shoot growth to avoid deficiency is about 15 mg g−1

DW for K, and 9 mg g−1 DW for P. Adequate

concentrations in shoots were 17–27 mg g−1 DW for K
and 10–16 mg g−1 DW for P. In the present experiment,
at P20, similar results were found, while at P80
concentrations of K and P were higher than those
reported by Brennan et al. (2000). Therefore, the
P80 treatment was in the supra-optimal range of P
for P. polystachyus. However, P. polystachyus did
not show any visual P toxicity symptoms, apart
from the reduced DW at P80.

Hypothesis (vi) that the accumulation of high
amounts of mineral elements would be correlated with
the amount of carboxylates in the rhizosphere was
only supported for Fe and S (Fig. 8). Argyriadis et
al. (1976) found similar results for S. Even though
rhizosphere carboxylate dynamics and plant nutritional
status were measured in many previous studies, their
correlation was not tested (Shen et al. 2004; Suriyagoda
et al. 2011). This merits further detailed study.

Concluding remarks

The response of rhizosphere carboxylate content and
composition varied with soil P supply, plant species and
plant age. For all species and P treatments, the amount of
rhizosphere carboxylates per unit root length decreased
as root length of a plant increased. Higher rhizosphere
carboxylates corresponded with enhanced uptake of Fe
and S from soil. The amount of P taken up by
plants was determined more by the PUR (i.e.
physiological adaptation) than by the root length
(i.e. morphological adaptation). When P (i.e. an
anion) was taken up in greater quantities, cation
uptake was also increased.
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