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Abstract
Background and aims We ask how productivity
responses of alpine plant communities to increased
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nutrient availability can be predicted from abiotic re-
gime and initial functional type composition.
Methods We compared four Caucasian alpine plant
communities (lichen heath, Festuca varia grassland,
Geranium-Hedysarum meadow, snow bed communi-
ty) forming a toposequence and contrasting in produc-
tivity and dominance structure for biomass responses
to experimental fertilization (N, P, NP, Ca) and irriga-
tion for 4-5 years.

Results The dominant plants in more productive
communities monopolized added N and P, at the
expense of their neighbors. In three out of four
communities, N and P fertilizations gave greater
aboveground biomass increase than N or P fertiliza-
tion alone, indicating overall co-limitation of N and
P, with N being most limiting. Relative biomass
increase in NP treatment was negatively related to
biomass in control plots across the four communi-
ties. Grasses often responded more vigorously to P,
but sedges to N alone. Finally, we present one of the
rare examples of a forb showing a strong N or NP
response.

Conclusion Our findings will help improve our ability
to predict community composition and biomass dy-
namics in cool ecosystems subject to changing nutri-
ent availability as induced by climate or land-use
changes.

Keywords Biomass - Caucasus - Cold biome -

Community composition - Growth form - Irrigation -
Nitrogen - Nutrient limitation - Phosphorus - Soil pH
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Nomenclature
Vorob’eva and Onipchenko (2001)

Introduction

Soil resource regime has a paramount influence on
plant community productivity and structure (Grime
1977; Chapin 1980; Tilman 1982; Grime 2001). Plant
communities may be assumed to be largely adapted to
the current nutrient regime and therefore not to be
nutrient limited per se (Korner 2003a).

However, the productivity and abundance of some
species or functional groups may increase after nutri-
ent fertilization so those parameters may be consid-
ered as nutrient limited. Production of plants in cold
regions, i.e. in alpine and arctic communities, is often
limited by nitrogen availability, as has been shown in a
range of in situ fertilisation studies (e.g. Haag 1974;
Shaver et al. 2001; Kdrner 2003b; van Wijk et al.
2003; Soudzilovskaia et al. 2005; LeBauer and
Treseder 2008). Contrary to the well established
role of nitrogen limitation, the roles of other nutrients and
water limitation for productivity of arctic and alpine
communities are not very clear, but can not be dismissed.
There is some evidence that phosphorus can limit pro-
ductivity of alpine communities (Seastedt and Vaccaro
2001), arctic tundra (Chapin 1981; Chapin and Shaver
1989), wetland communities (Gough and Hobbie 2003;
Olde Venterink et al. 2003; Gusewell 2004), dry-land
communities (Lambers et al. 2008), mountain grasslands
on carbonate soils (Sebastia 2007), tropical rainforests
(Raaimakers and Lambers 1996; Lambers et al. 2008),
but was also shown to be a secondary limiting factor in a
Caucasian alpine community (Soudzilovskaia et al.
2005). In some ecosystems raising pH via calcium addi-
tion lead to increasing plant biomass production due to a
temporary increase of mineralization (De Graaf et al.
1998; Hobbie and Gough 2004). Soil moisture can also
be an important factor limiting the production of alpine
plant communities (Billings 1974; Walker et al. 1994).
Nevertheless, there are few experimental investigations
(e.g. Bowman et al. 1995; Soudzilovskaia et al. 2005)
testing responses of alpine tundra to water availability
manipulations.

Returning to the likely major role of nutrient limi-
tation of production in terrestric ecosystems, two main
types of community response to nitrogen or nitrogen-
plus-phosphorus fertilizations have been reported

@ Springer

repeatedly (Bret-Harte et al. 2008). The first response
type features strong increases of graminoid biomass
(e.g. Dahler 1992; Jonasson 1992; Press et al. 1998;
Gerdol et al. 2000; Graglia et al. 2001; Gough et al.
2002; van Wijk et al. 2003; Bret-Harte et al. 2004;
Fremstad et al. 2005; Klanderud 2008) at the apparent
expense of dwarf shrubs, mosses, lichens as well as
other plants typical for poor soils (e.g. Aerts and
Chapin 2000; Cornelissen et al. 2001; van Wijk et al.
2003). The second response type is characterized by
herbaceous species (and cryptogams) being replaced
by taller woody plants (Tilman 1988; Shaver et al.
2001; van Wijk et al. 2003). However, it is not clear
yet (a) which factors drive different communities to
the first or second response type, and/or (b) whether
alternative response types occur. Here we compare
four Caucasian alpine plant communities contrasting
in mesorelief position, productivity and dominance
structure (Onipchenko 2004) for biomass responses
to experimental fertilizations of different mineral
nutrients and water. Our primary objectives were to
determine: 1) which soil resources limited production
of four alpine communities with different mesorelief
position, productivity and dominance structure, 2)
which plant functional groups react positively or neg-
atively on different nutrient or irrigation; 3) does the
response of alpine plant communities to nutrient fer-
tilization or irrigation depend on initial dominance
structure, i.e. by the relative abundance of dominant
species or functional groups in control plots? To our
knowledge, this is the first comprehensive, experimen-
tal study on resource limitation of productivity along a
toposequence (catena) of alpine communities develop-
ing on the same geological substratum.

Methods
Study sites and communities

This study was conducted at the Teberda Biosphere
Reserve (Northwestern Caucasus, Russia). The exper-
imental site was located on the south and south—cast
slope of Mt. Malaya Khatipara (43°27'N, 41°41'E at
2700-2800 m a.s.l.). Mean annual temperature in the
area is 1.2°C and mean July temperature is 7.9°C
(Grishina et al. 1986). Annual precipitation is about
1400 mm. We investigated four alpine communities:
alpine lichen heath (hereafter, simply lichen heath),
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Festuca varia grassland (Festuca grassland), Gerani-
um-Hedysarum meadow (Geranium meadow) and
snow bed community (snowbed). This sequence of
community types reflects their location along the snow
accumulation gradient from snow-free to snow-bed
communities. Experimental plots of different commu-
nities were situated within a few hundred meters of
one another.

Lichen heath occupies windward crests and slopes
with little (up to 20-30 cm) or no snow accumulation in
the winter. Deep freezing is typical for the soils there.
The growing season lasts about 5 months, from May
through September. Fruticose lichens are the main dom-
inants (mostly Cetraria islandica (L.) Ach. ). There is
no absolute dominant among vascular plants, but the
following species contribute more than 5% to above-
ground vascular plant biomass: Carex sempervirens, C.
umbrosa, Anemone speciosa, Festuca ovina, Antenna-
ria dioica, Trifolium polyphyllum, and Vaccinium vitis-
idaea. Total annual primary production is about 150 g
m 2 (Onipchenko 2004).

Festuca grasslands are firm-bunch grass communi-
ties, which occupy slopes with little snow accumula-
tion (about 0.5-1 m). Snow cover stays until the
second half of May or the first half of June, followed
by a growing season of about 4 months. Festuca varia
and Nardus stricta are the main dominants, together
often contributing more than 75% of aboveground
biomass. Total annual primary production is about
400 gm ? (Onipchenko 2004).

Geranium meadow occupies the lower parts of
slopes and small depressions with typical snow depths
of 2-3 m. It thaws out by the end of June or by early
July, followed by a growing season of only 2.5—
3.5 months. Geranium gymnocaulon is the main domi-
nant and Nardus stricta, Phleum alpinum, and Hedysa-
rum caucasicum create more than 5% of aboveground
biomass. The population density of voles [Pitymys
(Microtus) majori Thomas] can reach 940 animals per
hectare during a “peak-year” in these communities
(Fomin et al. 1989), causing severe disturbances due to
their burrowing activity. Voles prefer this community
due to taller close plant cover (protecting against birds of
prey) and high food plant abundance. The community
is, at about 550 gm 2 year ', the most productive within
this alpine toposequence (Onipchenko 2004).

Snowbeds occupy depressions and bottoms of nival
and glacial cirques with heavy winter snow accumulation
(4 m or more). They have the shortest vegetative season

of about 2-2.5 months from mid July until September.
Short rosette and dwarf trailing forbs (Sibbaldia procum-
bens, Minuartia aizoides, Gnaphalium supinum, and
Taraxacum stevenii) prevail here. Due to the short growth
season the total production is only about 200 gm 2 year '
(Onipchenko 2004).

Soils (Umbric Leptosols) of the studied communi-
ties have silty loam texture. The proportion of sand
decreases slightly from lichen heath to snowbed. Al-
pine soils are relatively poor in available nitrogen and
phosphorus, while they are rich in potassium due to
the chemical composition of the bedrock (granite and
biotitic schist) (Vertelina et al. 1996, Table 1). Soil
acidity gradually increases from lichen heath to
snowbed (pHjppo ranges from 5.6 in lichen heath soil
to 4.7 in snowbed soil — Onipchenko 1994, see also
Table 1).

Field methods

The study was conducted during five growing seasons
from 1999 through 2003. The experiment included
controls and five treatments: Ca addition (in order to
raise soil pH), P, N and NP fertilizations and irrigation.
Our previous results (Onipchenko 1994) showed that
potassium had no influence on plant aboveground
production in potassium-rich biotite-derivated soils.
Therefore, we did not use K fertilisers in this
experiment.

A visually homogeneous area of 19x6.5 m was
selected for each community and divided into 24 plots.
Each plot was 1.5 mx1.5 m with 1 m buffer zones
between plots. The plots were randomly assigned to
the treatments, which were replicated four times.

In 1999 Ca, N, P and NP fertilization treatments
were started. N, P and NP plots were fertilized annu-
ally at the beginning of the growing season, in dry
form on the soil surface. Nitrogen was added as urea
(9 gN'm 2 year "), phosphorus as double super phos-
phate (2.5 gP m™? year ).

Calcium was added twice: in 1999 as lime and in
2002 as chalk (equivalent amount). The amount of
added lime ranged from 52 gm * for lichen heath,
84 gm? for Festuca grassland, 119 gm ™ for Gerani-
um meadow, to 183 gm 2 for snowbed. Different
doses were used because soil acidity differs signifi-
cantly among the studied communities increasing
from the upper (lichen heath) to the lower (snowbed)
positions along the catena. The dose of lime or chalk
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Table 1 Soil acidity and available inorganic N and P (mg kg ")
after 10 years of fertilizer application (2008), n=8, standard
deviation in parentheses Different letters indicate significant

difference among treatments within a community (p<0.05,
post-hoc Tukey test following one-way ANOVA)

Community Variant pH P NH,-N+NO; —N
Lichen heath Control 4.77 (0.09) ac 1.4 (0.8) b 20.6 (3.3)b
+Ca 4.99 (0.15) b 1.9(1.0)0b 254 (4.2)b
+P 4.91 (0.12) be 13.8 (7.7) ab 24.1 3.5)b
+N 4.74 (0.07) a 1.6 (0.7) b 374 (11.1) a
+NP 4.84 (0.13) abc 22.8(22.4)a 30.8 (9.6) ab
Festuca grassland Control 4.40 (0.06) b 33(L.)Db 202 (7.1)b
+Ca 4.67 (0.06) a 2.8(0.5)b 25.7 (13.6) ab
+P 4.45(0.20) b 223 (184)a 150 (44)b
+N 4.45(0.10) b 29(0.7)b 56.7 (29.9) a
+NP 4.34 (0.09) b 14.7 (12.9) ab 58.3(40.7) a
Geranium meadow Control 4.15(0.08) b 32(09)b 20.7 (6.7) a
+Ca 4.88 (0.28) a 28 (1.0)b 25.0 (10.4) a
+P 435(0.17) b 320(24.7) a 26.6 (10.6) a
+N 434 (0.05) b 24(0.8)b 26.1 (4.9)a
+NP 4.29 (0.08) b 18.5 (7.8) ab 32.6 (16.8) a
Snowbed Control 4.20 (0.08) b 24(0.8)a 21.1 (149)a
+Ca 5.13(0.62) a 2.1(1.0)a 22.6 (11.2) a
+P 4.18 (0.10) b 23.1(124)b 16.1 3.7)a
+N 4.04 (0.14) b 25(0.7)a 52.1(242)b
+NP 4.14 (0.12) b 16.9 (13.0) b 51.3(26.8) b

was to neutralize half of the potential acidity of the
upper soil horizons, and had been calculated based on
published soil properties of the studied communities
(Grishina et al. 1993). Irrigation (H,O treatment) was
conducted in 1999-2003 during the vegetation period
(July—August). The mean daily value of evapotranspi-
ration in the area is about 3 mm (Grishina et al. 1986).
Every day the precipitation was measured. If the precip-
itation over a 3-day period did not compensate for the
water loss due to evapotranspiration, the plots were
irrigated with 9 mm of water. The total amount of added
water varied according to natural precipitation from 0
(2002—wet season) to 45—63 mm (2000—dry season).

In each treatment and each community plot two soil
cores (diameter 5.6 cm, depth 10 cm) were sampled for
chemical analyses in 2008 (total 8 replications). Soil pH
was measured in H,O suspension by a glass electrode
(soil to H,O ratio of 1:2.5). Available phosphorus was
extracted from soils with 0.5 M CH3COOH at soil to
solution ratio of 1:25 and shaking time 1 h. NH,"—N and
NO; —N were extracted with 0.05 M K,SO, at soil to
solution ratio of 1:5 and shaking time 1 h. PO,* P,
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NH, —N and NO; —N were determined on a spectro-
photometer Genesys-10-UV by colorimetric reactions
by the molybdenum-blue, salicylate-nitroprusid and
cadmium reduction methods, respectively.

Total above-ground biomass (including both
lichens and vascular plants) was sampled in all plots
of all treatments in summer 2002 and 2003 during the
first half of August, at the peak of the growing season
of this relatively late and cold summer. In each plot
two 0.25 m=0.25 m subplots were cut close to the soil
surface each year. Thus, there were 16 (8 in 2002 and
other 8 in 2003) subplots for each treatment within
each community. Vascular plants were sorted by spe-
cies. Dead leaves of the current season were added to
the biomass of the corresponding species; over-
wintered dead plant material of all species was con-
sidered as litter. Lichens and mosses were not sorted
by species. Plant material was air-dried, then oven-
dried (90°C, 12 h) and weighed. The three morpho-
logically similar Carex species in lichen heath (Carex
umbrosa, C. sempervirens and C. caryophyllea) were
pooled as Carex spp.
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Seven functional groups were considered: dwarfs
shrubs, forbs, hemiparasites, legumes (N-fixers),
grasses, sedges and other monocots. Not all of them
were represented in all studied communities, so for our
analysis we used only groups which had considerable
biomass and/or abundance in a community (details in
Table 2). We considered grasses and sedges as sepa-
rate groups instead of general graminoid group due to
their different biomass response to fertilization in li-
chen heath (Soudzilovskaia et al. 2005, 20006).

Data analysis

We analysed the data of total vascular plant above-
ground biomass between treatments at final harvest.
Data for the subsets of 4-year and 5-year harvests
deviated only marginally and non-significantly (data
not shown here), so they were pooled for the one way
ANOVA. Assumption of normality was tested prior to
all statistical tests and logarithmic transformation
[logo(x+1)] applied if necessary. We subsequently
applied Tukey post hoc tests. To detect shifts in above-
ground biomass composition, functional group frac-
tions (% of aboveground vascular plant biomass) were
analysed individually per functional group with one
way ANOVA. In order to improve normality the data
were transformed by natural logarithm [In(x+1)]. We
did not run two-way ANOVA for simultaneous analy-
sis of treatment and group effects, because such anal-
ysis conducted on percentage data would violate the
assumption of independence among functional groups.

To compare high and low productive communi-
ties, we considered lichen heath and snowbed as

Table 2 Functional groups of vascular plants

the low-productive and Festuca grassland and Ge-
ranium meadow as the highly productive commu-
nities. We plotted the mean absolute aboveground
biomass increase of each functional group in re-
sponse to NP treatment (Bnp-Bconw) against the
fraction of the biomass of each functional group
relative to total aboveground biomass in the control
treatment. Here we used absolute rather than rela-
tive biomass increase because only the former
would highlight any functional group that would
monopolize extra nutrients to outcompete others
based on its initial strong contribution to the com-
munity. In low-productive communities without
clear initial dominance by any functional group
we did not expect any functional group to outcom-
pete the others when heavily fertilised. To compare
total biomass response between low and high pro-
ductive communities we used relative biomass in-
crease (Bnp-Beont)*100/Beony. All calculations
were made with the Statistica 6.0 software package.

Results

Soil nutrient and total biomass response to resource
additions

In response to fertilizer application, soil available
phosphorus increased consistently in P and NP fertil-
izations of all communities (Table 1). Availability of
inorganic nitrogen increased less strongly, and the
difference with the control was not always significant
because of high variability in N and NP fertilizations.
It is interesting to note that soils of the most productive

Abbreviation Group

Description and representatives

Evergreen ericoid dwarf shrub (Vaccinium vitis-idaea) in lichen heath

and prostrate semishrub (Sibbaldia procumbens) in snowbed

All dicots except legumes and hemiparasites
Poaceae (Graminae) family

Facultative hemiparasitic plants: Euphrasia ossica, Pedicularis comosa

in lichen heath, Pedicularis nordmanniana in snowbed

Fabaceae: Trifolium polyphyllum and Oxytropis kubanensis in lichen heath,

Hedysarum caucasicum in Geranium meadow

DS Dwarf shrubs and semishrubs
F Forbs
Grasses
HP Hemiparasitic plants
L Legumes
OM Other monocots
S Sedges

Juncaceae (Luzula spp.) and Liliaceae s.1. (Fritillaria collina, Gagea fistulosa)
Cyperaceae, here only Carex spp.
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community (Geranium meadow) in contrast to the
other ones did not show a significant increase in N
after N or NP fertilization (Table 1).

Since measurements on shoot abundances in the
control plots (V.G. Onipchenko et al., unpublished data)
indicated that the species abundance (and presumably
biomass) structure did not change substantially between
the start and end of this study in any of the four com-
munities, we take any differences between different
treatments in 2002/2003 to also represent changes rela-
tive to initial composition and biomass structure.

Total aboveground biomass significantly increased
after NP fertilization in all communities, but there were
some differences in response (Fig. 1): it was 156%
higher in NP plots relative to control plots for lichen
heath, 72% higher for Festuca grassland, 32% higher for
Geranium meadow and 110% higher for snowbed. Vas-
cular plants of lichen heath responded positively to N but
more to NP treatment, while there were no differences in
aboveground biomass between N and NP treatment for
Festuca grassland. On the other hand, vascular plant
biomass response in the most productive Geranium

Fig. 1 Aboveground vascu-

meadow was significant after NP fertilization only. In-
terestingly, snowbed showed equal biomass increases in
response to NP and Ca treatments. Neither irrigation nor
P fertilisation-alone affected aboveground biomass in
any of the communities.

The absolute increase in total aboveground biomass
upon NP treatment (as compared to the control)
ranged from 99.4 gm > in Geranium meadow to 118
in snowbed, 165 in Festuca grassland and 197 gm 2 in
lichen heath. Thus on average the absolute biomass
response of the two low-productive communities
(157 gm ?) was not lower, but apparently even some-
what higher, than that of the two highly productive
communities (132 gm ?). The productivity of
snowbed may be more limited by the short vegetation
season than by soil nutrients, which may have influ-
enced our results.

Functional groups and response of dominants

Significant changes in aboveground biomass among
treatments were obtained for forbs (increase in NP
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treatment in comparison with the control), grasses
(increase in P and NP), hemiparasites (increase in
irrigation and NP fertilization) and sedges (increase
in N) in lichen heath, for grasses (increase in N and
NP) in Festuca grassland, for forbs (increase in N and
NP) and sedges (increase in N) in Geranium meadow
and for forbs and grasses (increase in NP) in snowbed
(Table 3). Legumes showed marginal response (P=
0.07, increase in P) in Geranium meadow. There were
significant changes in functional group fractions in
lichen heath (for grasses — increase in P, decrease in
N, hemiparasites — increase in fertilization and NP, and
sedges — increase in N) and Geranium meadow (for
sedges only — decrease in Ca and P). Marginal

Table 3 Aboveground biomass of plant functional groups (FG)
after different treatments (g m 2, mean and standard error, n=4)
for 4 alpine communities for 4-5 years (see Table 1 for plant

responses (0.10>p>0.05) were noted in Geranium
meadow (for legumes, grasses — decrease in NP, and
forbs — increase in NP) and in snowbed (for grasses
only — increase in NP). Other monocots (OM group)
had negligible biomass in all communities and
treatments.

Dwarf shrubs and subshrubs (Vaccinium vitis-
idaea in lichen heath, Sibbaldia procumbens in Gera-
nium meadow and snowbed) did not react significantly
to nutrient or irrigation. Forbs were abundant in all
studied communities, but their response to fertiliza-
tions and irrigation varied. They did not show signif-
icant changes in Festuca grassland, increased their
biomass after NP fertilization in lichen heath (2.7-fold

functional group abbreviations). Different letters indicate signif-
icant difference among treatments (p<0.05, post-hoc Tukey test
following one-way ANOVA)

FG Cont Ca H,0 P N NP P
Alpine lichen heath

DS 22.0+4.7a 29.6+7.5a 28.7+5.7a 11.0+2.7a 22.2+4.6a 24.4+5.0a 0.6520
F 53.1+£6.8a 55.5+6.5a 38.1+3.6a 49.8+5.2a 61.3£9.0a 141.3+18.2b 0.0000
G 26.2+3.1a 35.8+3.2ab 25.5+2.5a 51.3+£5.3b 23.0+£3.7a 84.3+10.8¢c 0.0000
HP 0.5+0.2a 1.8+0.5a 3.0+0.6b 0.4+0.1a 3.3+1.3a 10.0+3.3b 0.0002
L 9.4+2.7a 13.8+4.6a 7.0+4.2a 16.5+3.5a 29.1+10.2a 9.7+4.5a 0.3457
OM 1.1+0.7a 0.4+0.3a 0.0 0.0 0.2+0.2a 1.7+1.1a 0.2280
S 14.0£1.9a 23.8+3.1a 13.9+2.4a 8.9+1.3a 79.9+12.5b 51.7+13.5ab 0.0005
Festuca varia grassland

F 23.1£9.2a 16.4+4.5a 16.8+6.0a 44.1£23.2a 21.6+7.1a 24.0+10.9a 0.8696
G 201.6+33.3a 210.9+33.3a 212.4+44.7a 214.5+35.6a 371.4+43.7b 365.2+54.0a 0.0414
L 0.0a 0.0a 20.1£20.1a 0.0a 0.0a 0.0a 0.4457
OM 0.0a 0.1£0.1a 0.0a 0.2+0.1a 0.0a 0.1+0.1a 0.5519
S 3.9+1.8a 36.9+18.0a 14.8+7.4a 14.5+7.3a 11.2+3.6a 43+3.8a 0.3814
Geranium-Hedysarum meadow

DS 2.3+1.0a 22+1.2a 49+1.6a 1.8+£0.7a 2.4+1.3a 0.9+0.6a 0.5292
F 146.7+26.1a 144.94+17.9a 132.4+16.7a 132.0+20.2a 216.3+35.9ab 309.6+41.2b 0.0001
G 73.0+15.4a 83.5+15.7a 79.5+10.4a 77.1£12.3a 62.3+12.9a 47.3+10.5a 0.7067
L 73.3+£16.2ab 45.0+14.0a 74.1+17.7a 105.2+19.9a 35.3+10.7a 38.3x14.1a 0.0717
OM 3.3+2.7a 1.8+1.0a 1.1+0.5a 0.1+0.0a 0.8+0.4a I.1+1.1a 0.6884
S 15.3+4.0ab 5.1+2.3a 6.9+2.9a 1.8+1.3a 35.3+8.8b 16.1+5.8ab 0.0042
Snowbed community

DS 36.1+3.8a 76.8+£32.0a 41.844.3a 49.1+7.9a 26.9+6.4a 64.4+11.3a 0.4348
F 43.9+6.0ab 82.4+9.6b 31.7+4.3a 53.5+5.3ab 55.5+6.0ab 56.3+6.7ab 0.0293
G 21.6+£3.3a 41.7+5.8a 13.8+2.6a 19.7+£3.3a 30.4+6.0a 82.4+9.5b 0.0000
HP 0.9+0.4a 9.2+3.7a 1.6+0.8a 3.8+l.4a 1.3£0.6a 9.4+7.7a 0.3431
OM 0.1+0.1a 0.2+0.1a 0.0+0.0a 0.0+0.0a 0.1£0.1a 0.1+0.1a 0.6269
S 49+1.8a 9.2+2.6a 3.4+1.0a 4.0+1.1a 9.4+3.8a 13.0+£5.2a 0.4955
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in comparison to control) and Geranium meadow (2.1-
fold). Nitrogen fertilization significantly increased
forb biomass in Geranium meadow (1.5-fold), as well
as its percentage in biomass. Ca addition apparently
doubled forb biomass in snowbed (Table 3, P=0.08).
Hemiparasites were generally uncommon, but they
increased their biomass 20-fold after NP fertilization
in lichen heath. Legumes were common in lichen
heath and Geranium meadow. They responded mar-
ginally (positively) to P, and (negatively) to N and NP
fertilizations in Geranium meadow (Table 3). The two
main graminoid groups, grasses and sedges,
responded very differently to fertilizations. Grasses
significantly increased their biomass after NP fertiliza-
tion in all communities but Geranium meadow. They
responded positively to N fertilization in Festuca
grassland (mostly owing to Festuca varia) and to
P fertilization in lichen heath (mostly owing to F.
ovina). In lichen heath the proportion of grasses
in aboveground biomass significantly increased in
P, significantly decreased in N, but did not change
in the NP treatment. In contrast, for the same
treatment, the role of grasses marginally decreased
in Geranium meadow and marginally increased in
snowbed. The biomass of sedges increased most
remarkably after N fertilization in lichen heath
(5.7-fold) and in Geranium meadow (2.3-fold)
(Table 3), also in relative terms.

Across the four communities, there was an overall
positive relationship between biomass response of
functional groups to NP treatment and the fraction of
biomass of these functional groups in control treat-
ments (Fig. 2).

Discussion
Which resources limit alpine biomass production?

Our results demonstrate that our four alpine commu-
nities differed in which resources limited productivity.
For alpine lichen heath (see also Soudzilovskaia et al.
2005) and Geranium-Hedysarum meadow, in which
forbs play an important role (see below), nitrogen was
the principal and phosphorus the secondary limiting
nutrient. Grassland dominated by Festuca varia
responded equally to N alone and N combined with
P fertilization, thus indicating N limitation only of ¥
varia in particular (see below). In the snow-bed
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Fig. 2 Aboveground biomass response of functional groups to
NP fertilisation treatment (45 year) in four alpine communities,
as a function of the aboveground biomass fraction of each
functional group in the control treatment for each community.
ALH, Alpine lichen heath; FVG, Festuca varia grassland;
GHM, Geranium-Hedysarum meadow; SBC, Snowbed commu-
nity. F, forbs; G, Grasses. Linear regression relates to all func-
tional groups present in all four communities

community aboveground biomass increased equally
in NP and Ca treatments, implying co-limitation of
N, P and Ca. Possibly greater Ca availability or higher
pH promoted nutrient mineralization and thereby re-
duced N and P limitation (see below). The overall
productivity responses to N, P and NP fertilization
did not line up with the toposequence and associated
snow depth sequence, as N and P colimitation was
seen at both ends of the toposequence, with the N
limited Festuca varia community in the middle. Alto-
gether, while P and Ca play important roles in specific
communities, our results generally support Korner’s
(2003b) hypothesis that vascular plant biomass pro-
duction in alpine communities is mostly nitrogen lim-
ited. The same order of production limitation -first N,
then P- was also reported for other alpine communities
in different mountain areas (Jeffrey and Pigott 1973;
Shatvoryan 1978; Molau and Alatalo 1998; Shaver et
al. 2001; Heer and K6rner 2002).

There are several ecosystems for which P limitation
of biomass production has been reported, in many
cases from P-depleted old soils after long-term leach-
ing (alpine — Seastedt and Vaccaro 2001; arctic tundra
— Chapin 1981; Chapin and Shaver 1989; tropical and
subtropical - Walker et al. 1981; Lambers et al. 2008;
arctic and temperate wetlands — Gough and Hobbie
2003; Olde Venterink et al. 2003; grasslands on basic
soils — Jeffrey and Pigott 1973; Roem et al. 2002). The
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fact that P was not a main limiting resource in any of
our communities may be explained by the relatively
high P contents in the soils (1.4-3.3 mg kg ', Table 1;
see also Makarov et al. 1996, 2004), which are only of
mid-Holocene age and have therefore been depleted
little by substrate weathering (radiocarbon age up to
5000 years, Grishina et al. 1987).

Ca addition lead to doubling of aboveground biomass
in snowbed. This unexpected result has no precedent for
other alpine communities in the literature. Reduced soil
acidity in response to Ca additions can improve nitrogen
and phosphorus availability to vascular plants (Rorison
1980). Ca addition, at least temporally, stimulates nitro-
gen mineralisation (De Graaf et al. 1998; Hobbie and
Gough 2004) as well as organic phosphorus mineralisa-
tion (Halstead et al. 1963; Islam and Mandal 1977,
Condron and Goh 1989; Trasar-Cepeda and Carballas
1991). Indeed, in our experiment we measured an in-
crease in nitrate and mineral phosphorus in snowbed
soils, as well as a pH increase from 4.1 in controls to
5.1 after Ca addition (Table 1). Other communities
showed a weaker (Festuca grassland, Geranium mead-
ow) or no obvious pH increase (lichen heath).

Irrigation did not influence aboveground biomass in
any of our four communities. Similar results were
obtained for several arctic and subarctic species and
communities (Wookey et al. 1994; 1995; Press et al.
1998; Robinson et al. 1998; Dormann and Woodin
2002; but see Phoenix et al. 2001) and in general for
alpine plants, which appear to rarely experience water
stress in mesic areas (Welker et al. 2001; Kérner 2003b).
On the other hand production of several species in
mountain meadows in drier regions (Colorado, Alps)
show significant water limitation (Bowman and Fisk
2001; Liancourt et al. 2005; Brancaleoni et al. 2007).
In our communities, only hemiparasites increased bio-
mass after irrigation treatment. Euphrasia ossica showed
a 10-fold increase of population density in irrigated lichen
heath plots (Soudzilovskaia and Onipchenko 2005). It
seems that seedling establishment of annual hemipara-
sites strongly depends on soil humidity and Euphrasia is
very sensitive to drought (Grubb 1984). However, such
annual plants do not play an important role in total
community biomass production.

Functional group response to fertilisation

Since most species occurred only in one of the four
communities, we cannot be sure that their response to

nutrient amendments in one community is representa-
tive for the species, as species by soil interactions for
fertilization response are possible. At the level of
functional types such interactions are also likely to
occur, but some general response patterns can still be
detected by putting our findings into the broader con-
text based on available results from fertilisation
experiments in cool-temperate, alpine and arctic eco-
systems in Appendix 1. Phosphorus fertilizations lead
to increase in biomass of grasses (especially Festuca
ovina) in several studies (Jeffrey and Pigott 1973;
Bowman et al. 1993; Soudzilovskaia et al. 2005) in-
cluding ours. Festuca ovina has very low leaf P con-
centration in the study area (0.05%—Voronina et al.
1986; 0.022% —Soudzilovskaia et al. 2005; mean for
all plant species 0.16%—Voronina et al. 1986) and
compared to the global mean of 0.123% (Kattge et
al. 2011) and might be limited by this nutrient. Indeed,
in a monoculture experiment this species decreased
soil P concentration to a greater extent than other
species (Onipchenko et al. 2001). However, when P
fertiliser was combined with hay cutting in subalpine
meadow, the closely related species Festuca varia
decreased its abundance with increasing forb biomass
(Bush 1940). It is interesting to note the contrasting
responses of the two congeneric grasses: production of
Festuca varia was limited by N while that of F. ovina.
was limited by P. These species differ greatly in traits
and corresponding strategies (F. varia — competitor, F.
ovina — stress tolerant — Onipchenko et al. 1998). The
latter finding suggests that nutrient status and/or nutri-
ent cycling may differ considerably even among spe-
cies belonging to the same growth form (see also
Bombonato et al. 2010).

Legumes, due to their nitrogen fixing ability,
often respond positively to P fertilization in tem-
perate grasslands (Rabotnov 1973) as well as in
alpine plant communities (Bowman et al. 1993;
Theodose and Bowman 1997; Walker et al.
2001). Our results for the Geranium meadow com-
munity support these observations. However, Tri-
Sfolium polyphyllum in lichen heath did not show a
significant positive response to P, likely due to the
absence of nodulation and N,-fixing activity in
this species (Onipchenko 1994).

Graminoids usually increase their abundance after
nitrogen treatment in alpine and arctic communities
(Appendix 1; McKendrick et al. 1980; Bowman et al.
1993; Press et al. 1998; Theodose and Bowman 1997;
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Koérner 2003b; Calvo et al. 2005). Grasses and sedges
can respond differently to N fertilization. Our results
for lichen heath and Geranium meadow as well as
studies in Colorado (Bowman et al. 1993; Theodose
and Bowman 1997; Walker et al. 2001) and Alps
(Bassin et al. 2007) demonstrate that sedges respond
to nitrogen fertilisation better than grasses. In our
monoculture experiments (Onipchenko et al. 2001)
sedges (Carex umbrosa, C. sempervirens) effectively
decreased available soil nitrogen concentrations.
Higher C/N ratios were observed in soils under Cyper-
aceae (sedge allies) in alpine area (southwestern Alps)
in comparison with other communities (Choler 2005).
Positive responses of grasses to P fertilization and of
sedges to N fertilization were noted in subalpine grass-
lands in the Pyrenees (Sebastia 2007). Therefore, our
results support the view that sedges have a high nitro-
gen uptake capacity and this group can be strongly
limited by low soil nitrogen availability. Thus we
recommend to consider sedges and grasses as separate
functional groups rather than pooling them as
“graminoids”.

One of our key findings is that, while NP fertiliza-
tion led to significant biomass increases in all four
studied communities, different plant functional groups
were responsible for this increase. Both grasses and
several forbs responded strongly to NP treatment in
low productive lichen heath and snowbed, without any
species or group monopolizing the extra nutrients for
biomass production over a five-year period. In con-
trast, in the two more productive alpine meadows we
observed the most positive response of the main dom-
inant group, i.e. grasses in Festuca grassland and forbs
in Geranium meadow. In Geranium meadow this
response resulted predominantly from biomass in-
crease of Geranium gymnocaulon, which perhaps
may have outcompeted the otherwise potentially re-
sponsive grasses there. Based on our literature survey
(Appendix 1), this seems to be one of the first records
of such strong forb-only biomass response to NP
fertilisation in cold-biome communities. Positive
responses of forbs on fertilisation were noted in sev-
eral studies (Madaminov and Budtueva 1990; Henry
et al. 1986; Calvo et al. 2005; Bowman et al. 1993;
Jagerbrand et al. 2009 — together with temperature
increase only), but we obtained an increase in the
relative contribution of forbs to aboveground biomass.
Otherwise, such dominance of forbs in response to
fertilization can also be observed at the patch scale in
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the agricultural landscape, for instance patches of
stinging nettles (Urtica dioica) in cattle resting areas
with high dung concentration. So, in contrast to Bret-
Harte et al. (2008) we propose that there are now three
main types of cold biome community responses to NP
fertilizations (see Appendix 1): (1) graminoid increase
(Jeffrey and Pigott 1973; Bowman et al. 1993; Theodose
and Bowman 1997; Gerdol et al. 2000; Bowman and
Fisk 2001; Graglia et al. 2001; Walker et al. 2001; Gerdol
et al. 2002; Gough and Hobbie 2003), (2) deciduous
shrub increase (Shaver et al. 2001; van Wijk et al.
2003) and (3) dominant forb increase (e.g. our results
for Geranium meadow). The second type was not ob-
served in our communities owing possibly to (1) the
absence of relatively tall (and deciduous) shrubs in the
local species pool; (2) lack of time for shrubs to migrate
from other communities. Thus, our data do not exclude
the possibility of shrub expansion in response to fertil-
isation over longer time scales.

Conclusion

Our 4-5 year long in situ fertilisation and irrigation
experiment of four alpine plant communities in the
NW Caucasus has yielded three main findings which,
we believe, have implications for how we think about
nutrient limitation of plant communities in cold biomes:
(1) We have shown that, in three out of four alpine
communities, N and P fertilizations give greater above-
ground biomass increases compared to fertilizations
with N or P alone, indicating overall co-limitation of N
and P, with N being the principal limiting nutrient. Only
Festuca varia grassland responded in a way consistent
with N limitation alone, while the snow-bed community
also increased biomass substantially in response to Ca
addition. (2) Where previous studies have generally
reported strong dominance of either graminoids or
shrubs upon N or NP fertilisation, we have presented
the first firm example of a forb showing a similar
response. (3) We have shown that the biomass response
(mainly increase) of different functional groups to
nutrient fertilisation is to an important degree a function
of the initial composition of the community. Our
findings will together help to improve our ability
to predict community composition and biomass dynam-
ics in cool- and cold-climate ecosystems subject to
external nutrient inputs, as related for instance to
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nitrogen deposition from anthropogenic sources (Bob-
bink et al. 2010).
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