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Abstract
Background and Aims Plants proliferate roots
in order to acquire nutrients, typically contend-
ing with heterogeneous resources and competing
neighbours. A mathematical model was devel-
oped to identify optimal root proliferation strate-
gies in patchy nutrient environments. The impact
of joining mycorrhizal networks was also assessed.
Methods A simple model of growth and compe-
tition in one spatial dimension was implemented
within a genetic algorithm to obtain optimal pro-
liferation strategies under different scenarios of
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resource distribution, and in the presence or ab-
sence of local competition and large-scale mycor-
rhizal networks.
Results A strong proliferation response emerged
for isolated plants in heterogeneous environments
with low resources, and also for plants growing
in competition. Even in statistically homogeneous
environments, the presence of competition con-
ferred a selective advantage to plants proliferating
in the direction of the most recently acquired patch.
In the presence of mycorrhizal networks, the opti-
mal strategy switched from symbiosis to prolifera-
tion driven growth as the relative cost of acquiring
resources through the networks increased.
Conclusions The optimal proliferation response
in a given scenario was governed by a hierarchy
of factors: resource levels and distribution; the
presence or absence of competition; and the mar-
ginal benefit of obtaining resources via symbiotic
relationships with mycorrhizas.

Keywords Plant roots · Nutrient patches ·
Foraging · Arbuscular mycorrhizas ·
Mathematical modelling

Introduction

Nutrient availability in soil is both spatially and
temporally heterogeneous over relatively small dis-
tances and at scales relevant to plant roots (Cain
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et al. 1999; Jackson and Caldwell 1993; Farley
and Fitter 1999; Gross et al. 1995). Plant roots
have to cope with this heterogeneity or patchiness
in resource supply and be able to exploit the
nutrient-rich zones or patches upon encounter.
Moreover, they have to capture nutrients from
such patches both in competition with soil or-
ganisms and other plant root systems (Hodge
et al. 2000a, b; Kaye and Hart 1997). Plants are
aided in this respect by the modular structure of
their roots systems, which enables architectural
flexibility in root deployment (de Kroon et al.
2009; Malamy 2005; Hodge et al. 2009). Localized
root proliferation in nutrient-rich patches is a well
established response to heterogeneity in resource
supply (reviewed by Hodge 2004, 2009) although
it has also been demonstrated that root prolifera-
tion is of little net benefit to either single plants
or plants grown in monoculture as a means to
acquire nitrogen (N) from N-rich zones (Hodge
et al. 1998a; Fransen et al. 1998; van Vuuren et al.
1996). This is due to the high mobility of nitrate
(NO−

3 ) ions, which in moist soil have a diffusion
coefficient in the region of 10−5cm2s−1 (Tinker
and Nye 2000). However, when plants are grown
in interspecific competition for N from a com-
plex organic patch (mixed N-sources) then root
proliferation does confer a competitive advantage
(Hodge et al. 1999a; Robinson et al. 1999). In con-
trast to NO−

3 ions, phosphate ions are relatively
immobile with a diffusion coefficient in moist soil
of around 10−9cm2s−1 (Tinker and Nye 2000).
Given the rate of growth and the average lifespan
of the finer roots (see Fitter 1999; Eissenstat and
Yanai 1997) which are responsible for much of the
nutrient uptake, the relative volumes of soil able
to be exploited for these different nutrients by a
single root per unit root length can differ by orders
of magnitude (Fitter et al. 2002). Consequently,
whilst a plant’s root system can capture NO−

3 from
a relatively large surrounding area, successfully
obtaining phosphate from the environment re-
quires a plant either to proliferate roots directly
within the phosphate sources, or to use another
strategy e.g. forming a symbiotic relationship with
mycorrhizal fungi.

The most common form of mycorrhizal sym-
biosis is that of the arbuscular mycorrhizal (AM)
(Smith and Read 2008) association which can

form on c. two-thirds of all land plant species.
The key function of the AM symbiosis is to en-
hance nutrient capture for the associated host
plant while, in return, the fungus obtains a sup-
ply of carbon (Smith and Read 2008). However,
unlike fungi involved in both the ecto- and ericoid
mycorrhizal associations (Hodge et al. 1995; Read
and Perez-Moreno 2003), arbuscular mycorrhizal
fungi (AMF) have no known saprotrophic capa-
bilities and so are unlikely to play a direct role
in organic matter decomposition (see Leigh et al.
2011). The fungal hyphae can however explore a
large volume of soil and acquire phosphorus (P)
beyond the phosphate depletion zone that rapidly
builds up around the root surface (Smith and
Read 2008; Sanders and Tinker 1973) and it has
been shown that the arbuscular mycorrhizal fungi
(AMF) may largely take over the acquisition of P
for their associated host plant (Smith et al. 2009).
In addition, a key role for AMF in N cycling has
recently been identified (Hodge and Fitter 2010)
and some of the N captured from nutrient patches
may be passed to their associated host plant under
some conditions (Leigh et al. 2009; Hodge 2003a;
Barrett et al. 2011; Hodge and Fitter 2010), but not
others (Hodge 2003b; Reynolds et al. 2005). Plant
N:P biomass ratios (g N/g P) can vary markedly,
with individual measurements ranging from ap-
proximately 1–100, with an average ratio among
terrestrial plant species of 12–13 in their natural
field sites (Güsewell 2004).

The results from numerous studies verify that
the quality, type and distribution of nutrient
patches influence the way in which a plant grows
and the nutrients which it acquires (see for exam-
ple Cahill et al. 2010; Hodge et al. 1999b; Fitter
1994; Shemesh et al. 2010). Hodge et al. (1999a)
and Robinson et al. (1999) observed the reaction
of the grass species Lolium perenne L. and Poa
pratensis L. to the presence of a high-quality N
patch. Both species saw an increase in root-length
density within the patch and a proportional in-
crease in N uptake. It is also important to note
that Robinson et al. (1999) concluded that the
results are driven by context sensitivity, with the
need for reactive proliferation strongly linked to
the presence of inter-specific competition. These
conclusions are supported by a modelling study
which demonstrated a theoretical basis for the
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weak affiliation in monocultures between prolifer-
ation and N capture. Williamson et al. (2001) and
Linkohr et al. (2002) investigated the effect of the
presence of a phosphate patch, the latter compar-
ing directly with the results for the presence of an
N patch. The different qualities of the two nutri-
ents are reflected in contrasting responses to the
N and phosphate patches: unlike in the response
to a high quality N patch, an increased availability
of phosphate caused an increase in primary root
length and a decrease in lateral root density.

It is, however, challenging to disentangle the
ecological processes driving the observations from
experimental and field-based studies. In particu-
lar, the roles of environmental heterogeneity (nu-
trient patchiness), neighbourhood competition for
resources, and the evolutionary context of root
proliferation strategies, are hard to isolate.

With such a broad range of environmental fac-
tors influencing a plant’s growth and so many
physiological and morphological responses at a
plant’s disposal, modelling plant growth can be a
daunting task. A number of different approaches
have been taken in the past, focussing on different
aspects of the problem (for example see Bever
2003, for a review of conceptual and empirical
work on soil community feedback and competitor
coexistence; Dupuy et al. 2010, for a review of root
growth models; Vos et al. 2009, for a review of
structural plant modelling).

Such different approaches help to yield insight
into different areas of plant growth. For exam-
ple, Cropper and Comerford (2005), coupled a
mechanistic nutrient uptake model with a genetic
algorithm to estimate the minimum addition of
P required to meet the requirement of a 4-year
growth demand of loblolly pine. They found that
the amount of P required was doubled when using
a low root length density input compared to that
with a high root density input. O’Brien et al.
(2007), created a spatially explicit model of be-
low ground competition in plants, treating com-
petition for space as an evolutionary game. They
found that root spread can be predicted by the
cost-benefit ratio for root production, and predict
that in areas with no overlap root growth should
match resource availability, whilst in areas of
overlap they are predicted to display the ‘Tragedy
of the Commons’ (Hardin 1968).

Overview of model

The aim of this work is to elucidate the processes
driving root proliferation strategies by considering
an idealised model of plant growth and compe-
tition in one spatial dimension. The growth of
individual plants is modelled in a patchy nutrient
environment, where both the quality and statisti-
cal distribution of immobile nutrient patches were
known. The environmental scenarios included in
this work represent plant growth with a growth
limiting, fixed, immobile nutrient (such as P), re-
quiring an individual plant to grow to it in order
for acquisition, with no diffusion or movement
of any other kind modelled. It is assumed that
an individual plant can change its root prolifer-
ation only in response to local (temporally and
spatially) information.

An idealised representation of mycorrhizal net-
works is then developed by grouping nutrient
patches into “networks”. Upon encountering a
patch, a probabilistic choice is made by the plant
to either acquire the individual patch, or to “join”
the network and gain access to all patches within
the network, albeit at a cost given that AMF are
large sinks for plant assimilate (Johnson et al.
2002; Hodge 1996). Defining networks in this way,
as a collection of connected patches, is an abstrac-
tion from reality (for example see Southworth
et al. (2005) for a network theory analysis of
mycorrhizal/plant networks), but this deliberately
simplified approach allows the interplay between
plant competition and mycorrhizal network dy-
namics to be assessed using a minimal set of
assumptions, and also captures plant growth in
heterogeneous environments in a way which is
computationally tractable.

The basic model is simple and strategic, aiming
to identify and broadly quantify the factors driving
proliferation and competition in heterogeneous
landscapes. Complexity is added to the model
systematically. First the optimal proliferation re-
sponse for an individual plant growing in isolation
is obtained, in both a uniformly random and a
statistically patchy environment, to show how spa-
tial heterogeneity influences proliferation strat-
egy. These baseline results are then compared to
those arising from competition simulations (under
the same average conditions). Finally the role of
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mycorrhizal networks with varying spatial struc-
tures is investigated.

Whilst in a given scenario a certain strategy
may achieve the greatest fitness “on average”,
within an evolutionary context this may not be the
strategy that best enables an individual to succeed
against competitors (Currey et al. 2007). By cou-
pling the model with a genetic algorithm (GA),
it is possible to find the best strategy taking into
account stochasticity within the environment (re-
source distribution), the neighbourhood (location
of competitors), mycorrhizal network structure
(where applicable) as well as evolution (popu-
lation dynamics, selection and mutation). Such
an approach therefore facilitates assessing fitness
against evolutionarily relevant metrics rather than
simple mean-field properties (Currey et al. 2007;
James et al. 2010; Preston et al. 2010).

For an isolated plant in a uniformly random
environment, a proliferation strategy driven by
encountered nutrient patches should provide on
average no advantage/disadvantage, since statis-
tically any other given patch is equally likely to
be found anywhere in the environment. However,
when patches are distributed heterogeneously,
finding a patch provides statistical information
that the next patch is likely to be close by. Con-
sequently, one might expect that a bias toward
proliferating in the direction of the last found
patch would statistically be beneficial in terms of
maximising exploitation of the environment per
unit growth.

In the presence of competition it is less clear
what behaviour will be evolutionarily favoured; in
a random environment the acquisition of a patch
provides information that the individual is grow-
ing, at least in the short term, into unexploited
soil. As such, the plant gains indirect information
about its neighbours which could in principle be
beneficially exploited. Within a patchy hetero-
geneous environment the acquisition of patches
similarly provides indirect information about the
relative proximity of neighbouring plants, but also
provides statistical information about the location
of other patches (at least in unexploited soil).
It is not clear what effect this will have on the
strength of the proliferation response in com-
parison to the control experiments, and the GA
framework developed here provides a rigourous

mechanism through which such questions can be
answered.

When mycorrhizal networks are introduced, it
is expected that as the cost of acquiring resources
from the networks increases, the propensity for
an individual to join the networks will decrease.
Similarly, it is likely that responsive proliferation
will become more important as the benefit from
joining the networks decreases. What is not clear
is what impact the spatial properties of the net-
works will have on when this “switch” occurs, and
how it depends on the structure of the network
itself.

Methods

Running in Matlab, the central model is concep-
tually simple: a growing plant proliferates roots
in a one-dimensional patchy nutrient environment
and receives a growth benefit from the acquisition
of nutrient patches. This methodology is simplis-
tic, but it is argued below that it captures the
essential ingredients and allows biological, eco-
logical, and evolutionary factors to be isolated
(Table 1).

Environment

The environment ([0, d] on a horizontal axis,
where d = 1 for an isolated individual, and scaled
to d = P for a population of P plants) contains
a series of identical, discrete nutrient patches of
point physical size (i.e. negligable physical size)
and quality p. The quality of a patch reflects the
marginal benefit to a plant from its acquisition
(see Plant Growth subsection), with

p = ptot/n, (1)

where ptot is the (specified) expected total nu-
trient content and n is the (again, specified) ex-
pected number of patches in the environment.
Changes in ptot and n therefore allow for envi-
ronments with different quantities and/or qualities
of nutrient patches to be defined. For consistency
across the various simulations, as well a scaling the
physical size of the environment, mean nutrient
content and mean patch numbers are scaled on a
patches per-plant (ppp) basis. For computational
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Table 1 Table of parameters used in the models

Name Property Value Dimensions

α Proliferation bias [−1, 1] (variable) –
β Network preference [0,1] (variable) –
L0 Initial maximum size 0.2 Mass
Lmax Maximum size at time t Variable Mass
P Number of plants 1 (cont) 100 (comp) –
ptotpp Mean total nutrient per plant Fixed variable Mass
p Individual patch quality Fixed variable Mass
n Mean no. of patches per plant Fixed variable –
N No. of patches obtained by individual Variable –
g Growth rate 0.5 Mass/time
dt Time step 10−3 Time
d Size of environment 1 (cont) 100 (comp) Length

“Variable” implies parameter takes no fixed value (detailed in text), “fixed variable” means parameter takes different fixed
values in different simulations (described in text) and “cont” and “comp” refer to control and competitive environments
respectively

simplicity and to avoid boundary artefacts, the
environment is taken to be periodic (i.e. circular).

Two methods of patch distribution are consid-
ered, differing in the statistical properties of the
distribution of the distance x between patches:

Random nutrient distribution

In this case, n nutrient patches are independently
distributed uniformly randomly throughout the
environment. That is, each patch is placed in-
dependently according to a uniform distribution
across the entire environment. The existence of
a patch at a given location therefore contains no
information about the locations of other patches.
Throughout this work these environments will be
referred to as “random environments”.

Heterogeneous nutrient distribution

Here a Pareto distribution (specifically, a non-
standard Pareto distribution of the second kind;
see Johnson et al. 1994) is sampled to generate
inter-patch distances, x, with the probability den-
sity function given by

f (x) = rar

(a + x)r+1 , (x > 0). (2)

Reparameterising the Pareto distribution (as
in James et al. 2005) by letting a = r−1

λ
, it is

possible to have two parameters, λ and r, which
independently define the mean distance between

patches and the “patchiness” of the overall dis-
tribution respectively. Starting at a random point,
patches are placed across the environment spaced
according to independent samples of these inter-
patch distances. This results in an expected total
of Pλ patches distributed heterogeneously across
the interval [0, d]. Throughout this work, the pa-
rameter r remains fixed at 2.1 in order to generate
heterogeneous environments whilst maintaining a
finite variance in the Pareto distribution, whilst λ,
which is equal to the expected number of patches
per unit length, is varied to change the density of
patches.

The choice of a Pareto distribution allows
truly “patchy” environments to be generated,
with individual patches aggregating into larger
patches, and areas containing little or no nutrient
emerging. Unlike in random environments, with
this method the position of one patch provides
statistical information about the location of neigh-
bouring patches. Throughout this work these en-
vironments will be referred to as “heterogeneous
environments”. Figure 1 illustrates examples of
both random and heterogeneous distributions.

Mycorrhizal networks

The networks are defined according to three
different sets of rules. The first method is ran-
dom (Fig. 2a), with each patch independently, ran-
domly assigned to one of 10 networks. The second
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(a) (b)

Fig. 1 Visual representations of examples of random a and heterogeneous b environmental resource distributions. Here 100
patches are distributed across the entire environment according to the two different methods

method uses a threshold parameter determined to
provide on average 10 networks, where a patch
lying within this threshold distance of a neighbour
will belong to the same network as this neighbour,
resulting in spatially-local networks (Fig. 2b). The
random and local networks are at the extremes
of the spectrum of possibilities, suggesting totally

uncorrelated spatial structure on the one hand,
and strictly local interactions on the other. To
bridge the gap between these extremes, the local
networks were subjected to a small amount of ran-
dom “re-wiring” (Fig. 2c). This is achieved by each
patch having a 0.001 chance of selection, with se-
lection meaning every patch in the same network

(a) (b)

(c)

Fig. 2 Representative examples of a random, b local and
c “rewired-local” networks in a heterogeneous nutrient
environment. The black nodes represent the individual
networks, whilst grey nodes represent the nutrient patches.

The location of black network nodes are purely for visual
clarity, whilst relative patch positions are represented by
the distribution of the grey patch nodes
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after the selected patch (inclusive) being assigned
to another randomly chosen network. These gen-
eralised network structures allow the complexi-
ties involved in spatially extended plant-mycorriza
interactions to be captured qualitatively without
the need for the extra assumptions and complica-
tions required by a fully spatially explicit model.

Plant growth

For the purposes of this study, a plant’s size,
L, is regarded as equivalent to the size of its
root system. Mass and length are interchangable
as interpretations of size of an individual within
the model, but here size shall be considered as
mass. The plants are independently distributed
uniformly randomly throughout the environment,
and growth is assumed to occur at a constant rate,
g, reflecting an unmodelled background homoge-
neous nutrient resource. Growth is initially uni-
form, with proliferation equal in both directions
around the environment away from the “centre”
of the plant. The choice of g is arbitrary and has
no impact on the outcome of the model provided
suitably small time steps are implemented (i.e.
provided the amount of growth in a given time
step, g ∗ dt, is sufficiently small). If a plant encoun-
ters a nutrient patch, then the plant experiences a
rapid (instantaneous) additional growth equal to
the quality of the patch, p (Eq. 1). Hence at time
t, the plant is of size L(t) = gt + N(t)p, where N(t)
is the number of patches acquired by the individ-
ual at time t. The plant grows until it reaches a
maximum size, Lmax, which is dependent on the
quantity of nutrient acquired with Lmax(t) = L0 +
N(t)p where L0 is an arbitrary initial maximum
size limit which can be thought of as representing
a level of nutrient in the seed (fixed at 0.2 through-
out this work for all individuals). Too small a value
of L0 would make it unlikely that an individual
would reach an initial patch, whilst too high would
make it likely an individual would easily exploit
the environment. Consequently the value of L0 =
0.2 is chosen as a suitable middle-ground within
the confines of the rest of the model.

Previous work has shown that this method of
modelling growth can be used as an accurate char-
acterisation of a Gompertz growth function (as
used by Purves and Law 2002; Lv et al. 2008) with

upper size limit equal to Lmax(t). It follows that the
final size of an individual is L = 0.2 + Np where
N is the total nutrient acquired by the plant upon
reaching its size limit. The final size of the plant is
therefore a measure of the quantity of nutrient it
has obtained, and is assumed to be a measure of
its fitness and growth success.

Directional proliferation

When a plant encounters a patch, it is possible
for the individual to proliferate roots directionally
so as to potentially more efficiently exploit its
environment. In order to minimise assumptions
about a plant’s ability to detect and “remember”
its environment, a plant’s information of the envi-
ronment is limited to knowing in which direction
its last acquired patch was located. A simple trait
then uses this information, with each individual
possessing a dimensionless parameter α between
−1 and 1 which linearly dictates which proportion
of its growth it proliferates in this direction, with
a positive value representing a bias of growth
towards the last found patch and a negative value
resulting in a bias away. The parameter α is fixed
for each individual, and is allowed to evolve be-
tween generations.

Growth with mycorrhizal networks

When the model is run for plants grown in the
presence of mycorrhizal networks, expected nutri-
ent per plant, ptotpp, is fixed at 0.4 and expected
patch numbers at 25 ppp. The decision to join a
network is governed by a second dimensionless
trait parameter, β, which takes value between 0
and 1 and equates to the probability that the plant
will join the network at a given patch encounter.
If the plant does join the network then it gains
access to all patches within the network, with a
“cost” parameter, c, determining the proportion
of benefit the plant loses relative to if it were
to acquire each patch independently of the net-
work (c = 0 results in no cost; c = 1 implies full
cost, i.e. no marginal benefit to the plant from
acquiring resources from a network). The values
of c tested were: 0.5, 0.8, 0.9, 0.95, 0.99 and 0.999.
Whilst only one nutrient is explicitly modelled,
the cost can be considered as a carbon cost to
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the plant in an exchange process whereby all P
is obtained from the network. The parameters β

and c thereby efficiently characterise the trade-off
between gaining full access to local nutrients, and
gaining access to distant nutrients (at a cost) via a
mycorrhizal symbiotic association.

Population dynamics and evolution

In order to quantify the roles played by pro-
liferation and network parameters α and β un-
der different ecological scenarios, the model was
coupled with a genetic algorithm (GA) for both
“control” (individuals grown in isolation in envi-
ronment size [0, 1]) and competitive (a population
of 100 plants competing for available resources
in environment size [0, 100]) conditions. Using
the final size of an individual as a measure of
its fitness, the GA allows the relative success of
plants with different values of α and β to provide
evolutionarily derived optimum values for a given
scenario.

The GA works as follows:

1. An initial population is created with each in-
dividual possessing randomly chosen prolifer-
ation (α) and, where applicable, network (β)
parameter values.

2. The model is run and these individuals are
then assessed for success within the genera-
tion as defined by the fitness function.

3. The most successful are identified and the
next generation is created as their offspring,
inheriting their α and β values.

4. The offspring then experience small, indepen-
dent, individual mutations to their inherited
parameter values.

5. Return to step 2.

This cyclic process continues until enough gen-
erations have been iterated for convergence (ab-
solute or statistical) to occur. The GA uses a
truncated selection process to select the fittest
10% of individuals in a generation, with each of
these individuals producing 10 cloned offspring
with mutation in the subsequent generation. Mu-
tations, defined here as small random changes to
the inherited parameter values, occur with 100%
probability, with the mutations sampled from a

uniform distribution with limits −0.05 and 0.05.
See Supplementary Information for further de-
tails of GA choice and implementation.

Results

Proliferation reponse for isolated plants,
and plants in competition

The evolved mean values of the proliferation pa-
rameter α are shown in Fig. 3, with bars indicating
the variability in the outputs of the evolutionary
algorithm. Explicitly, for each evolutionary simu-
lation, we subsample at 1,000 generation intervals
so as to arrive at 100 pseudo-independent sam-
ples. Autocorrelation analysis establishes that this
interval is sufficient for subsamples to be treated
as statistically independent (see Supplementary
Information for details). The bars show the
standard deviations for these subsamples. Treat-
ing the data as independent samples, significant
differences in the mean from value 0 can be es-
tablished by a t-test, indicated by the standard *
notation. Results are shown for different permu-
tations of patch numbers and total nutrient con-
tent, for control and competitive environments,
and with random and heterogeneous patch distri-
butions. These results summarise the long term
averages of trait distributions across the modelled
populations.

As anticipated, regardless of nutrient levels
and patch density, the individuals grown in con-
trol tests within randomly defined environments
demonstrate no proliferation preference (α re-
mained close to 0).

In contrast, an isolated individual grown in a
patchy heterogeneous environment demonstrates
a propensity to proliferate towards the last found
patch (α > 0), though the value of α depends on
patch density and, to a greater degree, global nu-
trient levels. In particular, at high nutrient levels
and low patch density (Fig. 3c) there is no signal
for a proliferation strategy.

In random environments, the introduction of
competition causes a shift from no benefit in pro-
liferation strategy to a preference to proliferate
towards the last found patch (α > 0). This demon-
strates that the presence of competition allows
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Fig. 3 Evolved mean
values for proliferation
preference, α, for plants
grown in random and
heterogeneous
environments, in isolation
(control) and among
neighbours (competition).
All tests were run for 5 (a
and c) and 25 (b and d)
patches per plant (ppp),
and nutrient levels of ptot
equal to 0.2 (a and b) and
0.8 (c and d) per plant
(ptotpp). The bars show
the standard deviations of
100 uncorrelated
sub-samples from each
simulation, see text for
details

(a) (b)

(c) (d)

an individual to improve its relative ability to
exploit its environment by responding to encoun-
tered patches, even without any implicit statistical
information about the environment.

At high nutrient levels, the introduction of
competition in patchy heterogeneous environ-
ments causes an increased propensity to prolif-
erate towards the last found patch (Fig. 3c and
d). However, at lower nutrient levels where the
control tests provide a strong signal for a positive
α value, a weakening of the signal and a reduction
in the benefit of possessing a positive proliferation
value is observed (Fig. 3a and b).

With the exception of isolated individuals in
random environments (where no proliferation
strategy ever emerges), all results show that a
higher patch density results in an increase in pro-
liferation toward the last found patch (Fig. 3b and
d). In contrast, at high nutrient levels there is a
reduction in necessity to proliferate in such a way
(Fig. 3c and d).

Additional heterogeneous control tests

In order to investigate the observed dependence
on patch numbers and nutrient levels, further con-
trol tests within patchy heterogeneous environ-
ments were carried out for a larger set of nutrient
levels (ptotpp ranging from 0.05 to 0.8 in 0.05
increments) and a greater range of patch numbers
(5, 10, 25, 50, 100 and 250 ppp). Figure 4 sum-
marises the results from these tests, with standard
deviations omitted for clarity (see Supplementary
Information for details).

At low patch numbers, proliferation response
to patches (α) remains at a positive value as the
total nutrient level increases, before beginning to
decrease as the total nutrient content is further
increased. This continues until α settles around 0.

As the number of patches increases (and ac-
cordingly individual patch quality decreases by
Eq. 1), both the rate at which α converges to 0 and
the nutrient level at which this transition occurs
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Fig. 4 Evolved mean
values for proliferation
preference, α, plotted
against expected nutrient
levels per plant (ptotpp)
for isolated individuals
grown in heterogeneous
environments. Expected
patch numbers are: 5, 25
and 250 patches per plant
(ppp). Standard
deviations omitted for
clarity (see
Supplementary
Information for more
details)
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are seen to change. With increased patch num-
bers, the transition takes place over a smaller
range of nutrient levels (i.e. a steeper descent),
and the transition occurs at higher nutrient lev-
els. As well as these qualitative and quantitative
changes to the observed transitions, with increas-
ing patch numbers there is a lowering of the mean
α value at lower nutrient levels.

From the lowest mean patch number (5 ppp) to
the highest (250 ppp) tested, the evolved response
of the proliferation bias, α, to an increase in total
nutrient content shifts from steadily reducing and
converging to value 0, to increasing steadily before
sharply dropping to a value of 0. The results for
10, 50 and 100 ppp are consistent with these trends
but are omitted from Fig. 4 for clarity.

Proliferation and symbiosis responses for plants
grown in competition in the presence
of mycorrhizal networks

Figure 5 summarises the results for tests with
competition in the presence of mycorrhizal net-
works. Figure 5a shows the effect of cost on

proliferation strength (α) for different network
types, and Fig. 5b shows the effect on propen-
sity to join the network (β). Results are plotted
against a rescaled cost − log(1 − c); this rescaled
cost increases monotonically with c, and the loga-
rithm form allows a wide range of c values to be
displayed.

In general (irrespective of network type) at
relatively low cost to acquiring resources through
the networks (small c value) there is no foraging
preference (α remains close to 0) (Fig. 5a) and a
preference to join the network (β > 0.5) (Fig. 5b).
As the relative cost of acquiring resources from
the network is increased (c → 1), there is a switch
from a plant’s growth being driven by network
symbiosis to being proliferation oriented, with it
becoming less desirable to join the networks (β →
0) and foraging strategy becoming relevant with a
positive preference to proliferate towards the last
acquired patch (α > 0).

The propensity to join the random mycorrhizal
networks at lower cost (c) is less than for the other
types of mycorrhizal networks. As c increases, this
propensity also increases, and carries on doing so
past the cost at which under other network types
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Fig. 5 Plots of evolved mean a proliferation preference,
α, and b propensity to join a network, β, values. Plotted
against rescaled cost − log(1 − c), where c is the network

associated cost (see text for details), for different net-
work types. Standard deviations omitted for clarity (see
Supplementary Information for more details)

a shift in preference for precision over symbiosis
occurs.

Discussion

Comparing results (Fig. 3) from the control
tests in random and heterogeneous environments
demonstrates that no benefit exists from prolifer-
ating in response to patch acquisition when the ac-
quisition of a patch provides no information about
the environment. When the patches do provide
information, this can be used to an individual’s
advantage by directing proliferation in response to
acquiring the patch.

As would be anticipated, exceptions occur to
this pattern when global nutrient levels are too
low or too high (Figs. 3c and 4). As patch qual-
ity tends towards zero, so too does the relative
benefit of acquiring a patch, and thus the potential
reward for proliferating in response to the pres-
ence of patches. If p is large enough, the relative
benefit from finding such a patch becomes so great
that there is no longer a need to be selective
in proliferation, despite the increased reward in
obtaining the undiscovered patches.

The contrasting results for control and compet-
itive tests (Fig. 3) within random environments
confirm that, in the presence of competition,
finding a patch imparts useful information to
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a plant. This is true even in an environment
where a single patch provides no information
about the distribution of the remaining patches.
With no signal of neighbour presence/proximity
contained within the model, an individual can
never know that it is overlapping with a com-
petitor and therefore proliferating into exploited
soil. However, the acquisition of a patch does
inform an individual that it is not at that mo-
ment overlapping with such a competitor. Infor-
mation that proliferation in a given direction is
definitely not in a region of overlap provides a
strong enough advantage to bias growth in this
direction.

In patchy heterogeneous environments where
an individual patch potentially contains informa-
tion about both the unexplored environment and
also the presence (or, more precisely, absence) of
competitors, a slightly more complicated picture
emerges. References to control tests show that
within a heterogeneous environment the strength
of signal for a positive trait, when it exists (Fig. 3a
and b), often decreases with the introduction of
competition. Conversely, where little or no signal
exists (Fig. 3c and d), the addition of competition
leads to the emergence of a positive trait value.
This, together with the results for the additional
heterogeneous control tests (Fig. 4), demonstrates
that competition could reduce the effectiveness
of responding to patches within low-mid nutrient
level environments, but in nutrient rich environ-
ments could provide an additional pressure that
necessitates selective proliferation. Further, the
greater α values from heterogeneous competitive
environments compared to random competitive
environments demonstrates that not only can the
addition of competition cause a positive signal
to emerge, but part of this signal represents the
emergence of a benefit in responding to the patch
distribution.

Hodge et al. (2009) observed that not all plants
respond in the same way to self/non-self competi-
tion (see also Hess and de Kroon 2007; Schenk
2006; Masclaux et al. 2010; Milla et al. 2009). With
no ability for an individual to directly detect neigh-
bours, and the plants represented in this work
being non-species specific, there was no scope for
“kin” or competitor recognition (see for example,
Dudley and File 2007; Bhatt et al. 2011; Murphy

and Dudley 2009) and evolutionary selection pres-
sure applies only at the individual level in the
model.

However, the results shown here provide the-
oretical support for experimental results seen
for particular species. Cahill et al. (2010) found
that for Abutilon. theophrasti seedlings grown
alone and in competition, in treatments combin-
ing different levels of resource heterogeneity, that
root placement was driven by a “hierarchical set of
decision rules dependent on presence or absence
of a neighbour”. As in the results shown here at
high nutrient levels (Fig. 3c and d), regardless of
resource heterogeneity, in isolation a plant would
grow with a broad foraging strategy ignoring the
resource distribution. In the presence of competi-
tors, a more specific foraging strategy was adopted
and was modified by resource distribution. More
broadly, Cahill et al. (2010) conclude that plants
“non-additively integrate information about both
resource and neighbour based cues in the environ-
ment”, which is consistent with the evolved results
presented in this work.

When mycorrhizal networks were introduced,
the general pattern of behaviour was easy to
understand. At relatively low costs for acquiring
resources via the networks (low c value) the plant
had a strong pressure to join the networks. This
is shown both by a propensity to join (large β

value), but also by the lack of signal for a positive
proliferation (α) value. Effectively a plant needed
to join the networks in order to be successful,
and consequently proliferation strategy became
insignificant. As the cost increased, a point was
reached where it no longer remained beneficial to
the plant to join the network, and so β decreased
to 0. At the same time, root proliferation became
important again, hence the emergence of a signal
for a positive α value.

At lower costs, the reduced pressure (lower β

value) to join random networks compared to local
and “rewired-local” networks does not reflect a
relative lack in benefit in doing so, either directly
to the individual or indirectly by depriving neigh-
bours of resources. One explanation for the ob-
served reduction in β could be that at such low
costs, there was only scope for such a small num-
ber of individuals to monopolise the networks/
resources that within the GA the selection
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pressure did not get fully expressed when using a
truncated selection method.

Within an environment of random networks,
the benefit to an individual from joining a network
resulted in greater potential to join subsequent
networks than with local and “rewired-local” net-
works. This made it possible for an individual
to monopolise not only local resources, but also
those over a greater spatial range. Consequently,
there was greater potential to deprive the com-
petition of available resources than with spatially
structured networks. This explains why it was
beneficial to continue joining the networks and
resist switching to a proliferation-based growth
strategy when the cost of doing so would have
suggested otherwise. The lack of difference be-
tween results for local and “rewired-local” net-
works suggest that not enough rewiring took place
to make a significant difference. With increasing
amounts of rewiring the networks would tend to-
wards random networks, suggesting a greater level
of rewiring than was performed would see results
in between those of the random and local network
tests.

As discussed in the introduction, the imple-
mentation of mycorrhizal networks was necessar-
ily idealised due to constraints imposed by the
original model. Within such a framework, it was
impossible to implement many of the dynamic
features of plant/network interactions (Smith and
Read 2008; Hausmann and Hawkes 2009). As
such, this implementation acted to demonstrate
the significance of the spatial distribution of net-
works among plants/resources on the cost/benefit
relationship between plants and networks, and to
inform future experiments and their research. The
limitations also highlight the need for moving into
a more temporally explicit model. Such a model
would also allow the order of patch encounter
(Duke and Caldwell 2000), temporal network dy-
namics (Hausmann and Hawkes 2009), and the
physical size and temporal properties of patches
(Fitter 1994; Hodge 2004) to be integrated.

Also, although it is recognised that roots can
also modify their environment and the microbial
decomposing community through rhizodeposition
processes (Paterson 2003; Paterson et al. 1999;
Hodge et al. 1998b; Kuzyakov 2002) this was not
included in this model not least because rhizode-

position itself can be affected by many environ-
mental factors (Hodge and Millard 1998; Hodge
et al. 1997, reviewed by Jones et al. 2004, 2009;
Hinsinger et al. 2009), and thus is often difficult
to quantify.

The model is restricted to growth in one spa-
tial dimension, but one can argue that the evolu-
tionary effects on proliferation strategies will be
amplified in higher dimensions. In one dimension,
local proliferation in the “correct” direction hap-
pens 50% of the time when growth is random,
and any evolved strategy can only improve upon
this. In higher spatial dimensions there are more
“incorrect” possible growth directions, and so the
relative advantage of a directional proliferation
strategy is increased. Similarly, as the number of
dimensions is increased, so too is the complex-
ity of the spatial distribution of patches. Con-
sequently, a trait which maximises proliferation
efficiency and allows more precise exploitation
of space stands to be more beneficial in higher
dimensions. As such, it is reasonable that the se-
lection pressure to possess and utilise such a trait
will be greater in higher dimensions and that a
stronger signal would emerge for a parameter gov-
erning such behaviour. However, extension of the
simulations to higher dimensions requires further
assumptions, and is not considered here.

Robinson et al. (1999) suggested for a highly
mobile and diffusive nutrient like N that it is the
presence of inter-specific competition that drives
the benefit for responsive proliferation. In that
scenario, the mobility of the nutrient makes it
unnecessary for the plant to be particularly se-
lective in its proliferation of roots, but the added
pressure of competition provides the benefit from
response to the environment. The results pre-
sented here show that similar evolutionary forces
can drive the emergence of reactive prolifera-
tion in response to randomly distributed immobile
nutrients in environments where isolated plants
do not benefit from such behaviour. With no di-
rect information imparted to an individual about
the presence and proximity of competitors in
this model, the acquisition of immobile nutrient
patches provided enough information for a plant
to gain, on average, an advantage by respond-
ing to them, regardless of their distribution or
quality.
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