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Abstract Serious soil erosion has resulted in wide-
spread land degradation in the Loess Plateau of
China. In the past two decades, great efforts have
been made to restore degraded soil such as reconverting
croplands into forestlands or grasslands. A comparison
of soil qualities of different revegetation types has
important implications in soil reclamation. Our study
investigated the effect of different revegetation types on
the physicochemical and microbial soil properties in the
Loess Plateau, with the aim of determining which

revegetation type has the best capacity for soil recovery.
The vegetation types included two shrublands
(Caragana korshinskii and Hippophae rhamnoides),
two grasslands (Astragalus adsurgens and Panicum
virgatum), and two species from croplands that were
abandoned for natural recovery (Artemisia capillaries
and Heteropappus altaicus). Among the plants studied,
H. altaicus and A. capillaries had the highest values of
soil organic C, total N, total P, available N, available P,
moisture content, microbial biomass C (MBC),
substrate-induced respiration, saccharase, urease, cata-
lase, and peroxidase. Soil sampled from the A.
adsurgens plot had the highest bulk density and
microbial biomass N, and soil from the H. rhamnoides
plot had the highest metabolic quotient (basal
respiration/MBC). The soil quality index, which
was obtained based on the available N, metabolic
quotient, MBC, urease, polyphenol oxidase, and
bulk density, shows that the abandoned cropland
for natural recovery had the highest soil quality,
followed by grassland, and then shrubland. Vegeta-
tion types affect the physicochemical and microbial
properties of soils in arid climatic conditions. Aban-
doned cropland for natural recovery has the best capacity
for improving soil quality in the Loess Plateau among all
studied revegetation types. Our study suggests that in the
Loess Plateau, natural recovery is the best choice for soil
revegetation of sloping croplands.
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Introduction

Land degradation is intensifying in many parts of the
world because of pool soil management practices and
policies. According to a 2008 estimation of the Food and
Agriculture Organization (FAO) of the United Nations,
there are approximately 1.5 billion people (quarter of the
world’s population) who depend directly on land that is
being degraded. Land degradation not only induces the
deterioration of the ecological function and productivity
of land through soil erosion, desertification, and salini-
zation, but also threatens socio-economic and cultural
development at regional and global scales (Lal 2001).
The Loess Plateau of China has a typical semiarid
climate area and has experienced serious soil degrada-
tion for the past fifty years. In most parts of the Loess
Plateau, many erosion-susceptible slope areas and native
grasslands have been converted into farmlands because
of the pressures of an increasing population. Severe soil
erosion has resulted in the loss of most of the topsoil in
many locations, thus exposing parent materials or soils
with low nutrient content (Wei et al. 2006; Zhou et al.
2006). The Chinese Government acknowledged the
severity of this problem and launched in 1999 a series
of nationwide conservation projects focusing on eco-
logical restoration mainly by reconverting croplands
into forestlands and grasslands. These reconversions
have improved the soil physical properties (Li and Shao
2006; An et al. 2008; Zhu et al. 2010), nutrient status
(Jia et al. 2005; Cao et al. 2008), and microbial
properties (Jiang et al. 2009; Fu et al. 2009a, b).
Different vegetation types influence soil quality in
different magnitudes, so a comparison of the soil
qualities of different vegetation types is important for
successful soil reclamation in the Loess Plateau.

Physical and chemical properties have been exten-
sively used to evaluate soil quality. These include soil
organic matter, available N, and water holding capacity
(Parr and Papendick 1997). These properties, however,
usually change slowly and thoroughly reflecting soil
changes through these properties is impossible. On the
other hand, microbial properties rapidly respond to soil
changes caused by both natural and anthropogenic
factors, and some enzymes are closely related to soil
energy flow and nutrient cycles. For instance, soil
microbial biomass is considered to be a transformation
agent of organic soil materials and a labile pool for
plant nutrients (Lin et al. 2004). Urease and polyphenol
oxidase play essential roles in catalyzing reactions

necessary for the transformation of N nutrients and
decomposition of humus (Benitez et al. 2000; Cullen
and Kersten 1996). The metabolic quotient, basal
respiration (BR)/microbial biomass C (MBC), has been
used to evaluate microbial community in reclamation
soils. Soil quality, though, cannot be assessed with one
property alone, but with a variety of properties
(Nannipieri et al. 1990). Soil quality indicators have
been developed because of the complex nature of soils
and the exceptionally large number of soil properties
that must be determined. The selection of indicators that
appropriately reflect the overall change of soil quality is
important. Bastida et al. (2006) developed a microbial
degradation index based on five properties: dehydroge-
nase, water-soluble carbohydrates, urease, water-soluble
C, and respiration. A rhizosphere soil microbial index
(RSMI) employing principal component analysis to
assess rhizosphere health has been developed by Sinha
et al. (2009). They showed that tree species with higher
RSMI values should be used in the revegetation of a
degraded coal mining area. Trasar-Cepeda et al. (1998)
found that in native soils with climax vegetation, total
N can be expressed as a combination of several
microbiological and biochemical properties including
microbial biomass C, mineralized N, phosphomonoes-
terase, glucosidase, and urease. However, there is little
available information on soil quality evaluation by an
integrated index in the Loess Plateau.

The present study investigates the ability of six
common vegetation restoration species in three land
types, namely, shrubland, grassland, and natural
fallow, to regenerate soil quality. Our objectives are:
(1) to study the effects of these six species on the
physicochemical and microbial properties of soil in
the Loess Plateau, and (2) to establish a soil quality
index (SQI) that will determine which vegetation type
is most capable of soil quality restoration. We not
only provide specific information on the effects of
changing land use on physicochemical and microbial
soil properties, but also the implications of reasonable
utilization of slope cropland in the region.

Materials and methods

Study sites

The present study was conducted in the Dunshan
watershed at the Ansai Research Station of Soil and
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Water Conservation, Shaanxi Province, in the
northern Loess Plateau (109°19′23″E, 36°51′30″N)
in China. The area is characterized by a semiarid
climate, with a mean annual temperature of 8.8°C
and an average annual precipitation of 510 mm,
mostly from July to September. The annual evap-
oration ranges from 1,500 to 1,800 mm and the
average frost-free period is approximately 203 day.
The soil is mainly Huangmian soil (Calcaric
Cambisols, FAO), developed on wind-deposited
loessial parent material and characterized by a
yellow colour, absence of bedding, silty texture,
looseness, macroporousness, and wetness-induced
collapsibility. The soil texture is 64% sand, 24%
silt, and 12% clay. The study area is representative
of soil subjected to both wind and water erosion.

Widespread vegetation restoration has been imple-
mented in the region during the past decade to remedy
the soil degradation problem (Fu et al. 2009a, b). The
vegetation restoration types are predominately peren-
nial, including shrubs such as Caragana korshinskii
andHippophae rhamnoides, grasses such as Astragalus
adsurgens and Panicum virgatum, and natural vegeta-
tion from abandoned croplands.

Experiment design and soil sampling

The experimental area covered a total area of
8800 m2. In 2000, six vegetation types were

established on the sloping cropland: two shrubs, C.
korshinskii and H. rhamnoides; two grasses, A.
adsurgens and P. virgatum; and two species from
abandoned croplands for natural recovery. The six
locations were all similar in terms of the slope
aspect, gradient, altitude, and previous farming
practices before initiating the experiment, hence the
assumption that the differences in soil properties
could be attributed to the type of vegetation (Fu et al.
2009a, b; Marzaioli et al. 2010). Three replicate plots
(20×20 m) were established for each vegetation
type. C. korshinskii and H. rhamnoides were seeded
with a row spacing of 70 and 80 cm, respectively. A.
adsurgens and P. virgatum were both seeded with
45 cm row spacing. In 2008, the predominant species
in one of the abandoned croplands for natural
recovery was Artemisia capillaries, and in another,
Heteropappus altaicus. All the plants developed
under semiarid conditions, without irrigation, fertiliza-
tion, and disturbance after planting (Zhang et al. 2011).
The description of each treatment is shown in Table 1.

In 2008, five subplots were randomly established
in each plot for coverage measurement: 2.5 m×2.5 m
for C. korshinskii and H. rhamnoides; and 1×1 m for
A. adsurgens, P. virgatum, A. capillaries, and H.
Altaicus. Soil samples were collected from the top
20 cm of the soil profile with a 5 cm diameter
stainless steel corer after litter horizons were
removed. Soil was collected along an “S” pattern

Table 1 Sample site description of the Dunshan watershed area. The soil type for all vegetation treatments was loessial soil. Plots
were established in 2000. Vegetation coverage measurement and soil sampling was done in 2008

Vegetation Types Main
Vegetation

Slope
Aspect

Slope
(°)

Altitude
(m)

Coverage
(%)

Minor Herbaceous Coverage (%)

Shrubland Caragana korshinskii N 20 1257 72.48 Artemisia sacrorum (9.80) and C. Chinensis
Maxim (7.21)

Hippophaer
hamnoides

N 22 1220 60.62 Artemisia argyi (10.14), Stipa bungeana
(4.50), and Artemisia sacrorum (4.50)

Grassland Astragalus adsurgens NE 10° 20 1235 68.54 Lespedeza davurica (14.64), Lactuca indic
(5.52), Oxytropis bicolor (5.50), and Stipa
bungeana (3.64)

Panicum virgatum NW 25° 24 1282 75.19 Poa annua (13.32), Heteropappus altaicus
(5.53), and Stipa bungeana (3.81)

Abandoned cropland
for natural recovery

Heteropappus altaicus NW 10° 24 1311 70.47 Stipa bungeana (14.55), Artemisia sacrorum
(8.73), Cleistogenes squarrosa (3.62), and
Artemisia capillaries (2.05)

Artemisia capillaries N 22 1298 64.53 Lespedeza davurica (16.45), Potentilla bifurca
(10.23), Potentilla bifurca (5.82), and
Heteropappus altaicus (2.61)
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from six sampling points at each plot. Roots,
stones, and debris were removed, and then each
sample was divided into two parts. One part was air-
dried for analysis of physicochemical soil properties,
and the other one was immediately sieved through a
2 mm mesh and then stored at 4°C until soil microbial
properties could be analyzed.

Laboratory analysis

Soil organic carbon (SOC) was determined using the
Walkley-Black method (Nelson and Sommers 1982),
and total nitrogen (TN) by the Kjeldahl method
(Bremner and Mulvaney 1982). Total phosphorus
(TP) was determined colorimetrically after wet diges-
tion with H2SO4 + HClO4, and available phosphorus
(AP) was determined by the Olsen method (Olsen and
Sommers 1982). Available nitrogen (AN), available
potassium (AK), and bulk density were determined
according to ISSCAS (1981). AN was determined
with a micro-diffusion technique after alkaline hydro-
lysis. AK was measured in 1 M NH4OAc extracts by
flame photometry. Soil bulk density was determined
using a soil core (stainless steel cylinders with a
diameter and a height of 5 cm each) at each sampling
point. Soil moisture content was determined gravi-
metrically by drying the samples at 105°C overnight,
and the water content was expressed as a percentage
of the dry weight. An automatic acid–base titrator
(Metrohm 702) was used to determine soil pH in
1:2.5 soil: water suspensions.

MBC and microbial biomass N (MBN) were
measured by the fumigation extraction method (Vance
et al. 1987). Oven-dry equivalent field-moist soil
(25 g) was fumigated for 24 h at 25.8°C with ethanol-
free CHCl3. Following fumigant removal, the soil was
treated with 100 ml of 0.5 M K2SO4 by horizontal
shaking for 1 h at 200 rpm, and was then filtered. The
other non-fumigated 25 g soil sample was extracted
simultaneously at the time fumigation commenced.
SOC in the extracts was measured using a Liqui
TOCII analyzer (Elementar, Germany). TN in the
extracts was measured using the Kjeldahl method.
MBC was calculated using a kEC factor of 0.38, and
MBN using a kEN factor of 0.54 (Vance et al. 1987).
All analyses were performed on soil in triplicate at
field capacity moisture status, and the extracted
volumes took into account the water contained in
the moist soil.

Soil BR was estimated via CO2 evolution at
25.8°C in samples incubated for 14 day, adjusted to
50% of field water holding capacity (Jenkinson and
Powlson 1976). The CO2 respired was trapped in
NaOH, and the residual NaOH was titrated with
HCl. Soil substrate-induced respiration (SIR) was
determined using the same method as BR but with
actual addition of glucose to the soil (Zhang et al.
2006). The metabolic quotient BR/MBC was calcu-
lated as BR per unit of MBC (Anderson and Domsch
1993). The microbial quotient was calculated by
MBC/SOC.

Enzyme activities were assayed as described by
Guan et al. (1991). The moisture content was
determined after drying at 105.8°C for 48 h. For all
enzyme assays, controls were included without
substrate and without soil samples. Saccharase
activity was measured using 5 g of fresh soil (sieved
to <1 mm), 15 ml of 8% glucose solution, 5 ml of
0.2 M phosphate buffer at pH 5.5, and 5 drops of
toluene. After incubation for 24 h at 37.8°C, the soil
solution was filtered, and a 1 ml aliquot was
transferred to a volumetric flask with 3 ml of 3,5-
dinitrylsalicylate, and then heated for 5 min. After
the solution reached room temperature, the product
was quantified colorimetrically in a spectrophotometer
(Hitachi, UV2300) at 508 nm. Results were expressed
as mg glucose released ∙ g−1 soil ∙ h−1.

Urease activity was determined using 5 g of fresh
soil (sieved to<1 mm), 5 ml of citrate solution at pH
6.7, and 5 ml of 10% urea solution. The samples were
incubated at 37.8°C for 3 h, and then diluted to 50 ml
with distilled water. The suspension was filtered, and
then a 1 ml aliquot was treated with 4 ml of sodium
phenol solution (100 ml of 6.6 M phenol solution and
100 ml of 6.8 M NaOH) and 3 ml of 0.9% sodium
hypochlorite solution. The released ammonium was
quantified colorimetrically at 578 nm. Results were
expressed as mg NH4

+–N ∙ g−1 soil ∙ h−1.
Alkaline phosphatase activity was determined using

2 ml of toluene, 10 g of fresh soil (sieved to <1 mm),
10ml of disodium phenyl phosphate solution, and 10ml
of 0.05M borate buffer at pH 9.6. The suspensions were
incubated for 3 h at 37.8°C. The samples were then
filtered and the filtrate was colored with 0.5 ml of
2% 4-aminoantipyrine and 8% potassium ferrocya-
nide. The phenol released was determined colori-
metrically at 510 nm. Results were expressed as mg
phenol ∙ g−1 soil ∙ h−1.

166 Plant Soil (2011) 347:163–178



Catalase activity was determined using 2 g of fresh
soil with 40 ml of distilled water and 5 ml of 0.3%
H2O2, shaken for 20 min at 150 rpm, and then
immediately filtered through Whatman 2 V. The
filtrate was titrated with 0.1 M KMnO4 in the
presence of sulfuric acid. The results were expressed
as mol KMnO4 ∙ g−1 soil ∙ h−1.

Polyphenol oxidase activity was determined using
5 g of fresh soil incubated for 2 min in a water bath at
30.8°C, with 10 ml of distilled water, 6 ml of 0.1%
ascorbic acid, and 10 ml of 0.02 M catechol. A
volume of 3 ml of 10% phosphoric acid was then
added to the suspension, and the filtrate was titrated
with 0.01 M iodine. Results were expressed as ml
0.01 M I2 ∙ g−1 soil ∙ h−1. For the measurement of
peroxidase, the same method was adopted.

Cellulase activity was determined using 5 g of
fresh soil incubated with 1.0% carboxymethyl-
cellulose in 5 ml of 0.2 M phosphate buffer (pH
5.5) at 37°C for 24 h. The soil solution filtrate was
transferred to a volumetric flask with 3 ml of 3,5-
dinitrylsalicylate and was heated for 5 min. After
the solution reached room temperature, the product
was analyzed colorimetrically at 540 nm. The
cellulase activity was expressed as mg glucose ∙
g−1 soil ∙ h−1.

Soil quality index (SQI)

As previously mentioned, soil quality comprises a
variety of metabolic processes that cannot be
assessed with one property alone, but with a
variety of properties (Nannipieri et al. 1990;
Bastida et al. 2006). However, because some
parameters correlated significantly with each other
and usually reflect the same information, thus it is
necessary to eliminate the parameters. Based on the
method described by Bastida et al. (2006) and
Masto et al. (2008), an integrated SQI was estab-
lished in the present study. The method mainly
involves three steps: (1) selecting the appropriate
parameters, (2) transforming and weighing the
parameters, and (3) combining the scores into an
index (Bastida et al. 2006; Sinha et al. 2009). The
parameters that differed significantly were chosen
for the SQI calculation. The choice of appropriate
parameters and their weighing were determined by
principal component analysis (PCA). In each prin-
cipal component (PC), only the parameters loading

higher values were chosen for indexing, and high
factor loadings were defined as having absolute
values within 10% of the highest factor loading
(Andrews et al. 2002). If there were more than one
parameter with high loading in a single PC, only the
parameters that did not correlate with each other (as
determined by Pearson correlation analysis) were
considered to be important and were therefore
selected. If the parameters were well correlated,
the one with higher loading was finally chosen for
the determination of the SQI (Sinha et al. 2009). To
transform the parameters’ values into scores (Y), a
sigmoidal type equation was used (Bastida et al.
2006; Masto et al. 2008), with an asymptote tending
to 1 and another tending to 0.

Y ¼ a= 1þ ðx=x0Þb
� �

ð1Þ

In Eq. 1, Y is the score of the proposed parameter
after conversion, a is the maximum score (in the
present case, a=1), x is the value of the parameter, x0
is the mean value of the parameter, and b is the value
of the equation’s slope. In the PCA, two kinds of
parameters, “+” (meaning “more is better”) and “−”
(meaning “less is better”), were used to obtain a
sigmoidal curve tending to 1 for all the proposed
parameters, −2.5 and 2.5 were used as the b values
for “+” and “−”, respectively.

SQI ¼
Xn
i¼1

WiYi ð2Þ

In Eq. 2, W is the weighing factor of the parameter
selected through the PCA. Since the parameters are
not equal in their importance in soil quality, each PC
explains a certain amount of variance (%) in the total
dataset, which provides the weight for the parameters
chosen in a PC (Masto et al. 2008; Sinha et al. 2009).
The equation was finally normalized to get a
maximum SQI of one.

Statistical analysis

Data is expressed as mean ± standard deviation (SD).
Differences between mean values were examined by a
one-way analysis of variance. Comparison among
means was made using the Duncan multiple range
test, calculated at p<0.05. All statistical analyses were
performed using the software program SPSS 15.0.
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Results

Soil physicochemical properties

Table 2 shows the effects of the different vegetation
types on SOC, TN, TP, AN, AP, AK, pH, bulk
density, and moisture content. The highest SOC, TN,
AN, and moisture content were found in the soil of H.
altaicus, followed by A. capillaries and P. virgatum,
whereas the lowest was in C. korshinskii. TP and AP
were highest in the soil of A. capillaries and H.
altaicus, followed by P. virgatum. AK ranged from
106.55 mg kg−1 in H. rhamnoides to 73.86 mg kg−1

in A. adsurgens. Bulk density was highest in A.
adsurgens and lowest in A. capillaries. All pH values
were above 8.50; the highest was in P. virgatum and
A. capillaries, whereas the lowest was in H.
rhamnoides and H. altaicus.

Soil microbial biomass and respiration

From Fig. 1, the highest MBC value was found in the
soil of H. altaicus (72.9 mg kg−1). A. adsurgens, C.
korshinskii, and A. capillaries came second with
61.2 mg kg−1, and H. rhamnoides had the lowest
value of 43.9 mg kg−1. MBN was highest in the soil
of A. adsurgens, followed by H. altaicus, and A.
capillaries, and lowest in C. korshinskii. BR was
generally highest inH. altaicus (52.5 mg CO2–C kg−1

day−1), followed by A. capillaries, H. rhamnoides,
and P. virgatum (42.5 mg CO2–C kg−1 day−1), and
was lowest in C. korshinskii (36.3 mg CO2–C kg−1

day−1). SIR, specifically glucose-amended respiration,
behaved similar to BR. MBC/SOC and BR/MBC
were within 1.6–3.6% and 24.7–43.4 mg CO2–C kg−1

day−1, respectively (Fig. 2). C. korshinskii soil had
the highest MBC/SOC and H. rhamnoides soil had
the highest BR/MBC.

Soil enzymes

Changes in soil enzymes (saccharase, urease,
catalase, peroxidase, alkaline phosphatase, poly-
phenol oxidase, and cellulase) are shown in Fig. 3.
The overall metabolic activity indicated by saccha-
rase was generally grouped into three plant types.
The first group (H. altaicus and A. capillaries) had
the highest value (> 2.0 mg glucose g−1 h−1). The
second group (H. rhamnoides, A. adsurgens, and P. T
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virgatum) had intermediate values (1.0−2.0 mg
glucose g−1 h−1). The third group (C. korshinskii)
had the lowest value (0.7 mg glucose g−1 h−1). The
highest urease activity was found in the soil of H.
altaicus, followed by A. capillaries, and the lowest
was in C. korshinskii and H. rhamnoides. Soil
catalase and peroxidase were highest in H. altaicus

and A. capillaries. Alkaline phosphatase was high-
est inH. altaicus (4.0 mg phenol g−1 h−1) and lowest
in P. virgatum (2.5 mg phenol g−1 h−1). Polyphenol
oxidase was highest in P. virgatum, followed by C.
korshinskii and A. adsurgens. No significant differ-
ence was observed on cellulase activity for the
different soils.
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Fig. 1 Soil MBC and MBN (a), BR (b), and SIR (c) among
revegetation types, Results are given as mean ± SD. MBC is
microbial biomass C; MBN is microbial biomass N; BR is

basal respiration; and SIR is substrate-induced respiration.
Values with the same letter are not significantly different at
the p<0.05 level
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Soil quality index (SQI)

All studied soil parameters were chosen through
the PCA for calculating the SQI, with the
exception of cellulase because its content did not
significantly differ among the vegetation types. As
shown in Table 4, eigenvalues of the first four PCs
were above 1, and the highly weighted parameters
in PC-1 were SOC, TN, AN, SM, BR/MBC, and
saccharase. AN had the highest loading and highly
correlated with SOC, TN, SM, and saccharase (r>
0.85; Table 3); thus, SOC, TN, and saccharase were
eliminated from the SQI. No significant correlation
was found between AN and BR/MBC (r=0.02);
therefore, both AN and BR/MBC were selected for
the SQI determination. In PC-2, the highly loaded
parameters included MBC and urease, and they
were retained for indexing because both of them did
not correlate significantly (r=0.45). Likewise,
polyphenol oxdiase and BD were chosen for
calculating the SQI due to their higher loading in
PC-3 and PC-4. In summary, the most critical
parameters as determined from the PCA for the
SQI determination were AN, BR/MBC, MBC,
urease, polyphenol oxdiase, and BD (Table 4). The

final polynomial for the SQI was calculated using
Eq. 2, as follows:

SQI ¼ 0:31YAvailableN þ 0:31YBR=MBC þ 0:13YMBC

þ 0:13YUrease þ 0:08YPolyphenoloxidease

þ 0:05YBulk density

where Y are the scores of the critical parameters and
were determined based on Eq. 1. Table 5 shows the
mean value of these parameters and their curve
type. As shown in Fig. 4, the SQI differed
significantly among the different plants. H. altaicus
(0.63) and A. capillaries (0.61) had the highest
values, followed by P. virgatum (0.50) and A.
adsurgens (0.47), and the lowest was found in the
soil of H. rhamnoides (0.36).

Discussion

Soil physicochemical properties

Vegetative cover has fundamental effects on soil
properties (Rutigliano et al. 2004), mainly due to its
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Fig. 2 Soil microbial quotient MBC/SOC (a) and metabolic
quotient BR/MBC (b) among revegetation types. Results are
given as mean ± SD. MBC is microbial biomass C; BR is basal

respiration; and SOC is soil organic C. Values with the same
letter are not significantly different at the p<0.05 level
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contribution of organic matter to the soil. In the
present study, all the physicochemical soil properties
differed significantly among the vegetation types.
This is probably related to changes in the amounts
and forms of organic materials added to the soils of
the different vegetation types (Condron and Newman
1998). H. altaicus and A. capillaries showed the
highest SOC, TN, AN, TP, AP, and moisture content,
suggesting that naturally grown vegetation could
more significantly improve the soil C, N, P compo-

nents and the water content. This is in accordance
with the report of Li et al. (2010), who found that the
contents of SOC and TN in natural grasslands was 3.0
times higher than that in artificial grasslands, and 3.3
times higher than artificial shrublands in the Loess
Plateau. Albaladejo et al. (1994) reported that the
increase in SOC and nitrogen could be accompanied
by improvement in the soil structure and diminution
of bulk density, consistent with our results. These
effects could be attributed to the extensive fine root
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systems in grasslands that also enhance the soil
porosity (Wei et al. 2009). The various acid exudates
released from roots could be responsible for the small
differences in the pH values (Garcia et al. 2005).

Soil microbial biomass and respiration

Microbial biomass has been considered as an indica-
tor of changes in organic matter content (Powlson and
Jenkinson 1981). In the present study, MBC and

Table 4 Principal component analysis of soil properties of
different vegetation types

Principal component 1 2 3 4

Eigenvalue 9.169 3.787 2.182 1.351

Variance (%) 48.224 19.897 11.520 7.091

Cumulative (%) 48.224 68.121 79.641 86.732

Eigenvectorsa

Soil organic C (SOC) 0.923 0.075 0.118 0.144

Total N (TN) 0.910 −0.103 0.109 0.135

Total P (TP) 0.825 −0.258 0.051 −0.382
Available P (AP) 0.844 −0.208 0.326 −0.261
Available N (AN) 0.947 0.255 0.031 −0.009
Available K (AK) 0.154 −0.683 −0.412 −0.033
pH −0.227 −0.070 0.758 −0.121
Bulk density (BD) 0.301 0.132 0.130 −0.796
Soil moisture (SM) 0.912 0.120 0.303 −0.119
Microbial biomass
C (MBC)

0.255 0.817 0.139 −0.160

Microbial biomass N
(MBN)

0.548 0.429 0.102 0.477

Basal respiration (BR) 0.816 −0.203 0.207 0.159

Substrate-induced
respiration

−0.714 0.544 −0.049 −0.312

BR/MBC −0.867 0.201 −0.322 0.211

MBC/SOC 0.346 0.599 −0.434 0.247

Saccharase 0.901 0.155 0.040 −0.075
Urease 0.338 0.811 0.149 −0.070
Alkaline phosphatase 0.131 0.689 −0.460 0.119

Catalase 0.839 −0.227 0.017 0.020

Peroxidase 0.665 0.365 −0.443 −0.090
Polyphenol oxidase −0.473 −0.205 0.780 0.048

a Bold-faced and underlined parameters are considered as
critical ones and were included in the SQI calculation.

SQI=0.48Available N+0.48BR/MBC+0.20MBC+0.20Urease +
0.12Polyphenol oxidase+0.07Bulk density

Normalized SQI=SQI/1.55=0.31Available N+0.31BR/MBC+
0.13MBC+0.13Urease+0.08Polyphenol oxidase+0.05Bulk density
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MBN differed significantly among all six soils,
indicating that microbial biomass seems to be
strongly influenced by the nature of the plants, in
agreement with the results of Garcia et al. (2005) and
Sinha et al. (2009). Differences in MBC in the studied
soils were higher than the differences in SOC,
confirming that MBC is a more sensitive index of
changes of the SOC (Powlson et al. 1987). A positive
correlation between SOC and MBC is usually found
(Jia et al. 2005; Arunachalam and Pandey 2003), but
this correlation was not observed in the present study.
Garcia et al. (2005) reported that a positive correlation
between SOC and MBC is usually found in soils
where C is a limiting factor and the soils have reached
equilibrium. In our case, either C availability was not
a limiting factor or the soils had not yet reached
equilibrium.

MBC reflects the size of microbial populations and
includes both metabolically active and resting-state
microorganisms, whereas parameters such as BR and
SIR reflect the actual and potential microbial activities
in the soil. Bastida et al. (2006) reported that there is a
highly positive correlation coefficient between SOC
and BR, i.e., the soils with greater SOC content also
showed greater BR. Indeed, in the present study, the
correlation coefficient between SOC and BR was
high, as well as the coefficient between SOC and SIR.
This suggests that a large part of the SOC is dedicated
to sustaining microbial respiration. The zones with the

highest SOC values (H. altaicus) are also the zones
with the highest respiration. Microbial quotient MBC/
SOC, which can be interpreted as the available
substrate and the portion of total soil carbon immo-
bilized in microbial cells, is a sensitive parameter for
monitoring organic carbon or microbial biomass
(Garcia et al. 2002). In the present study, C.
korshinskii presented the highest microbial quotient.
Similarly, Zhang et al. (2010) found that microbial
quotient in the soil of C. korshinskii was significantly
higher compared with that in natural grassland,
although the soil microbial biomass was slightly
lower than in natural grassland. Jia et al. (2005)
reported that microbial quotient had a positive
correlation with MBC and SOC; however, in the
present study, microbial quotient was negatively
correlated with SOC and not at all correlated with
MBC, in agreement with the results of Schipper et al.
(2001). This can be explained by the fact that changes
in the microbial quotient depend not only on the soil
microbial biomass, but also on the SOC. This can be
clearly seen from Table 2 and Fig. 1, where H.
altaicus soil has the highest SOC and MBC, whereas
C. korshinskii soil has the lowest SOC but has a high
MBC. Consequently, microbial quotient in C. kor-
shinskii soil was higher than in H. altaicus soil. This
implies that microbial quotient is affected not only by
the quantity, but also by the quality of the carbon
input (Singh et al. 1991). The metabolic quotient BR/
MBC has been used as an ecophysiological index to
reflect the bioenergetic status of microbial community
in reclamation studies (Insam and Domsch 1988).
Tirol-Padre et al. (2007) found that metabolic quotient
in a disturbed soil ecosystem was higher than that in a
stable one. This is because the stress is severe and soil
microbial activity is low in disturbed soil, and an
increased energy is needed by soil microorganisms to
repair the damages caused by the stress (Odum 1985).
This implies that the higher metabolic quotient of H.
rhamnoides soil is indicative of its poor quality.

Soil enzymes

Enzyme activity plays an important role in soil
nutrient cycling and in the degradation of organic
inputs, and can thus be useful for indicating the
degree of change in soil fertility and microbial activity
(Badiane et al. 2001; Bandick and Dick 1999).
Research has shown that soil enzyme activity is
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Fig. 4 Soil quality index (SQI) among vegetation types.
Results are given as mean ± SD. Values with the same letter
are not significantly different at the p<0.05 level
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closely related with the SOC because the trans-
formations of important organic elements are facili-
tated by microorganisms (An et al. 2008; Jiang et al.
2009). Our results agree with this view based on the
observations that saccharase, urease, catalase, and
perioxidase significantly correlated with the SOC (p<
0.01 or p<0.05; Table 3). This suggests that a large
part of the SOC could contain substrates that
stimulate the synthesis of these enzymes. The high
amount of these enzymes in H. altaicus and A.
capillaries soils could be due to the sufficient amount
of C input by their root exudates. H. altaicus soil had
the highest alkaline phosphatase content, probably
caused by the greater adsorption of inorganic P or
depletion of AP. Polyphenol oxidase, an important
enzyme closely related to soil humus decomposition,
did not significantly correlate with SOC. This may be
related to the different components of the litter and
the pathway of humus decomposition in the soils of
the different species.

Many researchers have reported a significant corre-
lation between soil enzyme activity and MBC (Sinha et
al. 2009; Jiang et al. 2009; Taylor et al. 2002), but this
correlation was not observed in the present study. This
is probably due to soil enzymes that have significant
abiotic activity (Nannipieri et al. 1990).

Soil quality index (SQI)

Many studies have analyzed soil quality using
different parameters, ranging from a purely agricul-
tural point of view to a more environmental perspec-
tive. However, the large number of studied sites and
the high variability of the studied physical, chemical,
and biological indicators make it difficult to clearly
interpret results. The synthetic approach derived from
the use of an SQI, as well as multivariate analyses
(PCA), allowed us to point out a clear separation of
the sites into three classes of different soil qualities.
We finally chose six soil parameters for the SQI
calculation, which we considered the most important
indicators of soil quality: AN, BR/MBC, MBC,
urease, polyphenol oxdiase, and bulk density. Almost
all of these indicators were also suggested by Bastida
et al. (2006), Armas et al. (2007), Erkossa et al.
(2007), and Sinha et al. (2009). The species from
croplands abandoned for natural recovery (H. altaicus
and A. capillaries) had the highest SQI, followed by
those from grasslands (A. adsurgens and P. virgatum),

and then by shrublands (C. korshinskii and H.
rhamnoides).

The process of reconverting slope croplands into
forestlands and grasslands has been implemented to
avoid the soil degradation problem of the past two
decades in the Loess Plateau. Shrubs grown on
slope croplands such as C. korshinskii and H.
rhamnoide, as well as grasses such as A. Adsurgens
and P. virgatum, are predominately revegetation
measures. Many studies have demonstrated that this
reconversion can significantly improve the physical,
chemical, and biological soil properties.(An et al.
2008; Zhu et al. 2010) The improvement in shrub-
land and grassland soil qualities can be attributed to
the increased plant cover and reduced decomposition
rate as a consequence of tillage, which increases
input of organic matter and physical protection of
soil from erosion (Moscatelli et al. 2007). In the
present study, the grassland species generally
showed higher SQI than shrubland species, suggest-
ing a better soil recovery capacity in grasslands than
shrubland. This higher grassland soil quality is
probably due to the larger herbaceous coverage
(Table 1), because plant coverage plays an important
role in both soil protection from erosion and
contribution to soil organic matter content (Marzaioli
et al. 2010). Indeed, high soil quality often occurred
in the soils where the herbaceous coverage was high.
Similar to our results, Caravaca et al. (2003) found
that perennial grass species improved soil quality in
an abandoned agroecosystem in Spain by increasing
organic matter and nitrogen content, as well as by
favoring the formation of stable aggregates and the
development of mycorrhizal propagules. Further-
more, extensive fine root systems in grasslands can
be another contributing factor to the high grassland
soil quality, because abundant exudates released
from roots and widely distributed in the soil improve
chemical and physical soil properties (Wei et al.
2009; Zhang et al. 2010).

In the Loess Plateau, natural vegetation from
abandoned croplands can both protect the soil from
erosion and improve soil properties, such as organic
matter content, soil structure, and infiltration rate. In
the present study, abandoned cropland for natural
recovery had the best soil quality on the basis of the
considered parameters, indicating that it has the best
capacity for soil recovery. This agrees with Li et al.
(2010) who observed that soil carbon and nitrogen
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components was higher in natural grasslands com-
pared with artificial shrublands and grasslands
(human-planted) in the Loess Plateau. Aside from
the presence of a dense herbaceous layer due to
recolonization by spontaneous plants (Rutigliano et
al. 2006), the excellent soil quality of abandoned
croplands could be related to the nature of the plants
therein. Compared with artificial vegetation, where
the species are selected by humans, natural vegeta-
tion occurs through spontaneous natural succession
without any anthropogenic influnence whatsoever
(Zhang et al. 2011). Natural vegetation depends on the
natural factors of the broader ecosystem development
context of plant associations, soil, animals, and partic-
ularly soil organisms (Whisenant 1995). This results in
a stronger adaptability of natural vegetation to natural
environment conditions. Natural vegetation can allow
more species to colonize due to the creation of high
habitat diversity, which are difficult or impossible to
achieve through planting (Florgard 2004).

Conclusions

Different vegetation types significantly affected in
different magnitudes the physical, chemical, and micro-
bial properties of arid climatic soils. Compared with the
soils of shrubs (C. korshinskii and H. rhamnoides) and
grasses (A. adsurgens and P. virgatum), the soil of
natural species from abandoned cropland species (H.
altaicus and A. capillaries) had the highest SOC, TN,
TP, AN, AP, MBC, SIR, saccharase, urease, catalase,
and peroxidase. The SQI, which was calculated by
integrating all critical parameters, indicated that in the
Loess Plateau, abandoned croplands for natural recov-
ery have the best capacity for soil restoration. Thus, the
present study suggests that in the Loess Plateau, natural
recovery is the best choice for soil revegetation of
sloping croplands. However, our suggestion was based
on the natural recovery that normally takes place, if
there are dangerous invasive weeds capitalizing on the
bare ground, more research should be conducted.
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