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Abstract Positive effects of sugar beet (SB) applica-
tion on soil properties and performance of several
woody shrub legumes have been described under
heavy metal stress and in diverse degraded environ-
ments, especially when combined with arbuscular
mycorrhiza (AM). However, information on the
combined effect of SB amendments and AM symbi-
osis in horticultural crop plants under drought stress is
scarce. Thus, the main objective of this work was to
determine if the combination of treated SB waste and
AM fungi results in improved drought tolerance of an
horticultural food crop such as lettuce and whether or
not the effects observed are linked to enhanced
antioxidant activities and regulation of two stress-
related genes. Lettuce plants inoculated or not with
Glomus intraradices and grown on soil amended or
not with a treated SB waste were cultivated under
well-watered conditions or subjected to drought
stress. Plant growth, expression of two drought

responsive genes encoding for Δ1-pyrroline-5-car-
boxylate synthetase and 9-cis-epoxycarotenoid diox-
ygenase, oxidative damage to lipids and the activity
of four antioxidant enzymes were measured. Results
showed that the application of treated SB waste
resulted negative for the development of AM and
nonAM plants (both under well-watered and under
drought stress conditions). This effect can not be
ascribed to the impairment of specific plant antioxi-
dant defenses. In contrast, a lack of induction of a
gene from the ABA biosynthetic pathway was
observed in SB-treated plants, which could have
contributed to the low performance of these plants.
The positive effects of combined application of
treated SB waste as amendment and AM fungi have
not been shown for a horticultural food crop such as
Lactuca sativa. Thus, before starting a program aimed
at the utilization of different amendments based on
transformed wastes, basic studies on functional and
physiological compatibility between the plant and the
amendment are necessary.
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Introduction

Lack of adequate water in soil is an important
problem faced by plants in order to grow and develop
properly. Soils too dry for crop production have been
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estimated to cover 28% of the Earth’s land surface
(Bray 2004). Nevertheless, plants have developed
several physiological, biochemical and molecular
mechanisms in order to cope with drought stress
(Bray 2004). The arbuscular mycorrhizal (AM)
symbiosis improves many plant nutritional, biochem-
ical, physiological and morphological plant responses
and, thus, it enhances the plant resistance to biotic and
abiotic stresses (Barea and Jeffries 1995; Barea et al.
2002; Vivas et al. 2003).

Studies on drought stress alleviation by the AM
symbiosis have suggested several mechanisms by
which this symbiosis can alleviate drought stress in
host plants (for reviews see Augé 2001, 2004; Ruiz-
Lozano 2003: Ruiz-Lozano et al. 2008). The most
important ones include: direct uptake and transfer of
water through the fungal hyphae to the host plant
(Hardie 1985; Ruiz-Lozano and Azcón 1995),
changes in soil water retention properties (Augé et
al. 2001), better osmotic adjustment of AM plants
(Augé et al. 1992; Ruiz-Lozano et al. 1995a;
Kubikova et al. 2001), enhancement of plant gas
exchange and water use efficiency (Augé et al. 1992;
Ruiz-Lozano et al. 1995a, b) and protection against
the oxidative damage generated by drought (Ruiz-
Lozano et al. 2001; Porcel et al. 2003; Porcel and
Ruiz-Lozano 2004). This last mechanism has been
recognized as crucial (Ruiz-Lozano 2003). In fact,
many of the degenerative reactions associated with
several environmental stresses, including water def-
icit, result in the production of reactive oxygen
species (ROS). These ROS cause an additional
oxidative stress in plants. Indeed, ROS such as
singlet oxygen, superoxide anion (O2.-), hydrogen
peroxide and hydroxyl radical (-.OH) are inevitable
by-products of the interaction between oxygen and
electrons leaked from the electron transport chains in
chloroplast and mitochondria during normal aerobic
metabolism. During water deficit, the induced sto-
matal closure leads to photosynthesis inhibition and
subsequent leakage of electrons towards O2, result-
ing in enhanced ROS generation (Basu et al. 2010).
Thus, it has been proposed that a major function of
AM fungi could be to protect plants against induced
oxidative stress (Schutzendubel and Polle 2002;
Porcel et al. 2003).

It has also been noted that AM and non AM plants
differently regulate the expression of several genes in
root tissues related to water stress (Ruiz-Lozano et al.

2006). These stress related genes include a P5CS gene
(Porcel et al. 2004), encoding for Δ1-pyrroline-5-
carboxylate synthetase. P5CS is the enzyme that
catalyzes the rate-limiting step in the biosynthesis of
proline, which is a robust osmotic and antioxidant
agent (Aral and Kamoun 1997). Regulated genes by
AM symbiosis under drought conditions also include
nced genes (Jahromi et al. 2008; Aroca et al. 2008a,
b). The nced gene family encodes for 9-cis-epoxycar-
otenoid dioxygenase (NCED), the key enzyme for the
biosynthesis of ABA (Schwartz et al. 2003). ABA
plays a major role in plant responses to several
stresses and accumulates in plant tissues under stress
conditions (Zhang et al. 2006). Such ABA accumu-
lation promotes stomatal closure to minimize transpi-
rational water loss, but it also mitigates stress damage
through the activation of many stress-responsive
genes which collectively increase plant stress toler-
ance (Bray 2002).

As soil quality deteriorates in soils subjected to
adverse environmental conditions, the use of an
organic amendment is recommended. The agronomic
utilization of agrowastes, such as sugar beet (SB), dry
olive cake (DOC) and urban organic wastes has
increased steadily in recent years as an alternative
source of nutrients and organic matter. At the same
time, its utilization is an acceptable method for their
disposal (Caravaca et al. 2006). After treatment with
Aspegillus niger added to a rock-phosphate (RP)
medium, SB, an inexpensive lignocellulosic residue,
can be used as an effective amendment for improving
soil characteristics (Vassilev et al. 1996; Medina et al.
2006; Azcón et al. 2009). This SB residue is trans-
formed by A. niger into more simple sugar com-
pounds that can be used by rhizosphere
microorganisms for metabolic activities and growth
(Bowen and Rovira 1999). Previous studies have
proposed the use of AM fungi and A. niger-treated SB
amendments as alternative strategies for alleviating
plants heavy metal resistance (Medina et al. 2005,
2006; Azcón et al. 2009), as well as, for improving
soil properties in diverse degraded areas (Alguacil et
al. 2003; Medina et al. 2004a, b; Caravaca et al. 2004,
2005, 2006). Furthermore, Medina et al. (2007)
described stimulatory effects of A. niger-treated SB
on the AM fungal growth and P uptake by external
mycelium. In contrast, the information on the com-
bined effect of SB amendments and AM inoculation
under drought stress is scarce, mainly in horticultural
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crop plants. Drought affects the plant metabolic
activities by adversely affecting cell integrity and
functioning. This phenomenon also involves bio-
chemical adaptations such as changes in the cell
enzymatic activities. The effects of composted SB in
combination with AM fungi on antioxidant plant
defense and expression of stress-related genes under
drought stress are not well known, and this study
represents the first attempt to determine the usefulness
of these values in detecting changes in the drought
tolerance of plants growing in dry environments.
Thus, the main objective of this work was to
determine if the combination of composted SB
waste and AM fungi results in improved drought
tolerance in an horticultural crop plant such as
lettuce, and whether or not the effects observed are
linked to enhanced antioxidant activities and regu-
lation of two stress-related genes. This would allow
validation of SB waste as a general amendment for
improving plant development in many arid and
semiarid environments, especially when combined
with AM fungi.

Materials and methods

Experimental design and statistical analysis

The experiment consisted of a factorial design with
three factors: (1) inoculation or not with the AM
fungus Glomus intraradices (Schenck and Smith)
BEG 121, (2) water regime involving plants cultivat-
ed under well-watered conditions or plants subjected
to drought stress and (3) amendment or not of soil
with a composted SB waste. These factors totaled
eight treatments that were replicated fives times
giving a total of 40 pots.

Data were subjected to analysis of variance
(ANOVA) with inoculation treatment, water regime,
soil amendment and their interactions as sources of
variation, and followed by Duncan’s multiple range
test (Duncan 1955). Percentage values were arcsin
transformed before statistical analysis.

Soil and biological material

Loamy soil was collected from the Zaidin Experi-
mental Station (Granada, Spain), sieved (2 mm),
diluted with quartz-sand (<1 mm) (1:1, soil:sand, v/v)

and sterilized by steaming (100°C for 1 h on three
consecutive days). The original soil had a pH of 8.1
(water); 1.81% organic matter, nutrient concentrations
(mg kg-1): N, 2.5; P, 6.2 (NaHCO3-extractable P); K,
132.0. The electrical conductivity of soil was 0.7 dS
m−1. The soil texture was made up of 35.8% sand,
43.6% silt and 20.5% clay.

Three seeds of lettuce (Lactuca sativa L. cv.
Romana) were sown in pots containing 750 g of the
same soil/sand mixture as described above and
thinned to one seedling per pot after emergence.

Mycorrhizal inoculum was bulked in an open-pot
culture of Zea mays L. and consisted of soil, spores,
mycelia and infected root fragments. The AM species
used was Glomus intraradices (Schenck and Smith)
isolate BEG 121. Ten grams of inoculum with about
60 infective propagules per gram (according to the
most probable number test), were added to appropri-
ate pots at sowing time just below lettuce seeds.

Uninoculated control plants received the same
amount of autoclaved mycorrhizal inoculum together
with a 2-ml aliquot of a filtrate (<20 μm) of the AM
inoculum in order to provide a general microbial
population free of AM propagules.

The treatments receiving the SB waste were
amended with composted SB waste. The amendment
was mixed at a rate of 5% with half of the soil/sand
mixture and left for equilibration for 3 weeks at room
temperature, before starting the experiment.

Preparation of SB amendment

Sugar beet waste, a lignocellulosic material, was
ground in an electrical grinder to 1 mm fragments. It
was mixed at a concentration of 10% with 50 ml of
Czapek’s solution (described in Fluka Chemica,
catalogue no. 70185) containing (g/litre of distilled
water): FeSO4, 0.01; MgSO4.7H2O, 0.5; KCl, 0.5;
NaNO3, 3.0; sucrose, 30; K2HPO4, 1.0, and with a
final pH of 7.3±0.2 for static fermentation in 250 ml
Erlenmeyer flasks. Rock phosphate (RP) at a concen-
tration of 3 g L−1 was added to the ground SB
material before fermentation. The SB waste was
inoculated with 3 ml of Aspergillus niger spore
suspension (1.2 × 106 spores). The NB2 strain of A.
niger was used in this study. It had previously been
selected as it produces citric acid on complex
substrates (Vassilev et al. 1986). Static fermentation
was performed at 28°C for 20 days. Rodriguez et al.
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(1999) analyzed the organic matter and nutrient
contents of SB waste + RP after the fermentation
period, resulting in 51% organic matter, 0.18% P and
1.4% N.

Growing conditions

The experiment was carried out under glasshouse
conditions with temperatures ranging from 19 to 25°C,
16/8 light/dark period and a relative humidity of 70%–
80%. A photosynthetic photon flux density of 800 μE
m−2 s−1 was measured with a light meter (LICOR,
Lincoln, NE, USA, model LI-188B).

Soil moisture was measured with a ML2
ThetaProbe (AT Delta-T Devices Ltd., Cambridge,
UK) as previously described (Porcel and Ruiz-
Lozano 2004). Water was supplied daily to maintain
soil at field capacity during the first 6 weeks after
planting. Then, half of the plants were allowed to
dry until soil water content reached 70% field
capacity, while the other half were maintained at
field capacity. The soil water content was daily
measured with the ThetaProbe ML2 before rewatering
(at the end of the afternoon), reaching a minimum soil
water content ranging from 65% to 70% field capacity.
The amount of water lost was added to each pot in order
to keep the soil water content at the desired level of 70%
field capacity (Porcel and Ruiz-Lozano 2004). Plants
were maintained under such conditions for additional
10 days before harvesting.

Parameters measured

Biomass production

At harvest (52 days after planting), the shoot and root
system were separated and the shoot dry weight (DW)
was measured after drying in a forced hot-air oven at
70°C for 2 days.

Symbiotic development

The percentage of mycorrhizal root length infected
was estimated by visual observation of fungal
colonization after clearing washed roots in 10%
KOH and staining with 0.05% trypan blue in lactic
acid (v/v) (Phillips and Hayman 1970). Quantification
was carried out using the grid-line intersect method
(Giovannetti and Mosse 1980).

Proline content

Free proline was extracted from 1 g of fresh root or
shoot tissues that was ground with 6 ml of methanol
and 6 ml of chloroform (Blig and Dyer 1959). After
that, 3 ml of a 0.9% NaCl solution was added and
mixed. The resulting mixture was centrifuged at
5000 rpm for 10 min at 1°C. Proline was estimated
by spectrophotometric analysis of four replicates of
the methanolic phase at 515 nm of the ninhydrin
reaction, according to Bates et al. (1973). Four
replicates per treatment were used.

Hydrogen peroxide content

Hydrogen peroxide content was determined by Pat-
terson’s method (Patterson et al. 1984), with slight
modifications as described previously by Aroca et al.
(2003). Five hundred milligrams of root or shoot fresh
weights were homogenized in a cold mortar with 5 ml
5% (w/v) TCA containing 0.1 g of activated charcoal
and 1% (w/v) PVPP. The homogenate was centri-
fuged at 18,000 g for 10 min. The supernatant was
filtered through a Millipore filter (0.22 μm). A
volume of 1.2 ml of 100 mM potassium phosphate
buffer (pH=8.4) and 0.6 ml of the colorimetric
reagent were added to 130 μl of the supernatant.
The colorimetric reagent was freshly made by mixing
1:1 (v/v) 0.6 mM potassium titanium oxalate and
0.6 mM 4–2 (2-pyridylazo) resorcinol (disodium salt).
The samples were incubated at 45°C for 1 h and the
absorbance at 508 nm was recorded. The blanks were
made by replacing leaf extract by 5% TCA.

Oxidative damage to lipids

Lipid peroxides were extracted by grinding 500 mg of
root or leaf tissues with and ice-cold mortar and 6 ml
of 100 mM potassium phosphate buffer (pH 7).
Homogenates were filtered through one Miracloth
layer and centrifuged at 15,000 g for 20 min. The
chromogen was formed by mixing 200 μl of super-
natants with 1 ml of a reaction mixture containing
15% (w/v) Trichloroacetic acid (TCA), 0.375% (w/v)
2-thiobarbituric acid (TBA), 0.1% (w/v) butyl
hydroxytoluene, 0.25 N HCl and by incubating the
mixture at 100°C for 30 min (Minotti and Aust 1987).
After cooling at room temperature, tubes were
centrifuged at 800 g for 5 min and the supernatant
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was used for spectrophotometric reading at 532 nm.
Lipid peroxidation was estimated as the content of 2-
thiobarbituric acid-reactive substances (TBARS) and
expressed as equivalents of malondialdehyde (MDA)
according to Halliwell and Gutteridge (1989). The
calibration curve was made using MDA in the range
of 0.1–10 nmol. A blank for all samples was prepared
by replacing the sample with extraction medium, and
controls for each sample were prepared by replacing
TBA with 0.25 N HCl. In all cases, 0.1% (w/v) butyl
hydroxytoluene was included in the reaction mixtures
to prevent artifactual formation of 2-thiobarbituric
acid-reactive substances (TBARS) during the acid-
heating step of the assay.

Antioxidant enzymatic activities

Total superoxide dismutase (SOD) activity (EC
1.15.1.1) (Beyer and Fridovich 1987) was measured
on the basis of SOD’s ability to inhibit the reduction
of nitroblue tetrazolium (NBT) by superoxide radicals
generated photochemically. One unit of SOD was
defined as the amount of enzyme required to inhibit
the reduction rate of NBT by 50% at 25°C. Catalase
(CAT) activity (EC 1.11.1.6) was measured (Aebi
1984). Consumption of H2O2 (extinction coefficient
of 39.6 mM−1 cm−1) at 240 nm for 1 min was
monitored. The reaction mixture consisted of 50 mM
phosphate buffer (pH 7.0) containing 10 mM H2O2

and 100 μl of enzyme extract in a 2 ml volume.
Ascorbate peroxidase (APX) activity (EC 1.11.1.11)
was measured in a 1-ml reaction volume containing
50 mM potassium phosphate buffer (pH 7.0), 0.1 mM
hydrogen peroxide and 0.5 mM ascorbate. The H2O2

was added to start the reaction, and the decrease in
absorbance at 290 nm was recorded for 1 min to
determine the oxidation rate for ascorbate (Amako et
al. 1994). Glutathione reductase (GR) activity (EC
1.20.4.2.) was estimated by measuring the decrease of
absorbance at 340 nm and 25°C due to the oxidation
of NADPH (Carlberg and Mannervik 1985). The
reaction mixture (1 ml) contained 0.1 M HEPES-
NaOH 100 mM (pH 7.8), 1 mM EDTA, 3 mM
MgCl2, 0.5 mM oxidized glutathione, 150 μl enzyme
extract, and 0.2 mM NADPH was added and mixed
thoroughly to begin the reaction. The activity was
calculated from the initial speed of reaction and the
molar extinction coefficient of NADPH (ε340=6.22
mM−1 cm−1).

Northern blot analysis

Total RNA was isolated from lettuce roots and
leaves by phenol/chloroform extraction according
to the method described by Kay et al. (1987).
RNA (10 μg) was separated by electrophoresis on
1.2% agarose gel containing 2.2 M formaldehyde
and blotted onto Hybond-N + nylon membranes
(Amersham, Little Chalfont, UK) by capillarity
(Sambrook et al. 1989). Blots were prehybridized
2–3 h at 42°C in 6X Denhardt’s solution, 5X SSC,
0.5% SDS and hybridized with lsp5cs or lsnced
specific probes (from genes encoding for Δ1-pyrro-
line-5-carboxylate synthetase, accession AJ715852
and 9-cis-epoxycarotenoid dioxygenase, accession
AB120109) obtained by radioactive PCR labelling
of plasmid inserts. Unincorporated 32P was removed
using Mini Quick SpinTM columns (Boehringer
Manheim, Indianapolis, IN). A total of 107 cpm
probe was heat-denatured and used to hybridize the
blots overnight at 65°C under standard conditions
(Sambrook et al. 1989). After washing twice for
5 min at room temperature in 2X SSC and 0.1%
SDS, and twice for 15 min at 65°C with 0.5X SSC
and 0.1% SDS, membranes were exposed to
phosphorimager (Molecular Dynamics Inc). The
amount of rRNA in the membranes was quantified
using Quantity One software (BioRad, Hemel
Hempstead, UK) in ethidium bromide-stained mem-
branes. After the northern blot, the hybridization
signals were analyzed with a phosphorimager and
quantified using the same software. Transcript
accumulation levels for each gene probe (in arbitrary
units) were divided by the corresponding amount of
rRNA in the membrane (also in arbitrary units). Each
quantification of signals on screens and of rRNA in the
membranes was repeated three times and the average
value for each was used for normalization.

Results

AM colonization and plant growth

No AM colonization was observed in roots of the non
inoculated treatments. AM fungal inoculation resulted
in about 35% of mycorrhizal root length in absence of
SB waste and in 50% of mycorrhizal root length in
presence of SB waste. The water regime applied did
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not affect the mycorrhizal root colonization (data not
shown).

Under well-watered conditions and in absence of
SB-waste AM plants grew 23% more than nonAM
plants (Fig. 1). When the SB-waste was added to the
growing medium all plants grew less than in absence
of SB. However, in presence of SB-waste and
drought stress conditions AM plants grew 25% more
than nonAM plants. Drought stress decreased plant
growth both in presence and in absence of SB.

Proline accumulation and expression of lsp5cs gene

Drought induced the accumulation of proline in
AM and nonAM plants as compared to well-
watered plants (Fig. 2). It is noticeable that under
drought stress nonAM plants accumulated more
proline in shoots than AM plants and this effect
was evidenced both in presence (increase by 130%)
and in absence of SB-waste (increase by 72%). In
contrast, in roots, AM plants subjected to drought
accumulated more proline than nonAM plants (by
40% and 113% in presence and absence of SB waste,
respectively).

We analyzed the expression of lsp5cs gene,
which encodes the protein Δ1-pyrroline-5-carboxyl-
ate synthetase (P5CS), involved in the biosynthesis
of proline. In absence of SB waste, the expression of
that gene was induced by drought stress, both in

shoots and in roots, although it was more clearly
visible in shoots than in roots (Fig. 3). In shoots, the
highest transcript accumulation was observed in
nonAM plants subjected to drought. In presence of
SB waste, the highest transcript accumulation was
observed in roots of nonAM and AM plants
subjected to drought. In contrast, in shoots, the
expression was almost unaffected by the different
treatments.

Expression of lsnced gene

The expression of lsnced gene was observed only in
shoots of nonAM plants subjected to drought and
cultivated without SB waste, while AM plants
subjected to drought did not induce the expression
of the gene (Fig. 4). The application of SB almost
prevented lsnced gene expression both in shoots and
in roots. In fact, only nonAM plants subjected to
drought showed a very slight expression of this gene
in roots. In contrast, when no SB was applied the
expression of this gene was observed in roots of
nonAM plants cultivated under well-watered con-
ditions and also in the roots of AM and nonAM
plants subjected to drought. In that case, the
expression in roots of nonAM plants was higher
than in those of AM plants.
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Hydrogen peroxide accumulation and oxidative
damage to lipids

In shoots hydrogen peroxide accumulation was
considerably lower (by 69%) in AM plants than in
nonAM plants when cultivated under well-watered
conditions, but not when subjected to drought stress
(Fig. 5). The application of SB maintained the
hydrogen peroxide concentration in similar values
for AM and nonAM plants cultivated under well-
watered conditions. Drought stress decreased the
hydrogen peroxide concentration both in AM and
nonAM plants, but the decrease was only significant
in nonAM plants (decrease by 44%).

In roots the hydrogen peroxide concentration was
always significantly higher in AM plants than in
nonAM ones, regardless of water regime and presence
or absence of SB waste.

The oxidative damage to lipids varied consider-
ably depending on the different treatments and the
plant tissue considered (Fig. 6). In shoots, under
well-watered conditions and absence of SB waste it
was 72% higher in AM plants, but in presence of SB

waste, it was 41% higher in nonAM plants. Under
drought stress conditions, AM plants exhibited
significantly higher oxidative damage to lipids only
in presence of SB waste (33% of increase). In root
tissues the oxidative damage to lipids showed an
almost opposite trend as compared to shoots. In fact,
under well-watered conditions and absence of SB
waste it was 74% lower in AM plants, but in
presence of SB waste it increased by 42% in AM
plants. Under drought stress conditions AM plants
showed enhanced lipid peroxidation (by 240%) in
absence of SB waste as compared to nonAM plants.
Under these water conditions, the application of SB
decreased lipid peroxidation both in AM and nonAM
plants, but the decrease was higher (by 70%) in AM
plants.

Plant antioxidant enzyme activities

SOD

In shoots the SOD activity did not show important
changes as a consequence of the treatments applied
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(Fig. 7). Only nonAM plants subjected to drought in
presence of SB waste showed 45% enhanced SOD
activity as compared to AM plants.

In roots the SOD activity was 45% lower in AM
plants than in nonAM ones, both under well-watered
and under drought stress conditions. The SOD

activity of AM and nonAM plants increased as a
consequence of drought. The application of SB waste
almost equalized SOD activity in all treatments, with
the exception of AM plants cultivated under well-
watered conditions, which showed slightly lower
SOD activity than the corresponding nonAM plants.

APX

In shoots the APX activity increased by 145% in AM
plants as a consequence of drought, but the application
of SBwaste avoided such enhancement and resulted in a
clear reduction of 39% in APX activity of AM plants
subjected to drought (Fig. 8). The application of SB
waste itself enhanced APX activity in well-watered
plants and in nonAM plants subjected to drought.

In roots and in absence of SB the APX activity
decreased in AM roots, both under well-watered (by
53%) and under drought stress conditions (by 59%).
In presence of SB waste APX activity increased by
287% in AM plants subjected to drought, as com-
pared to droughted nonAM plants.

CAT

The CAT activity could be measured only in shoots.
No activity was detected in roots (Fig. 9). Thus,
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lettuce plants. See legend for Fig. 1
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drought stress enhanced CAT activity of nonAM
plants both in presence (increase by 38%) and in
absence (increase by 149%) of SB waste. In contrast,
AM plants did not increase their CAT activity under
drought stress, regardless of SB application.

GR

The GR activity showed just an opposite trend in
shoots than in roots (Fig. 10). In fact, in shoot tissues
it was enhanced (by 400%) by AM symbiosis under
well-watered conditions and it decreased (by 67%) in
root tissues. Drought stress enhanced GR activity by
813% in shoots of nonAM plants, while it enhanced
the activity in roots of AM plants by 406%. In

presence of SB waste and well-watered conditions,
the GR activity increased in shoots of AM plants by
84% and it decreased non significantly in their roots,
while under drought stress conditions it was similar in
shoots of AM and nonAM plants, but showed a 332%
of enhancement in roots of AM plants.

Discussion

In this study, we have investigated the effects of
microbial treatments (AM fungus) and A. niger-
treated SB amendment on the responses of a food
crop plant such as lettuce under drought stress
conditions.

A. niger-treated SB waste provides an organic
amendment rich in polysaccharide compounds and
available P through the RP applied during the
fermentation process. This amendment has been
shown to significantly increase biomass production
in a variety of plants (Alguacil et al. 2003; Medina et
al. 2004a, b; Caravaca et al. 2004, 2005, 2006). In our
study, the percentage of mycorrhizal root infection
increased with SB application, as has been shown in
the above mentioned studies, but lettuce plants
amended with SB grew less than non amended plants.
The exact reason for this effect is not known but it is
clear that most of the plants previously tested were
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woody shrubs and lettuce is an annual horticultural
crop that may result negatively affected by some of
the components of the composted SB waste. In fact,
the use of other agro wastes such as DOC have been
seen to have a detrimental effect on seed germination,
plant growth and microbial activity in soil due to its
phenol, organic acid and fatty acid content (Linares et
al. 2003). Undesirable constituents potentially associ-
ated with agro wastes also include elevated levels of
heavy metals and xenobiotics (Caravaca et al. 2006).
Thus the composted SB waste may have a phytotoxic
effect on lettuce plants, while on woody shrubs this
effect was not evident. For instance, the release of
lignin, as a consequence of mineralization of SB
(Rodriguez et al. 1999), could have had adverse
effects on the development of lettuce plants.

To counter with drought stress, many plants
increase the osmotic potential of their cells by
synthesizing and accumulating compatible osmolytes
such as proline that participates in the osmotic
adjustment (Morgan 1984; Kishor et al. 1995).
However, proline performs also an important function
as a protective compatible osmolyte in scavenging of
free radicals and facilitating a correction of altered
redox potential by replenishment of the NADP +
supply (Hare et al. 1999; Hasegawa et al. 2000). The
analysis of lsp5cs gene expression showed that, in
general, that gene responded to drought and was up-
regulated in drought stressed treatments, in parallel
with the levels of proline accumulated in the plant
tissues. This suggests that proline is important for the
plant response against stresses involving water deficit
(Kishor et al. 1995; Yoshiba et al. 1997; Hare et al.
2003). In any case, the induction of lsp5cs gene was
lower in AM than in nonAM plants (mainly in
absence of SB), as we already found in previous
studies with soybean and lettuce plants (Porcel et al.
2004). The levels of proline accumulation followed
also the same pattern in shoot tissues, but in root
tissues they were higher in AM plants subjected to
drought than in nonAM plants. This suggest that in
root tissues AM plants accumulate more proline in
order to cope with the low water potential of drying
soil and to keep a water potential gradient favourable
to water entrance into the roots, as was observed in
soybean plants (Porcel and Ruiz-Lozano 2004). Thus,
the AM plants would have a better water status than
non AM plants and their shoots would be less strained
by drought stress. By that reason shoots of AM plants

would need to accumulate less proline, as shown in
Fig. 2 and the gene lsp5cs is less expressed in the
shoots of these plants (Fig. 3).

Many of the plant responses to soil drying occur
via chemical signals such as the phytohormone ABA
(Wilkinson and Davies 2002). In this study we
investigated the expression of a nced gene, encoding
for the key enzyme for the biosynthesis of ABA
(Schwartz et al. 2003). In our study, when detected,
the expression of Lsnced gene was higher in nonAM
than in AM plants. This disagrees with previous
results by Aroca et al. (2008a,b) in lettuce and tomato
plants subjected to drought stress, where AM plants
showed higher levels of nced gene expression.
However, recently Fiorilli et al. (2009) have detected
expression of a tomato nced gene only in cortical cells
of nonAM roots, while in the cortical or arbusculated
cells of AM tomato roots, the expression was not
detected. The induction of nced genes by drought
stress has been observed previously in a variety of
plants (Iuchi et al. 2000; Tan et al. 2003; Rodrigo et
al. 2006; Wan and Li 2006). In contrast, in our study,
Lsnced gene expression could not be detected in
plants cultivated in presence of SB waste, even under
drought stress. Cheng et al. (2002) demonstrated in
Arabidopsis that a minimum level of ABA is required
in plant tissues for full induction of a nced gene since
ABA-deficient mutants accumulated less mRNAs for
this gene in response to drought and salt stress
treatments. Thus, it is possible that in SB-treated
plants the level of ABA could be low, even in those
subjected to drought, and this avoided induction of
Lsnced gene expression. Low ABA levels may also
have avoided the induction of other genes (Bray
2002) and this contributed to the low performance of
SB-treated plants. Another possible explanation for
the lack of lsnced gene expression is that the SB
ammendment could contain some specific inhibitor of
the expression of this gene. However, this hypothesis
needs further studies.

Several studies suggested that AM symbiosis
helps plants to alleviate osmotic stress by enhanc-
ing the antioxidant plant defenses (Ruiz-Lozano et
al. 2001; Alguacil et al. 2003; Ruiz-Sánchez et al.
2010). Drought stress-induced exacerbated ROS
generation is well-recognized at the cellular level
and is tightly controlled at both the production and
consumption levels in vivo, through increased anti-
oxidant systems (Moran et al. 1994; Mittler 2002;
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Reddy et al. 2004). Superoxide radicals (O2
.-) and

hydrogen peroxide (H2O2) are synthesized at very
high rates even under optimal conditions (Noctor and
Foyer 1998). The most important aspect of O2

.- and
H2O2 toxicity is thought to be their ability to initiate
cascade reactions that result in the production of
hydroxyl radicals capable of causing lipid peroxida-
tion, protein denaturation and DNA mutations
(Bowler et al. 1992). However, plant cells contain
an array of protective and repair systems that
minimize the occurrence of oxidative damage. The
effective destruction of O2

.- and H2O2 requires the
synchronous action of several antioxidant enzymes.
Superoxide is rapidly converted to H2O2 by SOD
activity (Bowler et al. 1992). CATs convert H2O2 to
water and molecular oxygen in peroxisomes (Noctor
and Foyer 1998). An alternative mode of H2O2

destruction is via peroxidases, which are found
throughout the cell and have a much greater affinity
to H2O2 than CAT (Jiménez et al. 1997). The
enzymes in the ascorbate-glutathione cycle, where
H2O2 is scavenged, are highly active. In this cycle,
APX catalyzes the reduction of H2O2 to water by
ascorbate, and the resulting dehydroascorbate is
reduced back to ascorbate with the help of GR
(Iturbe-Ormaetxe et al. 2001).

In our study the accumulation of hydrogen
peroxide, the oxidative damage to lipids and the
activity of the four antioxidant enzymes measured
varied considerably depending on the plant tissue
considered, the presence or absence of SB waste
and the inoculation or not with the AM fungus G.
intraradices. Moreover, in some cases the patterns
are almost the opposite in root and shoot tissues (i. e.
glutathione reductase activity or oxidative damage to
lipids). Thus, it is difficult to see a clear correlation
between hydrogen peroxide accumulation and oxi-
dative damage to lipids or among these two
parameters and antioxidant enzyme activities, and
none of the activities can be specifically correlated
with the performance of lettuce plants under the
different treatments assayed in this study. It has been
proposed that host plants possess higher antioxidant
enzyme activities as a result of mycorrhizal coloni-
zation but the response of the individual enzymes
varies with respect to the host plant and the fungal
species (Alguacil et al. 2003). In a previous study we
also observed that the effects of SB amendment on
antioxidant enzyme activities actually differed be-

tween the enzymes analyzed (Azcón et al. 2009).
This variation may also depend on the micronutrients
available to some of the enzymes, e.g. CAT, APX
and SOD are metalloenzymes and their activity can
be determined by the availability of the metals they
utilize (Alguacil et al. 2003). Thus, both excess and
deficiency of micronutrients can modulate the activ-
ity of these metalloenzymes.

Conclusions

In previous studies it has been shown that the
combined application of treated SB waste as amend-
ment and AM fungi can be beneficial for plant
performance under a variety of environmental con-
straints (heavy metal pollution, degradation of soil
properties, erosion, etc.). However, though generally
regarded as beneficial, the activity of AM fungi in
agroecosystems is neither easily predictable nor
always beneficial (Gosling et al. 2006). In fact, the
positive effect described above seems to depend on
the plant characteristics. For woody shrub plants like
Juniperus oxicedrus, Cistus albidus or Dorycnium
penthaphyllum the positive effect is evident, but for
an horticultural food crop such as Lactuca sativa this
is not so. Indeed, the application of treated SB waste
resulted negative for AM and nonAM plants devel-
opment as compared to unamended plants (both under
well watered and under drought stress conditions).
This effect can not be ascribed to the impairment of
specific plant antioxidant defenses. In contrast, a lack
of induction of a gene from the ABA biosynthetic
pathway was observed in SB-treated plants, which
could have contributed to the low performance of
these plants. Thus, before starting a program aimed at
the utilization of different amendments based on
transformed wastes, basic studies on functional and
physiological compatibility between the plant and the
amendment are necessary.
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