
EDITORIAL

Phosphate as a limiting resource: introduction

Michael D. Cramer

Received: 5 June 2010 /Accepted: 9 July 2010 /Published online: 22 July 2010
# Springer Science+Business Media B.V. 2010

Global context

Phosphorus (P) is commonly a limiting nutrient for
both terrestrial and aquatic productivity, with the
consequence that it is considered important in
determining the biodiversity and biomass of natural
ecosystems. P-limitation of terrestrial plants is not a
recent development. Karandashov and Bucher (2005)
argued that the evolutionary transition of plants from
the aquatic to terrestrial habitats was contingent on
the presence of arbuscular mycorrhiza, which facili-
tated P acquisition. As a consequence of persistent
P-limitations, terrestrial plants have evolved a wide
range of P acquisition strategies, including mecha-
nisms that increase the range of chemical forms that
can be accessed, the range of concentrations that can
be taken up and the effective absorbing area of the
roots (Lambers et al. 2008). Likewise, plants have a
range of strategies for conserving P that enable them
to persist in P-deficient habitats, including sclero-

phyllous leaves and serotinous cones. In order to
ensure successful recruitment in P-limited environ-
ments they also produce P-rich seeds (e.g. Groom and
Lamont 2010, this volume).

P is also often a limiting nutrient in agriculture (e.g.
Sánchez 2010), deficiency being redressed through
applications of P-fertilisers (globally ca. 20×109 kg P
annum-1; Smit et al. 2009). Alarmingly, the finite
global stocks of P (2,400×109 kg P) are likely to be
depleted within 125 years (Smit et al. 2009; Vaccari
2009). Anthropogenic modification of the global P
cycle by fertiliser use as well as waste streams and
detergent use have effectively doubled global P cycling
since the mid-19th century (Filippelli 2002). A
consequence is that many natural ecosystems are
threatened by super-abundance of a formerly limiting
resource, with resulting biodiversity losses (e.g. Tilman
et al. 2001). This is likely to be especially true in
systems where P was formerly most-limiting, such as
in Mediterranean terrestrial ecosystems (Sala et al.
2000), oligotrophic lakes (Schindler et al. 2008) and
nutrient-impoverished oceans (Rabalais et al. 2008).
Apart from the direct biodiversity consequences of
P-eutrophication, release from P-limitation combined
with increased atmospheric CO2 concentration and N
deposition may exacerbate the loss of biodiversity.

Regional context

The global importance of P as a limiting resource,
prompted the compilation of this Special Issue of Plant
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and Soil, following a workshop held in Stellenbosch
(South Africa) in January 2009. Stellenbosch is
situated in the Cape Floristic Region (CFR). The
CFR, located at the south-western tip of Africa, is a
Mediterranean ecosystem occupying a relatively small
area of 90 000 km2, but with some of the highest
levels of plant diversity in the world (9,000 vascular
plant species, of which 69% are endemic) (Cowling et
al. 1992). This high γ diversity of the CFR is the
product of a moderately-high α-diversity, which is
similar to that of other Mediterranean-ecosystems at
the 1,000 m2 scale (ca 70 species per 1,000 m2;
Cowling et al. 1996) and a very high β-diversity among
habitats. The component biomes are floristically
distinct and associated with equally distinct soil-
types: Afrotemperate Forest, Albany Thicket, Fynbos
and Succulent Karoo, that make up the CFR (Cowling
et al. 1992; Cowling et al. 1997; Goldblatt and
Manning 2000; Rebelo et al. 2006). The highly
species-rich Fynbos biome occupies the largest area
(56% of the CFR) and consists of three vegetation
types; fynbos, renosterveld and western strandveld, of
which fynbos is the dominant type (Cowling et al.
1997; Rebelo et al. 2006). Fynbos vegetation type is a
fire-prone heathland, containing small-leaved, ever-
green, sclerophyllous shrubs (Kruger 1983; Cowling et
al. 1992; Cowling et al. 1997; Rebelo et al. 2006) and
occurs on ancient sandstone-derived soils which are
coarse-grained, highly leached and extremely deficient
in exchangeable bases, total N (1 to 2 mgN g−1) and
available P (0.4 to 3.7 μg P g−1) (Kruger 1979; Stock
and Lewis 1986; Witkowski and Mitchell 1987).

The particularly high diversity of fynbos, com-
bined with low aboveground biomass prompted the
hosting of the workshop within the CFR, to stimulate
discussion of what determines the ecophysiological
and ecological characteristics of such ecosystems.
Over many decades, comparative research has been
carried out between the CFR and the South West
Botanical Province (SWBP) of Australia. This has
been based on the fact that these highly biodiverse
Mediterranean-ecosystems share several families in
common, and that many of the functional traits of the
native plants are similar (e.g. serotiny, resprouting,
sclerophyllous leaves, cluster roots). The soils of the
two regions are also both extremely P-impoverished.
Despite the similarities, there are also striking differ-
ences. For example, SWBP Proteaceae are generally
taller (personal observation), more sclerophyllous

(Beard et al. 2000) and have more serotinous cones
with more P (Groom and Lamont 2010). This has
sparked much debate over the relative availabilities of
nutrients in the two geographic regions. This debate is
complicated by the climatic and edaphic variability of
the two regions, making comparisons highly depen-
dent on the rather sparse data. In this volume,
Lambers et al. (2010) have gathered data showing
that foliar [N], [P] and N:P ratios of fynbos and west-
Australian kwongan plants are relatively similar. In
contrast, leaf mass per unit area (LMA), a proxy for
sclerophylly, was ca. 1.7-fold higher in kwongan than
in fynbos. Also in this volume, Groom and Lamont
(2010) report that the plants native to kwongan have
seeds with 2.2-fold higher [P] and 4.7-fold greater P
contents than those of fynbos plants, and concluded
that P must be more limiting in kwongan. However,
plants in kwongan have their own challenges not
related to P and peculiar to Australia; voracious
graminivorous cockatoos (Groom and Lamont
1997). While this does not deny the importance of
P-rich seeds for successful recruitment, the occurrence
of graminivores and the extinct Australian megafauna
(Miller 2005) may have contributed to a high degree of
serotiny (measured as duration of seed retention and
extent of protection) coupled with low numbers of
P-rich seeds and high LMA.

Field excursion to investigate the role of P
in determining forest-fynbos boundaries

At the workshop there was considerable discussion of
the importance of P in determining the biodiversity
(see Lambers et al. 2010, this volume) and structure
of vegetation (see Bond 2010, this volume). This was
highlighted by a field excursion to the Swartboskloof
valley (Fig. 1) where both Kogelberg Sandstone
fynbos and evergreen Southern Afrotemperate Forest
(Mucina and Rutherford 2006) occur in close proxim-
ity on soils derived from the same geology (sandstone).
This sharp (tens of metres) vegetation disjunction has
commonly been ascribed to protection from fire by
boulders (e.g. Moll et al. 1980; Manders 1990). Fire
does enter the forests, although infrequently (van
Wilgen et al. 1990), and the forest patches are often
also associated with landscape drainage lines and rock
scree (Manders 1990). The soils associated with forest
are considerably more nutrient-rich than those asso-
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ciated with fynbos (Table 1). These distinct forest and
fynbos soils have scarcely changed over the 20 years
since Manders (1990) sampled the same region.
Nevertheless, forest expansion into formerly fynbos
areas protected from fire, such as in Orange Kloof
(Luger and Moll 1993) is often cited as evidence that
soil properties are not influential. It should be noted,
however, that the Orange Kloof site is on granitic
soils (Luger and Moll 1993) which are considerably
more nutrient rich than sandstone-derived soils in the
same region (e.g. Witkowski and Mitchell 1987).
Thus the Orange Kloof case may not be appropriate
for understanding forest-fynbos dynamics on
sandstone-derived soils. The consensus amongst field
excursion participants (see acknowledgements for
participants) was that this forest-fynbos disjunction
is probably the product of ‘niche construction’
(reviewed by Day et al. 2003), in which frequent fires
in fynbos mobilise nutrients, allowing these to ‘leak’
out of the ecosystem (through volatilization, ash loss or
leaching), whereas forests may act as nutrient collec-
tors trapping dust and ash and taking up nutrients and
water from deep in the soil. Forests were probably
originally more widespread in the region before the
onset of global cooling and aridification in the
Pliocene, and were replaced (off the drainage lines/
rock scree) by fire-prone sclerophyllous vegetation and
dry woodlands, especially during the Quaternary when
seasonal Mediterranean-type climates developed
(Cowling et al. 1996). Thus the floristic composition
and structure of the closed-canopied forests may be a
consequence of greater water and nutrient availability,
which is in turn the product of long-term soil
development in the relative absence of fire. In

contrast, the neighbouring open-canopied, highly
sclerophyllous fynbos is associated with nutrient poor
soils, particularly impoverished in P, which are the
product of long-term losses of nutrients driven by
repeated fires.

Biodiversity

Although the turnover in lineages between vegetation
types such as afrotemperate forest and fynbos

Fig. 1 Swartboskloof (33°
59′45.53″S, 18°57′23.29″E,
South Africa) from low
elevation (1 130 m above
sea level) looking south and
showing sites sampled
(Table 1) in forest and
fynbos patches (image from
Google Earth, Sep 2009).
The forests are restricted to
ravines (all except leftmost
patch) or associated with
rocky scree (leftmost forest
patch). Evidence of a recent
fire is visible at top right

Table 1 Comparison of the soil characteristics of forest and
fynbos soils at sites (Fig. 1) sampled at Swartboskloof in
Jonkershoek, South Africa (Feb 2007). Soil was analysed as
described in Cramer et al. (2008). Means±SE are followed by
letters indicating significant differences between biome meas-
ures determined using Student’s t-tests. Results are ranked
using an “effect size” measure (Hedges’sg; Hedges and Olkin
1985), g=t√(n1+n2)/√(n1n2), where t is the value of the
Student’s t test of the differences between the two groups and
n is the number of samples (n=4)

Measure Unit Forest Fynbos g

Ca cmol kg−1 9.8±2.2 b 0.6±0.1 a 7.4

EC mS m−1 32±227 b 6±38 a 5.7

pH (in 1 M KCl) 5.2±0.2 b 3.7±0.1 a 5.0

T-Value cmol kg−1 15±2 b 5±1 a 3.4

Mg cmol kg−1 3.3±0.3 b 0.5±0.2 a 3.3

Bray II P mgkg−1 22.5±8.6 b 4.8±0.9 a 2.7

Total N mgg−1 3.9±0.8 b 1.3±0.6 a 2.0

K mgkg−1 188±41 a 79±30 a 1.6

Na cmol kg−1 0.12±0.02 a 0.07±0.02 a 1.4

C mgg−1 39±6 a 22±1 a 1.3

H+ cmol kg−1 1.4±0.4 a 3.2±0.9 b −1.8
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contributes to biodiversity of the CFR, the α-diversity
the Kogelberg Sandstone fynbos is much greater than
that of the Southern Afrotemperate forest (Mucina
and Rutherford 2006). The high fynbos biodiversity
has been extensively discussed in the literature (e.g.
Linder 2003; Verboom et al. 2009). The association of
high biodiversity in the CFR and SWBP with
nutrient-limited habitats is well established (e.g.
Hopper 2009). Species diversity in such regions has
been linked to what is referred to as old, climatically
buffered, infertile landscapes (OCBILs). The OCBIL
concept of speciation does need to accommodate a
role for disturbance (e.g. fire) and also probably
applies more generally to the SWBP than to the CFR;
in the latter the diversity of soils is associated with
topographic diversity, resulting in a patchwork of
young and ancient soils (Cowling et al. 2009).
Whether the link between low fertility and biodiver-
sity is causal, or just the consequence of a climatically
stable region, combined with speciation and the
persistence of lineages (e.g. Verboom et al. 2009), is
still debatable. In this volume, Lambers et al. (2010)
provide a link between P availability in OCBILs and
biodiversity. Although the link between P and
biodiversity has been explored, it is also notable that
soil [N] and [P] are highly correlated within the
SWBP. Nevertheless, in both the CFR and SWBP,
leaf [P] is ca. one-third of the world average, while
[N] is ca. half of the world average. This is partially a
consequence of high LMA in these regions relative to
global averages. Lambers et al. (2010) argue that high
biodiversity is causally linked to low fertility through
the increased diversity of plants with specialised
nutritional adaptations, such as various forms of
mycorrhizal association, cluster roots for acquiring P
and the occurrence of parasitic and carnivorous
plants. The idea is that as nutritional availability
decreases in OCBILs, particularly with respect to P,
there is greater selection pressure for strategies to
acquire the resources, with the consequence of niche
segregation. How this niche segregation is linked to
speciation through reproductive isolation has not,
however, been expressly considered.

The importance of P to biodiversity is also suggested
by the linkage of weak legume persistence in the CFR
(Cocks and Stock 2001) to post-fire decline in P
availability (Power et al. 2010, this volume). Legumes
also do not persist through post-fire succession in other
Mediterranean-type ecosystems (e.g. chaparral of

California, Westman 1981; Jarrah forests of South
West Australia, Bell and Koch 1980). The relative lack
of persistence of indigenous legumes (there are 761
species, 627 of which are endemic to the CFR,
Goldblatt and Manning 2000) during post-fire succes-
sion in fynbos vegetation of the CFR may partially be
a consequence of the fact that most legumes lack the
highly effective root adaptations required for acquisi-
tion of P (i.e. cluster roots of size and functional
activity of the Proteaceae) from soils with scarce
sparingly soluble P late in post-fire succession (Power
et al. 2010). However, this raises the question of how
Australian legume species, such as Acacia saligna and
A. cyclops, are able to persist successfully after fire in
the CFR where they often dominate areas previously
occupied by fynbos vegetation. Power et al. (2010)
argued that alien Acacia species possess extensive root
systems and associated mycorrhizal networks com-
pared to fynbos legumes (e.g. Hoffman and Mitchell
1986), which would allow them to access a greater
pool of P. An alternative possibility is that the deep
root systems of alien Australian legumes combined
with a high capacity for water transport (Le Maitre et
al. 1996) allows them to trade water for nutrient access
(e.g. Field et al. 1983; Wright et al. 2003) by using
transpiration-driven mass-flow to extend the foraging
range of roots away from the immediate vicinity of the
roots (Cramer et al. 2009).

Biomass

The obvious differences in vegetation biomass associ-
ated with the forest-fynbos discontinuity could be due to
the ability of forests to escape fire or to differences in
their ability to access water and/or nutrients. The link
between declining nutrients, in particular P, and
declining woody biomass has been strongly demon-
strated across several chronosequences in which P and
biomass decrease with soil age (e.g. Richardson et al.
2004; Wardle et al. 2008). In this volume, Bond (2010)
has issued a challenge to the view that nutrients,
particularly P, determine woody biomass, by estimat-
ing the available stocks of major nutrients (excluding
N) in the soil, and the nutrient stocks required to
produce woody biomass. Due to limitations of data
availability, this estimation required several assump-
tions; for example, adequate nutritional data are not
generally available for soils below 0.3 to 0.5 m, soil
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and rooting depth is seldom reported and there are
uncertainties about the actual available fraction of total
P and other cations. Nevertheless, Bond (2010)
estimated that total P (and available P) is adequate
for the formation of woody biomass, even in some of
the most impoverished soils; instead he makes a
case for K and Ca limitation. Bond (2010) cites an
example from the CFR where above-ground biomass
of fynbos shrublands is ca. 15 000 kgha-1, compared
ca. 170 000 kgha−1 for adjacent conifer plantations,
supporting the notion that nutrients alone are not a
constraint. It may be informative to note that in African
savannas, woody cover (a measure of canopy closure by
woody species) is strongly correlated with rainfall,
followed by fire frequency and then soil total P, with
soil N playing only a minor role (Sankaran et al. 2008).
Although woody cover is not directly related to woody
biomass, interactions of several factors may be
important in determining final woody biomass, but
further definitive work is required.

Reproductive strategies

For plants from habitats with limited P availability,
the investment of nutrients in reproduction can be
enormous. One might expect that when nutrients are
limiting, nutrient allocation to any process would be
under tight selection pressure and as low as possible. In
this volume, Groom and Lamont (2010) review the
investment of P in seeds of plants from P-impoverished
habitats. Those from South Western Australia (SWA)
allocated up to ca. 50% of above ground P to seeds,
with less allocation to seeds in more nutrient replete
areas. The high [P] in seeds relative to leaves and other
plant structures may be required because of the edaphic
constraints on germination and seedling survival. The
high concentrations translate into large amounts of P
per seed (up to 15 mg P per seed), giving the seedlings
a better chance of establishing in soils in which the P
concentration is low. Serotiny limits the nutrient losses
associated with seed dispersal by ensuring that seeds
are shed in the post-fire environment, when the chance
of germination is higher. Does serotiny, which protects
P-investment in seed result in more P-rich seeds?
Groom and Lamont (2010) show that the amount of P
in serotinous seeds is greater than in non-serotinous
seeds. This may be because serotiny is a lower-risk
seeding strategy, or alternatively because more P-rich

seeds are required in P-impoverished habitats for
successful recruitment. Recurring fires and nutrient
limitations have also resulted in a large number of
resprouting plants in P-limited regions in which
regrowth takes advantage of pre-existing roots. In
resprouters, the investment in seed is generally lower
than in plants that are reseeders, because the
resprouters only require sufficient seed to offset
parental mortalities, whereas obligate reseeders rely
entirely on seed production (Meney et al. 1994).
Indeed, Groom and Lamont (2010) found that
resprouters produced fewer, but larger seeds, with
more total seed P than co-occurring reseeders. Thus
reproductive strategies, like those of P acquisition and
P conservation, are clearly geared to the degree of P-
limitation imposed by the habitat,

N:P interactions

Although absolute soil [P] is an important determi-
nant of vegetation properties, plants do maintain N:P
ratios within certain bounds, and thus the relative N
and P availabilities are important for determining
growth (Ågren 2008). Although species that dominate
areas with low N availability share similarities with
those that dominate areas with low P availability,
N- and P-limitations should not just be merely consid-
ered as ‘infertile conditions’, but rather as independent,
but interacting, specific limitations (Ostertag 2010, this
volume) that interact with each other. Plants native to
the most P-impoverished soils, such as those charac-
teristic of the CFR and SWBP, seem unlikely to show
growth responses to N supplied without added P.
Contrary to expectations, when Craine and Jackson
(2010, this volume) amended 98 North American soils
by supplying NH4NO3 and Na2HPO4 either individu-
ally or in a N:P ratio of 22:1, N and P were co-limiting
for the grass Schizachyrium scoparium grown on many
low-P soils. These authors concluded that low P may
alter the N cycle to limit N availability to the plants.
Isotopic evidence suggested that this might occur
through greater gaseous N losses from low-P soils.
Thus, even on low-P soils, they needed additional N to
respond to P addition. It remains to be seen whether
this also applies to plants native to low-P soils from the
CFR and SWBP.

Unlike grasslands which are commonly co-limited
by N and P (Craine et al. 2008; Craine and Jackson
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2010) there was no evidence of co-limitation in the
classic work of Vitousek (2004), who reported on
fertilization experiments across an Hawaiian chrono-
sequence. In that work single-resource limitation (see
Craine and Jackson 2010) was evident both at
younger (0.3 ky) N-limited and at older (4,100 ky)
P-limited sites, although there was some response of
plants at the younger site to N as well (Fig. 2a). It
seems likely, however, that the lack of requirement for
additional N in the work of Vitousek (2004) com-
pared to that of Craine and Jackson (2010) stems from
either differences in the degree of N-limitation or the
life-forms used (i.e. shrubs versus grasses). In this

volume, Ostertag (2010) examined the interesting
phenomenon that foliar [N] responds little to fertiliza-
tion (Fig. 2b) while foliar [P] is much more responsive
(Fig. 2c). Both inorganic and organic P accumulated
when plants were fertilized with P, indicating that this
was not simply a case of passive accumulation of P
(Ostertag 2010). This author concluded that the plants
may be incapable of down-regulation of P uptake. A
lack of down-regulation of P uptake capacity has been
proposed to account for the sensitivity of plants from
P-impoverished Mediterranean ecosystems to P-
toxicity (Shane and Lambers 2005; Shane et al. 2008;
Hawkins et al. 2008). Whether this lack of down-
regulation is more widespread and contributes to tissue
P-accumulation requires examination of the P-uptake
kinetics of the plants in question.

Whilst low N availability may limit plant responses
to P fertilization, when the N:P ratios become very
high, plants seem to be unable to utilise P, even when
this is supplied at concentrations that are suitable for
growth at lower N:P ratios. In this volume Fujita et al.
(2010) studied the effect of increased N:P ratios (from
1.7 to 135) supplied as KNO3/Ca(NO3)2 and KH2PO4

in quartz sand on 5 European grass and 3 herb
species. High N:P ratios resulted in decreased overall
growth over 2 years, independent of the overall
amount of nutrient supplied. This decreased growth
was attributable to root death at the higher N:P ratios,
triggered by P-limitation and consequent P-starvation
in the root tissue. Fujita et al. (2010) suggested that
low mycorrhizal infections may play a role in this P-
limitation. However, an alternative explanation is that
the higher N:P ratios limit transpiration driven mass-
flow, and this reduces access to P. A signalling role
for NO3

− in regulating transpiration through de-
creased stomatal conductances (Cramer et al. 2009)
could result in reduced mass-flow of P through the
relatively inert quartz sand used (e.g. Cramer et al.
2008), resulting in the observed P-starvation of the
plants at high N:P ratios.

One lesson from these N×P interaction experiments
in this volume (Craine and Jackson 2010; Fujita et al.
2010; Ostertag 2010) is that consideration of a single
limitation (e.g. P) in isolation is misleading. The
importance of N×P interactions is also pertinent when
considering the consequences of how climate change
influences plant processes (e.g. through effects on
transpiration) and also how nutrient deposition may
influence plant communities by changing the N:P ratios.
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Fig. 2 Fertilization responses after 2 years for two of the six
sites reported on by Vitousek (2004), and for which foliar N and
P have been reanalysed for several species by Ostertag (2010).
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Resource acquisition

Apart from mechanisms that conserve P (e.g. scle-
rophylly, serotiny, efficient P remobilisation from
senescing tissue), plants native to P-limited habitats
also have several mechanisms (e.g. cluster roots,
mycorrhiza, phosphatase exudation) for ensuring P
acquisition from low concentration resources and
from forms of P that are not readily available to other
plants (reviewed by Lambers et al. 2006; Lambers et
al. 2010). Cluster roots are relatively rare outside of
Australia and South Africa. However, in this volume
Zúñiga-Feest et al. (2010) have found that cluster
roots of South American Proteaceae responded to P-
deprivation, similar to Proteaceae from South Africa
and Australia (reviewed by Lambers et al. 2006). This
ubiquitous induction of cluster root formation by P-
deficiency has been used to argue that these roots
function mostly in P acquisition. Due to the mobi-
lisation of P from inorganic complexes such as Ca-P,
Mg-P, Mn-P, Zn-P and Fe-P by carboxylates, cluster
roots do also take up the associated cations (Lamont
2003). Cluster roots can also absorb 15N-glycine
(Schmidt and Stewart 1997), possibly indicating that
they have a role in N-uptake. Indeed, low levels of N
have been reported to induce cluster root formation
under P-deficiency, whereas high N levels were
inhibitory (Lamont 1972; 1973; Dinkelaker et al.
1995). In contrast, Sas et al. (2002) showed that NH4

+

stimulated cluster root formation and proton excretion
under P deficiency more than did NO3

−. Although
cluster roots do take up N, the consensus today is that
cluster roots function mostly for P-acquisition and the
reasons for N linked cluster root induction may be
due to perceived P deficiency in response to N supply.
The work of Rath et al. (2010) in this volume using
2,102 white lupin ESTs to analyze gene expression of
cluster roots in white lupin in response to P, N, and Fe
deprivations may challenge the stereotyping of cluster
roots as solely a P-acquisition strategy. They identi-
fied 19 genes in cluster roots that displayed up-
regulation in response to both N and P deprivation (N
normally supplied as KNO3), six of which were
glycolytic enzymes and one was sucrose synthase.
The increased expression of sucrose synthase and
changes in glycolysis are intriguing because sugar
signalling has been shown to mediate plant responses
to N and P deprivation (e.g. Müller et al. 2005;
Hammond and White 2008; Liu et al. 2005), and has

been demonstrated to be involved in the formation of
proteoid roots (Zhou et al. 2008). Thus the work of
Rath et al. (2010) indicates that there may be cross-
talk between signalling mechanisms reporting N and
P deficiencies, leading to cluster root induction.

In the absence of soil-resetting disturbance, soil
weathering leads to long-term reduction of P availabil-
ity. The decline in total P with soil age has been firmly
established from chronoseqeunces (e.g. Stevens and
Walker 1970). This decline of total P is also associated
with increasing contribution of a variety of organic P
forms to the total P pool (Turner et al. 2007). The
contribution of organic P may be especially important
in the most P-impoverished ecosystems. For example,
in fynbos up to 76% of the total P (total P=46 mgkg−1)
was in the organic P fraction (Mitchell et al. 1984). For
this reason, direct root facilitated access to organic P,
rather than indirect access via microbial mineralisation,
is a potentially important, but relatively little studied
mechanism. Phosphatases hydrolytically remove P
from organic substrates, and are thought to play an
important role in P acquisition (e.g. Vance et al. 2003).
A microRNA (miR399) thought to target mRNAs
coding for a phosphatase transporter was originally
identified in both Arabidopsis thaliana and Oryza
sativa (Jones-Rhoades and Bartel 2004). miR399-
overexpressing Arabidopsis accumulates 4 to 6-fold
more P, with greater P-transporter mRNA abundance
(Bari et al. 2006). In this volume Gao et al. (2010)
have shown that transgenic tomato overexpressing
miR399 had higher P uptake due to increased
expression of P-transporters, combined with increased
acidification of the root medium and exudation of acid
phosphatase. Thus miR399 seems to co-ordinate a
suite of P-acquisition traits that is garnering it
considerable research attention, and work with
cluster-root forming species is an obvious next step.

Concluding remark

Phosphate as a limiting resource is an important and
specific constraint that plants have co-evolved with
ever since making the transition to the terrestrial
environment. There has been substantial progress in
identifying how plants meet the challenge of acquir-
ing and conserving this resource. However, the
responses of plant species richness and plant produc-
tion to P-limitation can only be understood when the
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interactions of this limitation with multiple other
abiotic resources (e.g. N, water, light) and biotic
interactions (e.g. competition, fire, herbivoury) are
taken into consideration.
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