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Abstract Understanding the impact of roots and
rhizosphere traits on plant resource efficiency is
important, in particular in the light of upcoming
shortages of mineral fertilizers and climate change
with increasing frequency of droughts. We de-
veloped a modular approach to root growth and
architecture modelling with a special focus on soil
root interactions. The dynamic three-dimensional
model is based on L-Systems, rewriting systems
well-known in plant architecture modelling. We
implemented the model in Matlab in a way that
simplifies introducing new features as required.
Different kinds of tropisms were implemented as
stochastic processes that determine the position of
the different roots in space. A simulation study
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was presented for phosphate uptake by a maize
root system in a pot experiment. Different sink
terms were derived from the root architecture,
and the effects of gravitropism and chemotropism
were demonstrated. This root system model is an
open and flexible tool which can easily be coupled
to different kinds of soil models.
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Introduction

Increasing plant water and nutrient use
efficiencies is a major challenge that must be
met in order to respond to the rising demand for
sufficient food supply of an ever growing human
population. Plant productivity is governed by
many environmental factors such as radiation
interception and water and nutrient availability
in soils. Thus, a fundamental understanding of
the key processes determining plant growth is
necessary in order to improve cropping systems
and cultivars for resource limited environments
(de Dorlodot et al. 2007). Understanding the
impact of roots and rhizosphere traits on plant
resource efficiency is important, in particular in
the light of sustainable production with reduced
fertilizer input, potential shortages and increasing
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costs of fertilizers and climate change with
increasing frequency of droughts. In this context,
root architecture is a fundamental aspect of plant
productivity (Lynch 1995) and thus needs to
be accurately considered when describing root
processes.

Existing root system models can be divided
into pure root growth models, which focus on
describing the root system’s morphology, and
more holistic models, which include several root—
environment interaction processes, e.g. water and
nutrient uptake.

The first descriptive three-dimensional root
system models were presented by Diggle (1988)
(RootMap) and Pages et al. (1989). These mod-
els described a herringbone topology and defined
root properties for every topological order in
the root system. Based on these ideas, Lynch
et al. (1997) and Spek (1997) developed new root
growth models (SimRoot and ArtRoot) with a
strong focus on visualisation. Pages et al. (2004)
presented a root system model in which the
different types of roots composing the root system
topology are not strictly related to the topological
order (Root Typ).

These dynamic three-dimensional root growth
models have provided a basis to couple root
growth to plant and soil interaction models in
order to simulate environmental processes such as
water and nutrient uptake. A root system model
developed for such a process oriented analysis was
presented by Fitter et al. (1991) to study the ex-
ploration efficiency of root systems in dependence
of root architecture. It could be demonstrated
that both root topology and link lengths strongly
influence nutrient uptake efficiency (Fitter and
Strickland 1991). Dunbabin et al. (2006, 2002)
predicted water and nutrient uptake, in the pres-
ence of exudates (Dunbabin et al. 2006), by inte-
grating RootMap into a simulation environment.
Dunbabin et al. (2004) analysed the effect of
different root system architectures on nitrate up-
take efficiency. Walk et al. (2006) used SimRoot
to assess the trade off effects of different root
system morphologies on phosphorus acquisition.
Based on the model of Pages et al. (1989), a
model of water conduction within roots has been
proposed by Doussan et al. (1998) and combined
with a model for water transport in soil (Doussan
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et al. 2006). Clausnitzer and Hopmans (1994) de-
veloped a new root growth model and analysed
water flow in the soil root zone which was fur-
ther extended by Somma et al. (1998) for nu-
trient uptake. Javaux et al. (2008) combined the
model of Somma et al. (1998) and the model of
Doussan et al. (1998) to comprehensively describe
water flow between the soil and plant root do-
main. Roose and Fowler (2004) derived sink terms
for nutrient and water uptake from a continuous
root system growth model which can be solved
analytically.

Beside the effects of root growth dynamics and
architectural traits on the soil (water and nutri-
ent uptake), a major challenge of root modelling
is the dynamic interactions of soil properties on
the root growth and architecture itself. Water
availability, nutrient concentration as well as me-
chanical impedance have been shown to strongly
influence plant root traits (e.g. Hodge 2004; Eapen
et al. 2005; Bengough et al. 2006). Integrating root
plasticity in response to the growth environment
into root architecture models remains a major
challenge for an accurate model based analysis
of plant growth strategies in different environ-
ments (Tsutsumi et al. 2003). Root responses to
resource heterogeneity in the soil are subject to
ongoing empirical research concerning phytohor-
mone mediated signalling pathways and species
specific morphological and physiological reac-
tions (e.g. Forde and Lorenzo 2001; Callaway
et al. 2003; Hodge 2004; Zhang et al. 2007; Peret
et al. 2009). This requires a flexible modelling
approach for continuous incorporation of new
knowledge.

Processes and interactions in the soil-plant—
atmosphere continuum are often described by
partial differential equations. The most important
equations are the Richards equation for water
flow (Jury and Horton 2004) and the convec-
tion diffusion equation for solute transport in
soil (Barber 1995). With increasing computational
power, it is now possible to solve these equa-
tions numerically in three dimensions using finite
difference, finite volume or finite element meth-
ods. The complexity of the root-soil system, how-
ever, requires an accurate and detailed description
not only of each subsystem (e.g. root growth,
root architecture, water and solute transport), but
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also of their mutual linkage and influence. Thus,
a modelling approach with a modular structure
would be most appropriate to join developments
in modelling the individual components of the rhi-
zosphere. The powerful numerical solvers avail-
able today (e.g.: Comsol Multiphysics, FlexPDE),
combined with techniques such as operator split-
ting, yield a detailed description of the single
subsystems and subsequently enable these to be
joined into a comprehensive system analysis.

This study presents such a modular approach
for root growth, root architecture and root—
soil interactions based on L-Systems. L-Systems
are often used in plant architecture modelling
(Prusinkiewicz 2004) and have also been applied
to root systems (Prusinkiewicz 1998). We provide
an implementation of our L-system based root
growth and architecture model in Matlab and the
integration of the root system description into a
plant-soil interaction model. This approach con-
siders the plasticity of root growth and branching
strategies as influenced by local soil properties.
From the root system architecture model, parame-
ters such as density distributions can be derived
and used in soil models. Matlab makes it is easy to
link the model to existing simulation codes (e.g.:
Java, C, Fortran) or to apply external numerical
solvers. The new approach is exemplified in a
simulation study of maize root growth and phos-
phate uptake in a pot experiment. The effects of
different sink terms derived from the modelled
root architecture and the role of gravitropism and
chemotropism is demonstrated. Our main objec-
tive is to provide a mathematically sound and pub-
licly accessible dynamic root growth model with a
focus on a modular approach to integrate various
types of interactions between root architecture
and the soil environment.

Model description
Introduction to L-Systems

L-Systems are rewriting systems based on strings
where each character stands for a specific en-
tity (Prusinkiewicz and Lindenmayer 1990). Every
character of an initial string w is replaced accord-
ing to its corresponding production rule. This is

performed iteratively n times to achieve an L-
System of the n* generation which can be inter-
preted graphically. For example the initiator o
and the production rule for the character X,

o =X,

X F[+X][-X]FX, (1)

produce Fig. 1. In this example X denotes the
tips and F represents the segment that has been
produced. The characters +, —, [ and ] are used for
the graphical interpretation using turtle graphics.
In Appendix we briefly describe turtle graphics
and provide a list of turtle commands.

L-Systems provide a compact description for
branched geometries. However, in root growth
simulations, we need to describe continuous
growth in time. For this reason, we use parametric
L-Systems, which include a special parameter ¢
denoting the local age of an L-System charac-
ter. Additionally, every production rule is applied
for a certain time step At. We indicate this by
writing the time step as a superscript of the L-
System character. For example, a character that
is replaced after a predetermined time f.,; by a
successive L-System string Ny (delay rule D?Y) is
given by

[+ Al > fopg 2 NITA T end

DA(t) —
: D(t+ Ab),

)

otherwise

where the parameter ¢ is the local age and f,,4
is the time at which the character is replaced,
At is the time which passes during the applica-
tion of the rule. If the local time is longer than
tenq the character is replaced by its successor Nj.
The production rule of N, is applied with the
time ¢ + At — t.nq, Which is the corresponding time
overlap. Otherwise, the local time is increased to
t + At, which is the new local time of the char-
acter D.

The production rules have to be designed such
that the result does not depend on the discreti-
sation of the overall simulation time. The delay
rule utilises two different kinds of parameters.
The local age ¢ changes when the production rule
is applied, while f.,; and Ny are predetermined
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initial values. We use a syntax in which local
parameters are given in front of the semicolon and
initial parameters are given after the semicolon,
re., D(t) := D(t; tona, N).

The following sections describe the basic pro-
duction rules of the L-System model for root
growth. A major concern is that all production
rules are based on biological mechanisms. Our
production rule for elongation of individual roots
is based on the continuous root growth model of
Roose et al. (2001). If required, it can be replaced
by other models.

Axial growth

We first present a production rule for the growth
of a single root without branching according to
a continuous growth function A(f). In our appli-
cation, A(f) is chosen for every root type i. Root
elongation follows a negative exponential func-
tion (following Pages et al. 2004).

2ty = ki(1 — e1), 3)
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where k; is the maximal length of the root and ; is
initial growth speed. In the simplest case, the root
type corresponds to the topological order of the
root within the root system.

The production rule G2’ for the growth of a
single root is given by

G2t 1)
[+Ax < M(t+AL) : R Fay GR(t, 14+ Ax)
otherwise G+ AL D).

(4)

The parameter ¢ represents the local age of the
root tip, / is an approximation of the actual root
length A(¢), At is the time step and Ax is the
spatial discretisation. The character R denotes
a rotation that describes root deflection and the
character Fa, denotes a segment of the root with
length Ax. The choice of the rotation R describing
the root tip deflection will be addressed in Section
“Tropisms and root tip deflection”. The first ex-
pression of Eq.4 produces segments R F, until the
predetermined length A(¢) is approximated. This
is done recursively, thus, in one step numerous
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segments can be produced. Otherwise the local
time is increased to ¢+ At. In this way the root
axis is described by segments with length Ax.
The growth function A(f) and the discretisation
along the root Ax are initial values, thus G(t, 1) :=
Gt I; A, Ax).

In this section, we have described a produc-
tion rule for the growth of an individual root.
In the next section, we present an L-System rule
for lateral branching and summarise the root pa-
rameters that are needed for a single root with
branches.

Lateral branching

In a root system, every root of a certain order
produces lateral branches. A root is therefore
divided into three zones: the basal- and apical
zones near the base and the tip of the root, re-
spectively, where no branches are produced, and
the branching zone where new roots of successive
order are created. The self similar structure of the
root system is used in the model description.

Growth of basal and apical zones as well as the
growth between the branches, are described with
the section growth rule S/ given by Eq. 5, which
is a generalisation of the axial growth rule given
by Eq. 4. In our implementation, new branches
can lie at an arbitrary position that is independent
of the discretisation Ax. Thus, Eq. 4 needs to be
modified such that it can produce segments of
length Ax or less:

N ()

A& (I+Ax <) : R Fay S2(t, [+ AXx)
- 1 A& (I+Ax>1):R Fi met_(["”d_[(’)

otherwise SE+AL D,

)

A=Aty +1+ Ax < A(tg+1t+ AD),

where fy and f,,4 are the times at which the growth
starts and ends; A(fp) and A(Z.,4) are the respective
positions on the root axis and I; := A(fenq) — A(fo) is
the length of the section. The successive L-System
string N, represents the next section.

The first expression of the rule corresponds to
the first expression of Eq. 4 with the additional
constraint that growth does not exceed length /.
The second expression describes the case if the
length exceeds /. In that case, a segment with the
remaining length F;_; is produced and the succes-
sor, IV is applied with the correct time overlap ¢ +
At — (teng — ty). Otherwise, local time is increased.
The following parameters and initial values are
needed: S(t,0) := S2(t, I; ty, tona, Ng, A, AX). In
this way, a section is described by a number of
segments with lengths equal to or less than Ax.
Using the section growth rule, the basal zone is
succeeded by the branching zone which is then
succeeded by the apical zone.

Within the branching zone, a predetermined
number of branches are created. The spacing be-
tween the branches is determined by the section
growth rule. The rule allows that branches can
occur at any point along the root axis and not only
at segment edges with fixed segment length. When
new branches are created, they begin to grow as
soon as the apical zone has reached its required
length. The branching zone produces L-System
strings N, which represent branches of the next
topological order; these are then followed by a
successive L-System string Ny, which represents
the apical zone. The production rule for branching
B2 is given by

c<n:D?(0; d., Np)

S24(0, 05 to.c, tend.c» B(c+1), 1, Ax)
c=n:D?(0;d., Np)

SA40, 0; to.c lend.c» Ns, o, AX).

(6)

The parameter ¢ counts how many branches have
already been produced and n denotes the maximal
number of branches. The first expression of the
rule describes that if ¢ < n, then a new lateral
branch N, is produced with the corresponding
time delay d.; D is given in Eq. 2. This time de-
lay is necessary because the new branch can only
start growing when the apical zone has reached
its required length. Furthermore, a section with
the length of the space between the branches is
created with times ), and f.4.. S is given in

B2(c) >
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Eq. 5, and is followed by the branching rule with
increased counter c. The second expression states
that after the last branch is created, the final
section is followed by the successive string N,
which produces the apical zone. All parame-
ters and initial values of the branching rule are
given by B4 (c; Ny, Ny, n, {toi}, {tena i}, {di}, A, AX),
wherei=1...c.

When a new branch is created, first the tur-
tle state, position, heading, width and colour is
stored. The local root tip axis performs a radial
rotation by a uniform random angle B between
—n and 7. Then the tip axially rotates by a pre-
determined angle « (following Pages et al. 1989),
see Fig. 2. The new branch is created with a new
local axis and, finally, the original turtle state is
retrieved. Thus, the string N, has the following
structure:

Ny =[ Ry R, b 1, (7)

where b describes the new branch. The produc-
tion rule of the character b sets up the basal,
apical and branching zone and the delays d. The
local times #, and t,,,, which are needed for rule
(6), are calculated from the growth function A(?);,
which is given by Eq. 3 and is determined by the
parameters r; and k; for every root type i.

We summarise the required model parameters
needed for a root type in Table 1. All parameters
are given by their mean value with a standard

local axis:
h

23 new segment: Rﬁ Ro Fax

Fig. 2 The change of root tip heading due to the rotations
Ry and Rg
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Table 1 Parameters for a root with lateral branches

Mean SD* Description Unit

r Is Initial growth speed [cm/day]

I Ips Length of basal zone [em]

I, Lus Length of apical zone [cm]

Iy Lns Spacing between branches cm]

n Ny Number of branches —

8 s Angle between root [degree]
and predecessor

a a Radius of the root [cm]

C Colour [RGB]

Np Successive branch

* Standard deviation

deviation. For roots with no lateral branches the
parameters I, [,, and n are not needed.

Root systems

In order to describe different kinds of root systems
like tap root systems or fibrous root systems, an
adequate initial L-System string must be created.
In the case of a tap root system, the initial string
consists of a single root tip of a zero order root. In
the case of fibrous root systems, the initial string
is created as follows: We start with a root collar
using a predefined number of root tips ny. We
assume that the roots initially grow away from
the stem in a conical way. The initial angle is
determined by assuming an even distribution of
roots on a cone’s base with radius 7y and height
1 cm. The cone’s tip is positioned at the centre of
the root collar. Thus, the initial parameters of the
L-System model are the number of initial roots
ny, and the cone’s radius ry. To achieve uniform
distribution of the roots on the cone’s base, the
initial axial insertion angles « and initial radial
insertion angle g must be chosen as follows,

o= arctan(\/} 7o), ®)

with random X uniformly distributed between 0
and 1. Random § is uniformly distributed between
—m and 7.

To include effects that arise from gravitation
and soil heterogeneities, more mechanisms have
to be included, which are discussed in the follow-
ing section.
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Tropisms and root tip deflection

The previous explanation shows that the root sys-
tem is described by a large number of segments
of length less than or equal to Ax. In front of
every segment Fa, is a rotation R which is created
when the root axis grows, see Egs. 4 and 5. In the
model, we specify R by two rotations (following
Diggle 1988). The root tip axis rotates radially by
an angle B and then axially by an angle «, see
Fig. 2. In reality, the direction of root growth is
influenced by mechanical as well as plant physi-
ological properties. We include this in the model
by specifying different ways to choose « and B.
In this way, we can simulate root tip response to
mechanical soil heterogeneities as well as various
types of tropisms like gravitropism, hydrotropism
or chemotropism. The specific growth behaviour
can be chosen for every root type.

To choose the angles @ and g in relation to
global parameters, the root tip position x, and
local axis given by h., h,, and h, are needed.
Therefore, an additional set of parameters is in-
troduced for L-System characters describing root
tips. If a root tip is replaced by any production rule

tip — ...RFa, tip, 9)
———

transformation 7'

the set of parameters is updated corresponding to
the transformation 7.

A simple approach to model the effect of soil
particles on the direction of root growth is to mod-
ify the growth direction of the root tip randomly.
In this case we do not consider the positions of the
soil particles explicitly but merely describe their
influence on growth by random variation of the
growth direction. Therefore, we choose a random
radial angle B uniformly distributed from —x to
7 and a random axial angle « that is normally
distributed with mean 0 and standard deviation
o4x. The standard deviation oy, is dependent on
the length of the next segment dx. It can be cal-
culated from a global parameter ¢ that controls
how strong the root’s direction changes per 1 cm
growth. The standard deviation o, is calculated
from o using Gaussian error propagation where

the number of trials is 1/dx (segments per cm).
The standard deviation oy, is given by

oa = Vdx o. (10)

In this way, the expected change of the root axis
does not depend on the spatial resolution. The
root axis is described by segments. The segments
lengths dx are equal to or less than the spatial dis-
cretisation Ax;, whereby the spatial discretisation
can be chosen for every root type i.

Tropisms

An easy way to implement gravitropism is to ran-
domly calculate several rotations and pick out the
rotation that leads to a downward movement of
the root tip. Therefore, we introduce the para-
meter N denoting the number of trials to find
the optimal angles « and g for the rotation R
in order to achieve a downward movement. The
angle « is a normally distributed random number
with mean 0 and standard deviation oy, the angle
B is uniformly distributed from —x to 7. Figure 3
demonstrates how the choice of parameters N and
o influences a fibrous root system, whereby o
describes the expected change of root tip heading
per 1 cm root growth and N controls the trend to
grow downwards. The parameter N can be a real
number. N=1.5 means that the number of trials
can be either one or two.

This approach has two main advantages:
Firstly, the effect of gravitropism does not depend
on the spatial resolution along the root axis. Sec-
ondly, the objective function can be freely chosen;
thus, different tropisms can be realised using this
concept. In the following we give some examples
of objective functions to be minimised:

Gravitropism f = (hy)s
Plagiotropism f=1(hy)s]
Chemotropism, Hydrotropism,

Thermotropism f=—s(xp+dx hy)

(11)

The point x, denotes the position of the root
tip, see Eq. 9. The root tip heading h, is the
direction of growth of the local axis after apply-
ing the rotation R(w, B), see Fig. 2. The scalar
field s(x) contains nutrient concentration, water

@ Springer



184

Plant Soil (2010) 332:177-192

Fig. 3 The influence of
the parameters N and o
on the extent of

gravitropism in a fibrous 0 N=1.0=10°
root system (ny = 30, _"ﬁ\;\
ro = 5) -5 #V 11 "\\ |
a0 / i |
-15
-20
-10 0 10

N=1, g=25°

content, pressure head or temperature. The value
(h,); denotes the z-coordinate of the vector h,.
Minimising the z-component (h,); yields a vec-
tor h, pointing preferably downwards (with a
negative z-component) and therefore describing
gravitropism. Plagiotropism is obtained by min-
imising the absolute value |(h,)s|, which leads to
larger values of |(h,);| and |(h,),| and therefore,
horizontal growth. Chemotropism is described by
maximising s(x, + dx h,); thus, we multiply by
(—1) to obtain a minimisation problem. Objec-
tive functions can be freely combined (e.g.: by
linear combination). In this way, different kinds
of tropisms can be realised for each root type.

Root tip deflection

In many experiments like pot or rhizobox experi-
ments, root growth is spatially bounded (Doussan
et al. 2006). We can bound our root growth simu-
lations by an arbitrary geometry which is given im-
plicitly by a signed distance function. The signed
distance function determines how close a given
point is to a boundary and returns a negative value
if the point is outside the boundary. Additionally,
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this provides a way to include obstacles in our
model.

The following algorithm takes the spatial
boundaries into account. In a first step, the rota-
tion angles @ and B are derived as described in
Section “Tropisms”. If the new root tip position
does not lie within the geometric boundaries, then
a new pair («, B) is chosen as follows: First, only
B is chosen uniformly random between —mr and
 while « is left unchanged. If, after a maximal
number of trials ng, no new valid pair « and B
has been found, « is increased for a small fixed
angle do and the procedure for finding an angle
B is started again. This simple approach leads to a
realistic root behaviour at the boundaries, where
thigmotropism can be observed.

Coupling to a soil model

In many applications, it is important to couple a
root growth model to soil models because they
mutually affect each other (Pierret et al. 2007).
For example, root growth influences the nutrient
distribution and water content of soil, while root
growth itself is dependent on these parameters.
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Fig. 4 Plant and soil
interaction by coupling
the root growth model
with a soil model

€

nutrient concentration,
water content, temperature, ...

Tropism, elongation,
branching strategies

Coupling of the models is achieved by operator
splitting, i.e. by calculating both models alter-
nately with a sufficiently small time step At. The
interaction between root growth and soil proper-
ties is illustrated in Fig. 4.

In our model, the dynamic root growth can be
influenced by soil properties in different ways:
firstly, by specific tropisms (e.g.: chemotropism,
hydrotropism), secondly, by the influence of soil
properties on the root elongation rate and thirdly,
by changing branching strategies. These three
mechanisms describe the key root responses to
soil properties (Hodge 2004; Fitter and Stickland
1991). The soil properties are the dynamic output
of a soil model. The interaction is implemented in
the model as follows.

— A specific tropism can be chosen which de-
pends on soil properties (e.g. water content,
nutrient concentration or temperature). De-
pending on which plant and soil interaction
model is described, combinations of different
tropisms such as hydrotropism, chemotropism
or thermotropism can be considered, see
Eq. 11.

— The root growth function A(f) can be related
to soil properties, which alters the roots’ elon-
gation rate.

— The branching strategy can depend on soil
properties. In this way the density of lateral
branches can vary or the root type of the
branches can change.

>

gobal parameters, spatial
distributions (volume,
surface, ..), 3D geometry

Sink term,
Explicit 3D geometry

The root growth model supplies the time de-
pendent three-dimensional geometry of the root
system and resulting global parameters such as
total length, surface or spatial distributions, see
right part of Fig. 4. Generally it is computationally
too expensive to directly use the explicit three-
dimensional geometry even for the static case. For
this reason, density distributions are used to create
a sink term in the plant and soil interaction model,
which is often described by partial differential
equations and numerically solved by the finite
element method (Doussan et al. 2006; Javaux et al.
2008). The development of a suitable sink term is
crucial and several upscaling techniques are avail-
able (Roose and Schnepf 2008). However, these
methods often use simplifying assumptions, e.g.
that roots are evenly distributed, that soil is homo-
geneous or that roots are functionally equivalent.
Therefore, in general, sink terms need an accurate
validation on an experimental basis.

We emphasise that the Matlab code for the root
growth model is freely available.! Every produc-
tion rule has a Matlab file with a corresponding
name. This allows to adapt existing production
rules and to easily extend the model for new
production rules.

IThe Matlab files can be downloaded at www.boku. ac.
at/marhizo.
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The case of phosphate uptake

In the following, we introduce a simple phosphate
uptake model to which the root growth model can
be coupled. Neglecting convection, we describe
the solute transport by the diffusion equation
(Barber 1995):

O +b)%5 =V (D, 0V ~ fs.0) (12)

where c is the phosphate concentration, ¢ is the
time, f(s) is a sink term for phosphate uptake
by roots, s is the root surface area per volume of
soil, Dy is the diffusion coefficient in water, f is
the impedance factor, 6 is the volumetric water
content and b is the buffer power.

For simplicity, and since the aim of this paper
is to demonstrate the coupling of the L-System
root growth- to a soil model, we assumed that the
volumetric sink term is given by

F,c
K, +c

f) =s (13)
where F,, is the maximal influx into the root and
K, is the Michaelis Menten constant. This simple
sink term will often overestimate uptake. Firstly,
root uptake capacity may decrease with root age.
Assuming an exponential decrease, the sink term
(13) is modified such that

F,c

ﬂ&U=SKm+C

exp(_k tage)’ (14)

where k is the capacity decay constant and #,g is
the average root surface age. Secondly, in the case
of sparingly soluble nutrients such as phosphate,
depletion zones around the root limit uptake.
Roose and Fowler (2004) presented a sink term
for nutrient uptake which considers the creation
of depletion zones around individual roots. These
three cases will be analysed in our simulations.

At the boundaries representing a pot we apply
a no-flux condition:

Vec-n =0, (15)

where the unit normal n is pointing inside the pot.
The initial phosphate concentration is given by

c(x,0) = co. (16)
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Results

We first present the results of the root growth
model only, exemplified for maize. We compared
our L-System root growth model with the continu-
ous model of Roose et al. (2001) where no stochas-
tic processes are included. Then we simulate the
interaction between root system and soil, exem-
plified for phosphate uptake. We investigated spa-
tial properties of a maize root system confined in a
pot and analysed the effect of chemotropism and
gravitropism on phosphate uptake by coupling the
root growth model to a soil model. Finally, sink
terms with different complexities were derived
from the simulated root architecture and their
effect on phosphate uptake was analysed.

Root growth and architecture

The continuous root growth model of Roose et al.
(2001), that is based on a population growth
model, was used as a benchmark problem. For
model comparison, we parametrised the L-System
model such that it had exactly the same behaviour
but neglected root mortality. The total root length
of every root order over 100 days is given in Fig. 5.
The dynamic behaviour of the L-System model is
exactly the same as in the growth model given by
Roose et al. (2001).

Next we added spatial parameters determin-
ing the angle between branch and successive
branch §y = 63°, 8,0 =15, §; =68° and &, =3

14000

12000¢ total

10000 |

8000 .-

length (cm)

6000 .

4000 .

2000¢ ST 0™ order

0 20 40 60 80 100
time (days)

Fig. 5 Total root length of each order of a maize root
system with 25 initial roots
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(Shibusawa 1994). To create a more realistic
three-dimensional representation of the root sys-
tem, we added a standard deviation of 10% to
all root system parameters (except for §). We
also included gravitropism, choosing Ny ; = 1.5,
N, =0 and oy = 20° cm™!, 0y, = 40° cm™!, see
Section “Tropisms and root tip deflection”. The
fibrous root system was created with 25 ini-
tial roots, ny = 25, starting to grow into a cone
with base radius, oy = 5, at the same time, see
Section “Root systems”. The resulting root system
after 25 days is presented in Fig. 6a. This three-
dimensional representation of the 25 days old
root system was analysed for root length fraction
and root surface densities, see Fig. 6b, c. Figure
6¢c shows the mean root surface area density in
volume elements of 1 cm? along the y-axis. Such
densities can be the basis for coupling root growth
to a soil model.

Phosphate uptake from a pot

Having obtained the root architectural traits from
our root system model, these results were inte-
grated into a soil model to analyse phosphate
uptake. The soil model is given by Eqs. 12-16. The
root system grew in a pot with a bottom radius
of 3 cm, a top radius of 5 cm and a height of
10 cm. Model parameters were taken from liter-

ature and represent typical values for phosphate
uptake from soil by maize (Tinker and Nye 2000;
Fohse et al. 1991). The initial concentration ¢y was
assumed to be 10~* umol cm~3, impedance fac-
tor f = 0.3, water content § = 0.4, buffer power
b = 100, diffusion coefficient for phosphate D; =
1073 cm? s~!, maximal influx F,, was assumed to
be 2.76- 1077 umol cm~? s~!' and the Michaelis
Menten constant K,,, = 4 - 107* umol cm 3.

The phosphate uptake was dependent on the
root surface area s per volume of soil. In every
time step At of 1 day the values of s were deter-
mined from the root growth in volume elements
of 0.125 cm®. The overall simulation time was
50 days. We used the finite difference method to
obtain a numerical solution of the solute transport
model.

The first set of simulations studied the effect of
different tropisms on phosphate uptake. Chemo-
tropism was included as described in Section
“Tropisms” with Ny =5, 0p=20°, 01=40°. Gravit-
ropism was considered with the same parameters
as in Fig. 6a. Uptake was calculated with the
simple sink term given in Eq. 13. In order to
create a suitable root system for the pot size, initial
root system parameters were ngp =5 and ry = 2.
The resulting root systems are shown in Fig. 7a,
and c. The nutrient concentrations in the pot are
given in Fig. 7b, d. The root system including

0 s
of T——oo
5 = s
-5} e w
| -} E‘
10| i 10 5 I g
| ('f: | o
f —_ < %
1 . g s} = E : g
E S ) =
o <= i~ Z
~ o 2 20 e - —_
= 2
20 A
-25 ¢ o
{ - B
30} s =
& ]
-asf
-35
90 5 ) 5 0 %005 001 002 0025 ;
(cm) root length fraction X (cm)

(a) Maize root systema fter 25 days
tion

Fig. 6 Analysis of a simulated maize root system

(b) Depth dependent root length frac-

(c) Mean root surface density along they-
axis
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Fig. 7 Maize growing in a
pot with different
tropisms: Root
distribution (a) and
corresponding phosphate
concentration (b) in the
case of chemotropism )
(No,1 =5, 00=20°, .
01=40°). Root
distribution (¢) and
corresponding phosphate o
concentration (d) in the

case of gravitropism
(No.1=1.5,00=20°,

01 =40°)

(c) Roots

chemotropism was more evenly distributed due to
initially homogeneous phosphate concentration.
This results in even depletion of the soil in the pot.
The root system with pronounced gravitropism
had a higher root density at the bottom of the pot.
Hence the soil was less depleted at the top than at
the bottom.

The cumulative phosphate uptake by the two
root systems is given in Fig. 8. The root system
including chemotropism had an 82% higher cumu-
lative uptake after 50 days under the chosen sets
of model assumptions. This result is in agreement
with Jackson and Caldwell (1996) who estimated
an increase in phosphate uptake due to root pro-
liferation in nutrient rich patches up to 70%.

The second set of simulations studied the effect
of the different sink terms described in Section
“Coupling to a soil model” on phosphate uptake
in the case of chemotropism. The resulting cu-
mulative phosphate uptake is shown in Fig. 9. As
expected, the simple sink term yielded the largest
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uptake. When root uptake capacity decreased
with age, cumulative uptake was 88% of the first
case. We chose the capacity decay constant k to
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Fig.8 Cumulative phosphate uptake from a pot as effected

by chemotropism and gravitropism due to the simple sink
term given in Eq. 13



Plant Soil (2010) 332:177-192

189

4 -
—simple sink term
3.5 age dependent root uptake
- - -individual depletion zones
)
g e
El -
o 2.5¢ P
L -
5] .
5 2f
) e
Z ‘.
5151
: .
3 Ir ot
051 L7
0 - 1 1 1 J
0 10 20 30 40 50

time (days)

Fig.9 Cumulative phosphate uptake from a pot as effected
by chemotropism comparing three different sink terms
described in Section “Coupling to a soil model”

be 0.5 days~! such that uptake approaches 0 after
10 days (Ernst et al. 1989). When the individual
depletion zones around roots were considered us-
ing the model by Roose and Fowler (2004), up-
take was 79% of the first case. This indicates that
the consideration of individual depletion zones
is important, in particular for sparingly mobile
nutrients.

Discussion

L-Systems are a common tool in plant architec-
ture modelling (Prusinkiewicz and Lindenmayer
1990). They have also been used for root archi-
tecture modelling, although mainly in the context
of visualisation (Prusinkiewicz 1998). We realised
an interface in our L-System model which en-
ables coupling the three-dimensional root growth
model to any arbitrary soil model. Furthermore,
the modular implementation in Matlab allows to
define new production rules as required. Most
dynamic root system models are based on sim-
ple production rules that include emergence of
new main axes, growth of the axes and branch-
ing (Doussan et al. 2003). L-System formalism is
most suitable to describe such production rules.
We explicitly stated our production rules and pro-
vided the corresponding Matlab files to increase
reproducibility.

The way tropisms were implemented in our
model differs from previous implementations. The
most common approach is to compute the new
growth direction by adding vectors denoting the
initial growth direction, mechanical constraints
and gravitropism (Pages et al. 1989). Tsutsumi
et al. (2003) compute the new growth direction in
their two-dimensional model based on differences
of elongation rates at the elongation points (lo-
cated opposite to each other just behind the root
tip). In our implementation, the new direction was
computed by random minimisation of an objec-
tive function. Tropisms were realised by choosing
appropriate objective functions. The advantages
of this approach are that tropisms can be easily
described, see Eq. 11, and that results do not
depend on the spatial resolution.

We used a maize root architecture to demon-
strate basic features of the proposed model. Maize
root lengths found in literature strongly vary de-
pending on maize cultivar and environmental con-
ditions. The presented results lie well in this range
and do for example quantitatively correspond to
the nitrate inefficient maize breed Wu312 de-
scribed in Peng et al. (2010).

Root water and nutrient uptake based on three-
dimensional root architecture models is com-
monly included in soil models via sink terms (e.g.
Clausnitzer and Hopmans 1994; Somma et al.
1998; Dunbabin et al. 2002, 2006; Doussan et al.
2006; Javaux et al. 2008). Those sink terms de-
pend on root length or root surface densities. The
spatial resolution of the soil model for which the
densities are computed is often 1 cm?. In our sim-
ulations we used half the edge length, i.e. the grid
size was 0.125 cm?. However, in our model, the
spatial resolution can be freely chosen by the user
depending on the scale of the problem. Ge et al.
(2000) use the SimRoot model (Lynch et al. 1997)
to simulate phosphate acquisition efficiency in de-
pendence on gravitropism. Contrary to our model,
this root architecture model is not coupled to a
dynamic soil model. It uses the diffusion length
of phosphate in soil, L = 24/D.t, where D, is the
effective diffusion coefficient, in order to estimate
the depletion volume for a root system. No other
mechanisms such as root responses to phosphate
concentration are considered. This approach pro-
vides an estimate for the potential phosphate
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uptake under the assumption that diffusion is the
dominant mechanism in the soil. Somma et al.
(1998) base their sink term for nutrient uptake
on the root surface density and the local averaged
nutrient concentration. Depletion around individ-
ual roots is neglected. We used a similar approach
in the ‘simple’ and ‘age dependent’ sink term
but also provided an example where individual
depletion zones were taken into account. In our
example water transport was neglected. However,
our L-System model was designed in such a way
that it can be coupled to models including water
transport, e.g. based on the Richards equation as
used by Somma et al. (1998). This would enable
to study hydrotropism. Advances with regards to
additional rhizosphere traits have been made by
Dunbabin et al. (2006) by simulating the effects
of phospholipid surfactants on water and nutri-
ent uptake. In our example, we did not consider
exudation. However, due to the flexibility of our
approach, the root growth model can easily be
coupled to soil models including exudation. The
sink term for nutrient uptake in Dunbabin et al.
(2002, 2006) is based on plant demand as well
as nutrient concentration at the root surface ac-
cording to the Baldwin, Nye and Tinker equa-
tion. Thus, depletion around individual roots is
approximated with a steady rate solution. This
is a similar approach like our sink term which
considered individual depletion zones based on
an approximate analytic solution to the dynamic
model (Roose et al. 2001).

In this work we exemplified the coupling of
the root system to a soil model with a model for
phosphate uptake by a maize root system from
a pot. We considered root response via chemo-
tropism as described in Section “The case of phos-
phate uptake” and via root responses to barriers
as described in Section “Root tip deflection”. We
compared three different sink terms for nutrient
uptake that were based on the root growth model.
We showed that neglecting the development of
depletion zones around individual roots is likely
to overestimate uptake, in particular for nutri-
ents with low mobility such as phosphate. The
comparison of the different sink terms indicated
that it may be difficult to distinguish between age
and depletion effects experimentally in soil. Fur-
thermore, we showed that chemotropism strongly
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increased phosphate uptake from a pot which is
in good agreement with Jackson and Caldwell
(1996). As demonstrated by Ge et al. (2000), this
is due to overlapping depletion zones in the case
of gravitropism.

A comparison to measurement results from
literature on phosphorus uptake of maize in pot
experiments required consideration of the soil vol-
ume, as well as the growing duration of the maize
crop. We converted the results from literature
using the pot volume of 509.5 cm? as taken for our
simulation. Data range from 28.74 to 51.66 pumol
after 32 days (El Dessougi et al. 2003), and 33.90
to 83.31 umol after 45 days (Mujeeb et al. 2008)
phosphate root uptake depending on fertiliza-
tion level and fertilizer type. These amounts are
higher, but in a similar order of magnitude, as
compared to our model outputs. A lower uptake
is anticipated considering that we described a low
phosphate scenario.

The main benefit of our approach in Matlab
is that the L-System model can be easily cou-
pled to arbitrary soil models. Thereby various
rhizosphere traits such as nutrient and water up-
take and exudation can be modelled in response
to root system development and vice versa. The
possibility to let the root system grow in a
confined environment will be useful for compar-
ison to experimental data from pot or rhizotron
experiments.

Conclusions

We presented a new dynamic root architecture
model based on L-Systems. The objective of this
new model was to realistically represent a three-
dimensional root system that was subsequently
coupled to a soil model in order to describe the
dynamic interactions of both the root system with
soil processes (water, solute transport) as well as
local soil properties with the rooting pattern (root
plasticity, tropism). L-systems provide a compact
description of dynamic root system models. Our
implementation of the model into Matlab makes
it accessible to a wider public and encourages its
development with new features. Furthermore it
facilitates coupling to different soil models.
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We exemplified the proposed root growth
model and its interaction with a soil model by
simulating phosphate uptake of a maize plant
in a confined growth environment (pot exper-
iment). This example demonstrated that our
approach provides a convenient tool to create
feedback loops between root system and soil.
Thus it is possible to analyse both root effects on
soil processes via a sink term derived from the
architecture model as well as soil property impacts
on the root architecture dynamics via tropisms.
We implemented chemotropism and were able to
clearly reveal substantial effects of root architec-
ture and its interaction with the soil environment
on plant nutrient use. Chemotropism increased
phosphate uptake by as much as 82% compared to
a root system governed by gravitropism only. We
compared three different sink terms and analysed
their effect on calculated phosphate uptake and
found that considering individual depletion zones
around each root reduces calculated uptake
significantly.

In contrast to existing root growth models, our
model can be freely coupled to any soil model
and new sink terms can be easily implemented as
required. With this approach, we hope to facilitate
model development and increase reproducibility
of simulation studies.
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Appendix

Turtle graphics provides an easy way to create
vector graphics using a relative cursor known
as turtle. An L-System string is graphically rep-
resented using turtle graphics. Some characters
of the string represent graphical commands. The
known commands are given in Table 2, other
characters are ignored. The turtle state consists of
the turtle’s position x,, the heading or local axis

Table 2 Turtle commands (after Prusinkiewicz and
Lindenmayer 1990)

Letter Description Parameters
F Draw a segment Length
# Width of the following segments Width
C Colour of the following segments Color
R, or 4+, — Turn left or right Delta
Rgor\,/ Rollleft or right Delta
&, Pitch down or up Delta
| Turn around —
L1 Stores and retrieves the turtle —
state

of the turtle hy, h,, h;, a line colour and the line
width.
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