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Soil factors affecting selenium concentration in wheat grain
and the fate and speciation of Se fertilisers
applied to soil
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Abstract UK crops have a low selenium (Se) status,
therefore Se fertilisation of wheat (Triticum aestivum
L.) at 10 field sites was investigated and the effect on
the content and speciation of Se in soils determined.
Soil characterisation was carried out at each field site
to determine the soil factors that may influence wheat

grain Se concentrations in unfertilised plots. Soil
samples were taken after harvest from each treatment
to determine the fate and speciation of selenate
fertiliser applied to soil. Wheat grain Se concentra-
tions could be predicted from soil Se concentration
and soil extractable sulphur (S) using the following
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regression model: Grain Se=a+b(total soil Se)+c
(extractable soil Se) - d(extractable soil S), with 86 %
of the variance being accounted for, suggesting that
these properties control Se concentrations in grain
from unfertilised plots. Extractable soil Se concen-
trations were low (2.4 – 12.4 µg kg−1) and pre-
dominantly consisted of selenite (up to 70 % of
extractable Se) and soluble organic forms, whereas
selenate was below the detection limit. Little of the
added Se, in either liquid or granular form was left in
the soil after crop harvest. Se fertilisation up to
20 g ha−1 did not lead to a significant Se accumu-
lation in the soil, suggesting losses of Se unutilised
by the crop.

Keywords Soil . Selenium . Selenium speciation .

Residual effect . Biofortification .Wheat

Introduction

Selenium (Se) is an essential micronutrient for
humans and animals; needed for hormone regulation
and the immune system. However, the intake of Se by
the UK population is below the reference nutrient
intake, which is a cause for concern (Broadley et al.
2006). An important source of Se in diets is wheat
grain and its products, which contributes 22 % of
dietary Se in the UK (Rayman 2000). However
concentrations of Se in European wheats are generally
low (Hawkesford and Zhao 2007), likely to be caused
by low Se supply from the soil.

An important factor in soil Se supply to plants is
the Se content of parent rocks (Spadoni et al. 2007),
which controls soil Se concentrations. Excessive soil
Se concentrations (>3 mg kg−1) occur in areas of
North America, China and Ireland, whereas deficient
soil Se concentrations (<0.125 mg kg−1) occur in
Siberia, New Zealand and the Keshan area of China
(Broadley et al. 2006). Total Se concentrations in UK
soils range between 0.1 – 4 mg kg−1 with 95% of the
samples containing <1.0 mg kg−1 (Broadley et al.
2006). Another important factor is plant availability
as Se bioavailability generally decreases with de-
creasing pH and the increased content of organic
matter, clay minerals and iron hydroxides (Gissel-
Nielsen et al. 1984). Furthermore, the interactions of
Se with soil components are dependent on Se
speciation; in aerobic soils, inorganic Se exists as

either selenite or selenate. Selenite, the dominant Se
species under moderate redox soil conditions
(Elrashidi et al. 1987), is strongly adsorbed by iron
and aluminium oxides and hydroxides, resulting in
limited plant availability and a low potential for
leaching. Selenate is found in soils with high redox
conditions (Elrashidi et al. 1987) and is weakly
adsorbed by electrostatic forces of attraction (Jackson
and Miller 1999), resulting in high plant availability
and potential for leaching. It is therefore important to
identify the factors controlling Se bioavailability in
areas where concentrations of Se in plants are
considered to be low for human and animal nutrition.

Se fertilisation of crops has been shown to signif-
icantly enhance Se concentrations in crops grown in
soils with low plant available Se concentrations.
Finland has successfully applied agronomic biofortifi-
cation with Se since 1984, with the annual input of Se
fertiliser dose now being 10 g Se ha−1 (Hartikainen
2005). However, the fate of Se fertiliser in Finnish
soils is not accounted for, considering <20 % of
applied selenate is taken up by the crop (Keskinen et
al. 2009). It is assumed that selenate is reduced and
immobilised in the soil (Keskinen et al. 2009), which
is supported by evidence of a limited residual effect.
For example, the application of 10 g Se ha−1 selenate
to cereals grown in a Canadian soil was found to have
a negligible residual effect after 1 year (Gupta 1995).
However, to monitor the fate of Se fertiliser in soil
directly, changes in the concentration and speciation
of Se in soil should be determined.

The aim of this study was to investigate the role of
soil properties in influencing Se concentration in
wheat grain and the fate and speciation of Se
fertilisers in the soils. Crop responses to Se fertilisa-
tion are reported in a companion paper (Broadley et
al. 2010). The soils of the experimental sites had a
wide range of physico-chemical properties, and
different Se fertilisation regimes. Soil characterisation
and changes in Se concentrations and speciation
before and after Se fertilisation were determined.

Materials and methods

Treatments and experimental design

Full details of experimental design, treatments and
wheat (Triticum aesticum L.) cultivation are described
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in a companion paper (Broadley et al. 2010). Briefly,
there were two types of experiments testing either
liquid or granular Se fertilisation. For the liquid
fertilisation experiment (LF series), Se was applied
at doses 0 – 100 g Se ha−1 as Na2SeO4 at four field-
trial sites. For the granular fertilisation experiment
(GF series), Se was applied in commercial granular
fertiliser forms, using Selcote Ultra® (BaSeO4:
Na2SeO4) and Top Stock® at 10 g Se ha−1 at six
field-trials sites.

Soil sampling

Soil samples were collected from all of the field trials
in 2006 and 2007 to investigate the influence of soil
properties on the variation in crop Se uptake. Samples
were collected at 2 time points during each year; just
before Se addition to determine soil properties, and
after wheat harvest to determine the fate of Se
fertilisers in soil. The protocol for soil sampling
before Se addition (late March – early April) was to
collect 10 soil cores (in a W shape) and bulk into one
sample from each block (n=4), to provide represen-
tative samples for characterisation of soil properties.
To investigate changes down the soil profile, the soil
cores were taken from three depths, 0–30, 30–60 and
60–90 cm. The protocol for soil sampling after wheat
harvesting (August – September) was to collect five
soil cores and bulk into one sample from each of
selected plots (n=24). All plots were sampled from
the granular trials, and in the liquid trials, the zero,
intermediate and high Se doses were chosen. All soil
samples were air dried at room temperature (20°C) in
drying cabinets. Stones and roots were removed and
air dried soils were sieved (<2 mm) using a roller
mill. A portion of each soil was finely ground
(< 0.45 mm) using an agate ball mill (Retch PM
400 mill). Sieved soils were stored in sealed poly-
thene bags at room temperature and finely ground
soils were stored in 10 ml screw-top glass vials at
room temperature before analysis.

Soil properties

Soil properties were determined using the soil
samples taken before Se addition. Available phospho-
rus (P) was determined by using a sodium bicarbonate
extraction (Olsen P method). Soil pH was determined
using a calibrated pH meter (ratio 10 g soil: 25 ml

deionised H2O). Total nitrogen (N) and carbon (C)
were measured using the combustion method (LECO
CNS 2000). Particle size analysis was determined
gravimetrically.

Total S and Se concentrations in soil

Total soil Se and S concentrations were determined in
all soil samples taken before Se addition and after
harvest. Finely ground soil (ca. 0.25 g) was digested
with aqua regia in a heating block (McGrath and
Cunliffe 1985). For quality assurance, analytical
blanks, certified reference material (NIST 2711
Montana soil) and a sample repeat in every 10
samples were used. Concentrations of Se were
determined using Inductively Coupled Plasma —
Mass Spectrometry (ICP-MS) (Agilent7500ce Octo-
pole Reaction System, Palo Alto, CA, USA). The
sample introduction system consisted of a micromist
glass concentric nebuliser, quartz scott type double
pass spray chamber at 2°C, and nickel sample (1 mm)
and skimmer (0.4 mm) cones. Operating parameters
were optimised daily using a tuning solution contain-
ing 1 µg l−1 Ce, Li, Te and Y. Other instrument
conditions were RF forward power of 1550 W,
sample depth 8.0 mm from load coil, carrier gas flow
rate 0.89 l min−1, spray chamber 2°C. Hydrogen
(4 ml min−1) was used as the reaction gas to eliminate
Ar polyatomic interferences on 78Se and 80Se which
were used for Se quantification. An internal standard
(500 µg l−1 Ge) was used to correct for signal drift.
External calibration was performed using external
standards prepared from 1000 mg kg−1 single element
stock solutions in 5% HNO3. Concentrations of S
were determined by Inductively Coupled Plasma —
Atomic Emission Spectrometry (ICP-AES) (ARL,
Vallaire, Ecublens, Switzerland). The analytical pro-
cedures gave satisfactory values for the standard
reference material NIST 2711, Montana soil; Se
1.42±0.03 mg Se kg−1 (certified value 1.52 ±
0.14 mg Se kg−1); S 0.418±0.02 mg S kg−1 (certified
value 0.42±0.01 g S kg−1).

Extractable S and Se concentrations in soils

Extractable S and Se in all soil samples taken before
Se application and after harvest were determined
using KH2PO4 (0.016 mM, pH 4.8) extractions (ratio
10 g dry weight soil : 30 ml KH2PO4 w/v), (Zhao and
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McGrath 1994), and the concentrations of Se and S
were determined by ICP-MS or ICP-AES as de-
scribed above.

Speciation of Se in soil extracts

Selected KH2PO4 extracts were further analysed to
determine Se speciation. A portion (1.5 ml) of
KH2PO4 soil extract was filtered (0.45 µm) into a
screwtop borosilicate glass vial for Se speciation
analysis by LC-ICP-MS as described by Stroud et
al. (2009). The LC-ICP-MS interface consisted of a
minimal length of polyetheretherketone (PEEK) tub-
ing. Chromatographic separation was carried out
using an Agilent 1100 series HPLC system (Palo
Alto, CA, USA). The anion exchange analytical
column was a Dionex Ion Pack AS14 (9 µm particle
size, 4 mm×250 mm id), fitted with a guard column
(AG14). The mobile phase was 6 mM Na2CO3 (pH
9.5) premixed with 2% (v/v) methanol to improve
sensitivity. The injection volume was 50 µl and the
mobile phase was delivered at 1 ml min−1 isocrati-
cally. The identification of Se species was determined
by comparison with retention times of standard
compounds. Quantification of Se species was deter-
mined using external calibration curves and peak area
measurements. Duplicate samples were measured
with calibration, reagent blanks and calibration stand-
ards analysed at the start of the run were repeated at
the end of the run for quality control.

Selenium concentrations in wheat grains
in unfertilised control plots

See the companion paper (Broadley et al. 2010) for
grain sampling methodology and Se analysis. Sam-
ples from unfertilised control plots were used (n=4
per field trial).

Data analysis

All soil Se and S concentrations are reported on a
dry weight basis. Genstat (2007, 10th addition,
VSN International Ltd., UK) was used for all
statistical analysis. Analysis of variance was carried
out to assess the significance of the treatments and
multiple linear regression was used to analyse the
relationship between soil properties and grain Se
concentrations.

Results

Soil properties of the field sites

Soil characteristics from the field trials are shown in
Table 1. The trials were conducted on field sites
varying in soil textures, from silty clay to sandy loam.
Topsoil properties varied at each site, with the range
of extractable P 16.6 – 97.4 mg kg−1; soil pH 5.56 –
8.0; total N 0.16 – 0.22 %, total C 1.93 – 4.28 %. One
soil sample was taken to represent the field sites GF5
and LF3 as they had the same geographical location.
Also included is the Rothamsted site which was used
to investigate the impact of S and Se fertilisation on
wheat grain Se concentrations (Stroud et al. 2010);
the data for the control plots of this experiment were
included for regression analysis.

Total and extractable S and Se concentrations in soils

Before application of Se fertilisers in GF or LF trials,
total Se concentrations in the topsoil ranged between
245 – 590 µg Se kg−1, with LF2 having the highest
total soil Se concentration (Table 1). Among the 10
experimental sites, seven sites (LF1, LF2, LF4, GF1,
GF2, GF3, GF5) showed a decreasing total Se
concentration down the soil profiles (0 – 90 cm),
whereas the other three sites (GF5, LF3 and Roth-
amsted) showed no clear trend. Extractable Se (by
potassium dihydrogen phosphate) accounted for 1.1 –
3.4% of total Se. Generally, the GF trials had
extractable Se concentrations that decreased down
the soil profiles, whereas no change down the soil
profile was found in LF trials.

Total S concentrations in the topsoil ranged from
313 to 816 mg S kg−1, with GF5 and LF3 having the
highest concentration. GF5 and LF3 also showed a
significant increase in total S concentration down the
soil profile to 2060 mg S kg−1, whereas the other sites
showed a decrease in total soil S down the soil
profile. Extractable S (by potassium dihydrogen
phosphate) generally decreased down the soil profile.

Influence of soil properties on grain Se concentrations
from control plots

In all but one field trial (LF2), the control plots (i.e.
not receiving Se fertiliser) yielded grain Se concen-
trations ranging between 15.5 – 43.8 µg kg−1. These
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values reflect typical UK grain concentrations; in a
country-wide survey, Adams et al. (2002) showed that
88 % of UK wheat grain samples contain <50µg Se
kg−1. The influence of soil properties on grain Se
concentrations was investigated. Soil profile (0 –
90 cm) data were weighted with relation to the wheat
root distribution. The proportions used to calculate
weighted soil property data were based on the root
distribution of a mature wheat plant: 70 % in the
topsoil (0 – 30 cm), 25 % at 30 – 60 cm and 5 % at 60
– 90 cm (Hoad et al. 2001). Multiple linear regression

analysis was applied to identify soil properties that
could be used to fit a model to describe grain Se
concentrations. Initial multiple linear regression in-
cluded the soil properties measured in the spring
samples collected before Se additions: particle size
analysis, available P, pH, total N, total C, extractable
S and Se, and total S and Se. Homogeneity of
variances was checked and no log transformations
were required. Of all variables tested in the multiple
regression analysis, the combination of extractable S
and total Se resulted in a highly significant regression
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model that explained 70.5 % of the variance in grain
Se concentration. The model obtained was:

Gain Se concentration mg kg�1
� �

¼ 7:66þ 0:0954� total soil Se mg kg�1
� �� �

� 1:530� extractable soil S mg kg�1
� �� �

;

R2
adj¼ 0:70; p ¼ 0:006; SE ¼ 5:09; n ¼ 10

ð1Þ

Figure 1a shows the fit between the observed and
fitted grain Se values using regression model [1].

The inclusion of extractable Se in the model [1]
resulted in a highly significant regression model that
explained 86.1% of the variance in grain Se concen-
tration. The model obtained was:

Grain Se concentration mg kg�1
� � ¼ �10:32

þ 0:1085� total soil Se mg kg�1
� �� �� 1:916

� Extractable soil S mg kg�1
�� �þ 2:515

� Extractable soil Se mg kg�1
�� �

;R2
adj ¼ 0:86;

p ¼ 0:004; SE ¼ 3:46; n ¼ 10

ð2Þ

Figure 1b shows the fit between the observed
and fitted grain Se values using this regression
model.

Soil and grain data from site LF2 were not
included in regression analysis due to the very high
grain Se concentration of 183µg Se kg−1, which is
atypical of UK wheat (Adams et al. 2002). This
particularly high grain Se concentration cannot be
explained by the soil properties that were measured,
indicating that unknown environmental factors or
experimental error (such as liquid fertiliser spray
drift) was the cause. It was considered to be
appropriate to exclude this data point in order to
investigate soil factors affecting typical UK grain Se
concentrations.

Fate and speciation of Se fertiliser in soil

Soil samples were taken after harvest and extractable
and total soil Se concentrations were compared
between the control and fertilised plots in both the
LF and GF trials, in order to determine the fate of Se
fertiliser in soil. Figures 2 and 3 show the total soil Se
concentrations in the control and Se-treated plots of
each GF trial or LF trial respectively. No significant
(p>0.05) differences between the control and treated
plots in total soil Se concentrations were found in
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either the GF or LF trials down the soil profile (0 –
90 cm). Figures 4 and 5 show extractable soil Se
concentrations in the control and treated plots in each
GF and LF trial, respectively. In terms of extractable Se
concentrations, no significant differences between the
control and treatment plots were found for any GF or LF
trials except for LF3. Only LF3 showed a statistically
significant (p=0.03) increase in extractable Se concen-
trations, with an increase of 4µg kg−1 Se in the 50 g Se
ha−1 plots compared with the control plots.

Selected potassium dihydrogen phosphate extracts
were analysed to determine the concentration and
speciation of inorganic Se (Table 2). Selenate was not
detectable in the soil extracts at any sampling time
(before fertilisation and after harvest). Selenite was
the inorganic species found at all depths, at all sites in
the LF and GF trials. The concentrations of selenite in
the topsoil (0 – 30 cm) ranged between 0.94 – 5.36µg
Se kg−1 soil, accounting for 13 % – 70 % extractable
Se. The remainder of extractable Se was likely to be
soluble organic Se (Stroud et al. 2009).

Discussion

The total Se concentrations (0.2 – 0.6 mg kg−1) in the
topsoil (0–30 cm) at the 10 field sites are generally
low and in line with the British Geological Survey
which has identified that >95% of UK soils have <
1 mg kg−1 Se (Broadley et al. 2006). Whilst these
soils have total Se concentrations similar to the world
average of 0.4 mg kg−1 (Fordyce 2005), the concen-
trations of Se in wheat grain were below the 50 –
100 μg Se kg−1 level required for adequate human
nutrition (Gissel-Nielsen et al. 1984) in all but one
field trial. It thus appears that soil Se bioavailability
was an important factor controlling Se concentrations
in wheat grains at these trial sites.

Martens and Suarez (1997) used phosphate
(KH2PO4) extractions to estimate plant available Se
in soil. The proportion of total Se which was
extractable with KH2PO4 from topsoils in this study
was low (1.1 – 3.4 %) and similar to other findings
for low Se soils. Finnish agricultural soils are reported
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to have an ammonium-disodium-EDTA- extractable
Se concentration of up to 5 % total Se (Sippola 1979).
Ylaranta (1983) found a 4.3 % extractable Se fraction
in mineral soils using hot water. Further, Ylaranta
(1983) reported extractable soil Se concentrations of 2
– 27 µg kg−1, concentrations considered to be too low
to produce crops with sufficient Se for human
nutrition (Gissel-Nielsen et al. 1984). This agrees
with the findings of this study both for extractable Se
(<12.4 µg Se kg−1) and grain Se (<50 μg Se kg−1).

Soil properties are an important factor controlling
Se bioavailability to plants; therefore, multiple regres-
sion analysis was applied to help identify soil factors
that may influence grain Se concentrations in control
plots of both GF and LF trials. Total soil Se
concentrations and extractable soil S concentrations
together could predict grain Se concentrations in the
field trials reasonably well (Fig. 1a). Inclusion of soil
extractable Se further improved the regression model
(Fig. 1b). These findings are based on our field trials
and may not be applicable to other regions in the
world where Se bioavailability may be influenced by
other soil factors. The coefficients for both total and

extractable Se were positive, indicating their positive
influence on the Se supply to plants. In contrast, the
coefficient for extractable S was negative, which is
consistent with the antagonistic effect of sulphate on
selenate uptake by plants (Adams et al. 2002; Bell et
al. 1992; Broadley et al. 2006; Hopper and Parker
1999; Terry et al. 2000). This effect also implies that
the main form of Se taken up by wheat is selenate,
because uptake of selenite is not inhibited by sulphate
(Hopper and Parker 1999; Li et al. 2008). Yet,
surprisingly (considering the high soil pH), selenate
was not detectable in the phosphate extracts from any
of the soils in our trials. Selenite was detectable in all
soils, and it is likely that some soluble organic Se was
also present in the extracts (Stroud et al. 2009), as the
concentration of total soluble Se was greater than
selenite (Tables 1 and 2). It is known that selenite is
strongly adsorbed by soil minerals and thus has a low
bioavailability to plants, whereas selenate is much
more bioavailable (Gissel-Nielsen et al. 1984). It is
possible that selenate present at below the detection
level of LC-ICP-MS may be sufficient to explain the
uptake by plants in the control plot. Total Se uptake
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by wheat crops from the control plots was very small
(0.5 – 1.0 g ha−1), which is equivalent to concen-
trations of Se in the topsoil (0–30 cm) of 0.13 –
0.25 µg kg−1 (assuming a bulk density of 1.3 g cm−3),

or 0.04 – 0.08 µg kg−1 if roots access available Se
from the 0–90 cm depth. Soil extractions result in a 3-
fold dilution, and low concentrations (<0.05 µg l−1)
are below or bordering the detectable limit of the LC-

Trial Sampling time Treatment Soil depth (cm) Selenite
(µg kg−1)

GF1 After harvest Control 0 – 30 5.36±1.31

GF1 After harvest Control 30 – 60 5.43±0.63

GF1 After harvest Control 60 – 90 3.79±10.2

GF1 After harvest Selcote Ultra® 0 – 30 1.88±1.04

GF1 After harvest Top Stock® 0 – 30 2.21±0.52

LF1 After harvest 0 g Se ha−1 0 – 30 3.57±0.92

LF1 After harvest 1 g Se ha−1 0 – 30 3.71±0.94

LF1 After harvest 10 g Se ha−1 0 – 30 3.67±0.27

LF1 After harvest 50 g Se ha−1 0 – 30 4.32±0.67

GF5 Before fertilisation Site average 0 – 30 2.21±0.00

GF5 After harvest Top Stock® 0 – 30 1.1±0.02

LF4 Before fertilisation Site average 0 – 30 0.94±0.00

LF4 After harvest 50 g Se ha−1 0 – 30 1.30±0.40

Table 2 Se speciation in
0.016 M KH2PO4 soil
extracts of selected samples
(mean±SE)
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Fig. 5 Extractable Se concentrations in soil after harvest in field trials receiving liquid Se fertiliser application. Data are means±SEs
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ICP-MS method used. If the above hypothesis is
correct, it also means that the main reason for low Se
in UK crops is due to the main forms of Se in soil
being largely unavailable to plant uptake.

Fertilisation of wheat crops with Se is a proposed
solution to the low Se status of UK crops (Broadley et
al. 2006), with crop recovery of selenate fertiliser
ranging between 20 – 35 % (Broadley et al. 2010).
This means that a large proportion of Se fertiliser was
not utilised by the current crop. Therefore, total and
extractable Se, and Se speciation in soil was deter-
mined at each field site to determine the fate of
selenate fertilisation. The fertiliser addition caused no
significant increase in the total Se concentration in
soil at any of the field sites. However, this is readily
explained because this level of increase would be
difficult to detect in the analysis of 200 – 600 µg kg−1

total Se in soil. An addition of 10 g Se ha−1 is
equivalent to adding 2.6 µg Se kg−1 in the topsoil (0 –
30 cm, assuming soil bulk density of 1.3 g cm−3), of
which 30 % was taken up by crop, leaving only
1.8 µg kg−1 in soil. Changes in soil Se concentrations
would be more detectable in the extractable Se
fraction (5 – 12 µg kg−1) if most of the Se fertiliser
remained in this fraction. In 9 out of 10 experiments,
no increase in extractable Se was detected in the field
trials. This is likely to be caused by the relatively
small addition of Se through fertilisation and that
some of the 1.8 µg kg−1 Se input could be leached
down the soil profile. This, together with soil
heterogeneity makes it difficult to detect any increase
in soil Se. No significant increase in extractable Se
was detected in the 50 g Se ha−1 treatment in trials
LF1, LF2 or LF4, a treatment level which is estimated
to leave 9.1 µg Se kg−1 in the topsoil. This result
suggests that selenate was leached out of the soil
profile, volatilised and/or converted to the unextract-
able Se fraction. Plants and the associated rhizosphere
microorganisms may have volatilised some of the Se
(Lin et al. 2000). The LF3 trial was an exception,
showing a significant increase in extractable Se, with
an increase of 4 µg Se kg−1 in the topsoil at an
application rate of 50 g Se ha−1. The soil at LF3 has a
high proportion of clay (33 %), acidic pH and
moderate carbon content; these properties favour the
adsorption of Se (Fordyce et al. 2000). The fertiliser
formulation (liquid application) and dose may also
influence the fate of Se, as GF5, carried out on the
same soil as LF3, showed no retention of Se at the

10 g Se ha−1 rate. This indicates that monitoring of
extractable Se concentrations in soils may be relevant
under some conditions. These results suggest that
there would be little residual effects of Se fertiliser,
applied as selenate, to the subsequent crops at most
field sites, which was confirmed in a residual trial
(Stroud et al. 2010).
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