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Abstract Nuclear ribosomal sequences and Cd, Zn,
Pb and Fe accumulation of different populations of
the recently discovered Cd/Zn-hyperaccumulating
species Thlaspi praecox Wulfen (Noccaea) were
studied to reveal their relationships to other represen-
tatives of the genus and especially to the well known
hyperaccumulator T. caerulescens; comparisons of
their accumulating properties were also made. Internal
transcribed spacer (ITS) rDNA sequences from eight
T. praecox populations from Slovenia showed 99%
similarity and formed a sister group to T. caerulescens.
Divergence estimates from the ITS rDNA support the
origins of T. praecox in the Early Pleistocene,
with further fragmentation of T. praecox populations
in Slovenia since the Middle Pleistocene. Cd-
hyperaccumulating features (>100 mg Cd kg−1 in the
above-ground biomass) of T. praecox were seen for
two populations collected at polluted sites (Žerjav and
Mežica) and one population collected at a non-polluted
site (Lokovec). The variability of the Cd concentra-
tions in shoots was almost completely explained by the
soil Cd concentrations, and were positively correlated
with shoot Zn and Pb concentrations. The results from

this molecular and metal accumulation characterisation
of T. praecox populations provide new insights into the
taxonomic affinities and accumulation potential of this
hyperaccumulating species.
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Introduction

Increased interest has been shown in plants with the
unusual potential for accumulation of more than
10,000 mg kg−1 Zn and Mn, 1,000 mg kg−1 Al, As,
Se, Ni, Co, Cr, Cu and Pb, and 100 mg kg−1 Cd in
their above-ground biomass (Reeves and Brooks 1983;
Reeves 1988). This has been referred to as hyper-
accumulation (Brooks et al. 1977), with the interest
arising from their potential use in the cleaning of soils
contaminated with metal(loid)s (Pollard et al. 2002).
Several hyperaccumulating plants have been described
in the Brassicaceae family, and particularly in the
genus Thlaspi (Peer et al. 2003), with the Cd-, Zn- and
Ni-hyperaccumulating Thlaspi caerulescens as the
most studied plant species of this genus (Assunção et
al. 2003a, b). Another species, namely T. praecox, has
been reported to accumulate up to 2.1% Zn (Brooks et
al. 1998), and more recently, up to 1.5% Zn, 0.6% Cd
and 0.4% Pb when collected at a heavy-metal polluted
site in northern Slovenia (Vogel-Mikuš et al. 2005).
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In Europe, T. caerulescens is naturally distributed
on soils with different heavy-metal compositions and it
shows a variable capacity for hyperaccumulation (Baker
et al. 1994; Schat et al. 2000; Roosens et al. 2003;
Keller et al. 2006; Peer et al. 2006). Hyperaccumulation
of Zn appears to be a constitutive feature of this species
(Escarré et al. 2000; Reeves et al. 2001), whereas
hyperaccumulation of Ni and Cd is more variable
(Reeves et al. 2001). Within the species, T. caerulescens
from Southern France (Ganges accession) was shown
to have a superior ability to hyperaccumulate Cd
(Robinson et al. 1998; Lombi et al. 2000) and this
ability was matched by T. praecox in a pot experiment
(Pongrac et al. 2009). High variability in metal
accumulation potential was also demonstrated in the
two populations of T. praecox from Slovenia that have
been studied in detail to date (Vogel-Mikuš et al. 2005).

Based on seed morphology (Meyer 1973, 1979)
and ribulose-1,5-bisphosphate carboxylase/oxygenase,
ITS nuclear ribosomal DNA, and chloroplast DNA
restriction-site variation (Mummenhoff and Zunk 1991;
Mummenhoff and Koch 1994; Zunk et al. 1996;
Mummenhoff et al. 1997), the genus Thlaspi has been
divided into several genera/clades. In the process of the
reorganisation of this genus, many of the metal
hyperaccumulating species (including T. caerulescens
and T. goesingense) have been moved into the
Noccaea genus (see Koch and Mummenhoff 2001,
for a complete list). Still, the phylogenetic position of
T. praecox as a species separate from T. caerulescens
remains to be examined. Thus, the present study was
designed to: i) evaluate the taxonomic and phylogenetic
positions of the T. praecox species through molecular
characterization of nuclear ribosomal internal
transcribed spacers (ITS); and ii) determine the
(hyper)accumulation ability of different populations
of T. praecox across Slovenia.

Material and methods

Sample collection

Five specimens of T. praecox Wulfen were collected
from eight populations across Slovenia (Table 1):
three populations were sampled in northern Slovenia,
and five populations in south-western Slovenia
(Fig. 1). Two populations (Žerjav and Mežica) from
northern Slovenia were collected at a heavy-metal-

polluted site. The choice of materials was dictated by
the intention to cover the molecular variability of the
species and to include polluted and non-polluted sites.
As plant development has a significant impact on
element uptake (Pongrac et al. 2007), all of the
specimens were collected in their flowering phase.

Molecular analyses

Freeze-dried shoots of the collected plant materials were
ground to a fine powder in liquid nitrogen, and the DNA
was isolated using the GenElute® Plant Genomic DNA
miniprep kit (Sigma), following the manufacturer
instructions. All of the PCR reactions were carried out
with an MJ Research thermal cycler, using Taq DNA
polymerase (Promega). The 25 μl reaction mixtures
contained: 2.5 μl 10× PCR buffer, 2.5 mM MgCl2,
200 μM of each nucleotide, 500 nM of each primer,
0.75 U DNA polymerase, and 12.5 μl of a 100-fold
diluted DNA extract. The PCR conditions for ampli-
fication with the ITS1 and ITS4 primer pair were
(White et al. 1990): 1min at 94°C, followed by 35 cycles
of 35 s denaturation at 94°C, followed by 53 s annealing
at 55°C, and 30 s of elongation at 72°C. The time of the
elongation step was increased for 5 s each cycle. A final
elongation was performed at 72°C for 10 min.

The PCR products were cleaned and ligated into
the pGEMT-Easy vector (Promega, Madison, WI,
USA). Competent Escherichia coli JM109 cells were
used for the transformation with recombinant vectors,
as recommended by the manufacturer. The trans-
formants were screened using blue/white selection on
Luria-Bertani (LB) agar containing X-Gal/isopropyl
beta-D-1-thiogalactopyranoside (IPTG) and 50 μl ml-1

ampicilin (Sigma). For confirmation of fragment
insertion colonies, PCR was performed with the T7
and SP6 primer pair. Cycle-sequencing reactions were
performed on three colonies per population (double
stranded sequencing) with the T7 and SP6 primer pair
using a BigDye™ terminator Ready Reaction Cycle
Sequencing kit on an ABI 3730xl DNA Analyser
(Applied Biosystems), as provided by the Macrogen
Company (Korea). To double check that cloning did
not incorporate any Taq polymerase mistakes in the
sequences, the PCR products were also sequenced
directly (three sequences per population, both
DNA strands). Obtained sequences were confirmed
to be identical to the sequences from the cloned
products.
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Sequence analyses

The sequence data have been submitted to the GenBank
database under accession numbers FJ808507 to
FJ808514. The sequences were subjected to a GenBank
search to evaluate the taxonomic affinities of each of the
ITS sequences, using the default option of gapped-
BLAST (Altschul et al. 1997). The sequence alignments
were carried out by ClustalX (Larkin et al. 2007), and
refined by eye. The dataset that was subjected to

phylogenetic analyses was composed of the T. praecox
sequences obtained and 24 additional ITS1-5.8S-ITS2
sequences from Noccaea and Raparia from GenBank.
The sequences of Thlaspi perfoliatum (Microthlaspi)
and Thlaspi arvense (Thlaspi s. str.) were used as an
out-group.

Neighbour-joining (NJ), maximum parsimony (MP),
maximum likelihood (ML), and Bayesian analysis
(posterior probabilities; PP) were used to analyse the
aligned sequences. NJ, MP and ML were performed in

Table 1 Origins of the collected specimens of Thlaspi praecox, along with the ammonium-acetate-extractable concentrations of Cd,
Zn and Pb in the rhizosphere soil and the GenBank sequence accession numbers (mean ± SE; n=5)

Locality Geographical coordinates (WGS84) Site type Cd
(mg kg−1)

Zn
(mg kg−1)

Pb
(mg kg−1)

GenBank
accession number

1 Žerjav N 46° 28′ 50″ Polluted 38±8 220±27 9078±1245 FJ808514
E 14° 52′ 18″

2 Mežica N 46° 31′ 24″ Polluted 15±5 293±65 888±160 FJ808509
E 14° 51′ 11″

3 Črnivec N 46° 20′ 8″ Non-polluted 0.3±0.01 3±0.2 33±4 FJ808511
E 14° 13′ 13″

4 Komen N 45° 48′ 55″ Non-polluted 0.6±0.2 7±4 87±48 FJ808508
E 13° 44′ 54″

5 Štanjel N 45° 49′ 22″ Non-polluted 0.7±0.1 10±2 112±55 FJ808510
E 13° 50′ 29″

6 Lozice N 45° 46′ 57″ Non-polluted 0.3±0.01 4±0.4 61±15 FJ808513
E 13° 59′ 52″

7 Zaplana N 45° 57′ 39″ Non-polluted 0.3±0.1 5±1 93±27 FJ808512
E 14° 14′ 16″

8 Lokovec N 46° 2′ 20″ Non-polluted 1.1±0.04 10±3 117±23 FJ808507
E 13°46′ 9″

Fig. 1 Geographical
locations of the eight
populations of Thlaspi
praecox included in this
study for the analysis of
ITS rDNA regions and
metal-accumulation proper-
ties. The numbers corre-
spond to the location
numbers in Table 1. SLO,
Slovenia; AUT, Austria;
CRO, Croatia; I, Italy
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PAUP* (version 4.0b8a; Swofford 2003). The MP and
ML trees were constructed using heuristic searches
with tree bisection–reconnection (TBR). In both the
MP and NJ analyses, the evolutionary model K80+Γ
(Kimura 1980) of Modeltest 3.7 (Posada and Crandall
1998) was used, selected by hierarchical likelihood
ratio tests (hLRTs) and Bayesian information
criterion (BIC). Bayesian analysis was carried out
in MrBayes 3 (Ronquist and Huelsenbeck 2003;
5,000,000 generations, sample frequency: every 100th
generation, four chains; burn-in determined according
to the “sump” plot). Bootstrap values were obtained by
200 subsamples for maximum likelihood (ML), 500
subsamples for maximum parsimony (MP) and 1,000
subsamples for neighbour joining (NJ) and are given in
Fig. 2.

Divergence dating

Prior to divergence dating of T. praecox and
T. caerulescens, the null hypothesis of a molecular
clock was evaluated following the test statistics:
�2 log Lclock � log Lno clockð Þ. This should be distribut-
ed as χ2 with (N–2) degrees of freedom, where N is the
number of sequences in the tree (Felsenstein 1988;
Sanderson 1998). The dates of divergence were inferred
using the Bayesian strict-clock approach, implemented
in BEAST v1.4.8 (Drummond and Rambaut 2007),
with the Yule process for the tree prior. For the analysis,
the root node was given a normal age prior distribution,
with mean=15.1. Markov chain Monte Carlo (MCMC)
searches were run for 10,000,000 generations, with the
first 2,000,000 discarded as burn-in. The searches
achieved adequate mixing, as assessed by the high
effective sample size (ESS) values for all of the
parameters, the plateaus for divergence-time estimates
over generations after the burn-in, and the repeatability
of the results over multiple independent runs.

Soil and plant metal analyses

Soil samples were taken from the rhizosphere of the
individual plants. The plants were carefully dug from
the substrate and the majority of the bulk soil was
manually removed from the roots (Vogel-Mikuš et al.
2005). Only the substrate closely attached to the root
system was analysed. After drying at 30°C for 1 week,
the soil samples were sieved (<2 mm) and homoge-
nized (n=5 from each site). To determine the metal

availability, an extraction method with 1 M ammonium
acetate (Baker et al. 1994) was used. The extract was
filtered through 0.4 μm membrane filters (Milipore)
and analysed by atomic absorption spectrometry
(AAS; Perkin Elmer AAnalyst 100).

The shoots and roots of the T. praecox specimens
were separated and carefully washed with tap and
then distilled water, to remove any surface soil or dust
deposits. The plant materials were frozen in liquid N2

and then freeze-dried for 1 week. Cd, Zn, Pb and Fe
concentrations in the plant materials were analysed by
AAS after wet digestion, as previously described by
Vogel-Mikuš et al. (2005).

Statistical analyses

Translocation factors TF ¼ Cshoot=Crootð Þ were calcu-
lated to quantify the root to shoot translocation
(Pongrac et al. 2007) in particular populations, and
bioaccumulation factors BAF ¼ Cshoot=Csoilð Þ were
calculated to quantify accumulation (Baker et al.
1994; Vogel-Mikuš et al. 2005; Pongrac et al. 2007)
of the individual metals, relative to the ammonium
acetate extractable metal soil fraction.

Stepwise multiple regression analysis was carried out
using extractable soil Cd, Zn and Pb concentrations as
independent variables and shoot Cd, Zn, Pb and Fe
concentration as the dependent variable. One-way
ANOVA was applied to test the overall effects of
population on the parameters studied, and when
significant, Holm-Sidak post-hoc analyses were used
to determine the significance of differences between
populations at p<0.05. Pearson′s correlation coeffi-
cients (R) were used when calculating correlations
between metal concentrations in plant tissues and
translocation factors. A test of normal distribution
and homogeneity of variance was performed prior to
the use of parametric tests. The statistical tests were
performed using SigmaStat (SPSS, Inc.) software.

Results

Phylogenetic analysis of ITS sequences

The ITS rDNA sequences obtained from the T. praecox
specimens collected were submitted to the GenBank
database and can be retrieved using the accession
numbers indicated in Table 1. Sequence alignments of
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the ITS rDNA resulted in a total of 501 characters, of
which 389 were constant, 86 parsimony uninformative,
and 26 parsimony informative. This data matrix
required gaps at 16 nucleotide sites (3%), of which
most were located in the ITS1 rDNA region. The
sequences of the T. praecox populations studied
showed 99% similarity, with only five variable sites
(1% of total). Three nucleotide positions specific for
sequences of T. praecox species were found when they
were aligned with sequences of other Thlaspi s. l.
species available in GenBank: C instead of Tat bp 59, A

instead of C or Tat bp 162, and occasional replacements
of A with T at bp 213 and of G with A at bp 252.
Additionally, the same nucleotide replacements were
seen for the two sequences from GenBank (DQ337369
and DQ337370) stored under T. caerulescens name,
which were actually collected at locations in Mežica
(Peer et al. 2006).

NJ, MP, ML and Bayesian analyses of the ITS
sequences obtained provided similar topologies, with
T. praecox positioned close to the T. caerulescens
group (Fig. 2). The entity of T. praecox was separated

Fig. 2 Maximum clade credibility tree of Thlaspi praecox
populations from Slovenia displayed as a chronogram from the
BEAST analysis of the ITS rDNA alignments. All of the
lineages were evolved according to a strict clock and the K80 +
Γ model of evolution. For the analysis, the root node was given
a normal age prior distribution with mean=15.1. MCMC
searches were run for 10,000,000 generations, with the first
2,000,000 discarded as burn-in. T. arvense (Thlaspi s. str.) and

T. perfoliatum (Microthlaspi) were used for the calibration of
the tree. The scale is represented as millions of years ago
(Mya). Node bars illustrate the width of the 95% highest
posterior density (HPD). For the specified nodes (n1–n10),
support values in the order from left to right: neighbour-joining
(NJ)/ maximum parsimony (MP)/ maximum likelihood (ML)/
posterior probabilities (PP), mean (Mya) and 95% CI for the
estimated age (Mya) are given

Plant Soil (2010) 330:195–205 199



from T. caerulescens by moderate bootstrap values:
65% for NJ (1,000 replicates), 43% for MP (500
replicates), 58% for ML (100 replicates), and a PP of
1.0 for Bayesian analysis (5,000,000 generations).
The maximum parsimony TBR search recovered 112
equally most parsimonious trees, with lengths of 124
steps, a CI of 0.94, RI of 0.91, and a rescaled CI
(RCI) of 0.86.

For the test of the molecular clock hypothesis, non-
clock (unconstrained) and clock (constrained) searches
for ML trees were performed. While the non-clock
search resulted in a single tree (logL=−1280.58), the
clock search recovered two equally likely trees of
essentially identical topology (logL=−1292.04). For
the constrained/ unconstrained ML trees, the test
statistics of the rate inconstancy were not significant
(χ2=22.92, with df=29, p=0.78), and hence compat-
ible with a molecular clock hypothesis. Using the
equation H = μT, where H is the node height derived
from the constrained ML tree, and μ is the substitution
rate, μ was estimated to be 1.1×10−8 substitutions per
site per year, when the divergence time (T) of the
species pair T. arvense and T. perfoliatum was set to
15.1 million years ago (Mya) (Koch and Al-Shehbaz
2004). The posterior mean of the divergence time was
calculated by BEAST, and between T. caerulescens
and T. praecox it was estimated at 1.2 Mya, with a
95% confidence interval of 0.7–1.7 Mya (Fig. 3).

Metal concentrations in the soil and plants

The concentrations of the ammonium-acetate-extractable
metals in the soil ranged from 0.3–38 mg Cd kg−1,
3.0–293 mg Zn kg−1, and 33–9,078 mg Pb kg−1

(Table 1). Ammonium-acetate-extractable Fe concen-
trations in the soil were not measured, since they do not
provide information on either Fe availability or plant
accumulated Fe concentrations (Marschner 1995;
Molitor et al. 2005). The highest Cd, Zn and Pb
concentrations in T. praecox roots and shoots were seen
in both of the populations from the polluted sites, while
the highest Fe concentrations were measured in the
Mežica population (Fig. 3). Beside the populations from
polluted site (Žerjav and Mežica), Cd shoot concen-
trations exceeded the hyperaccumulating criteria also in
Lokovec population from non-polluted site.

Shoot Cd concentrations of studied populations
were almost completely explained by the ammonium-
acetate-extractable soil Cd concentrations (R2=0.87,

p<0.01). Forward stepwise regression analysis
additionally added soil Zn (R2=0.05, p<0.001) and
soil Pb (R2=0.01, p<0.05) to the model. The final
model explained a total of 94% of the variance. Shoot
Zn concentrations were dependent mainly on
ammonium-acetate-extractable soil Zn (R2=0.75,
p<0.001) and soil Pb (R2=0.04, p<0.001) and shoot
Fe concentrations (R2=0.04, p<0.01), while shoot Pb
concentrations were explained by a combination of
ammonium-acetate-extractable soil concentrations: Pb
(R2=0.90, p<0.001), Cd (R2=0.06, p<0.001) and Zn
(R2=0.01, p<0.001). The final models explained a total
of 83% and 97% of the variance for Zn and Pb,
respectively.

Cd translocation factors (TFCd) were significantly
higher in plants sampled at the polluted sites, when
compared to those from non-polluted sites (Table 2).
No differences between populations were observed
for TFZn and TFPb, whereas the highest TFFe was
observed in Lokovec population. In addition, positive
correlations between Cd, Zn and Fe translocation
factors were obtained (Table 3). The highest Cd
bioaccumulation factors (BAFCd) were measured in
Mežica and Lokovec populations (Table 2). BAFZn
were higher in the populations from non-polluted than
from polluted sites, with the highest BAFZn seen in
the Črnivec and Lozice population. BAFPb were in all
cases below 1, with the exception of the Mežica
population.

Discussion

Investigations into natural population systems are of
great importance for our understanding of the genetic
basis of the hyperaccumulation trait and the selective
pressures that underlie it (Pollard et al. 2002). This
paper reports on phylogenetic relationship of T. praecox
to the well known hyperaccumulator T. caerulescens
and on the Cd, Zn, Pb and Fe accumulating properties
of different populations collected across Slovenia. The
T. praecox ITS rDNA sequences grouped together in
the phylogenetic trees, forming a sister group to the
T. caerulescens sequences. In all of the analyses, two
T. caerulescens sequences from GenBank (DQ337369
and DQ337370), obtained from material collected in
Mežica in northern Slovenia (Peer et al. 2006), were
positioned inside the T. praecox clade. As T. caerulescens
is not native to Slovenia (Martinčič et al. 2007; Wraber
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Fig. 3 Cd, Zn, Pb and Zn concentrations in roots and shoots of the studied populations of Thlaspi praecox (mean ± SE, n=5).
Different letters indicate statistically significant differences according to the one-way ANOVA, Holm-Sidak post-hoc test, at p<0.05

Table 2 Translocation (TF) and bioaccumulation factors (BAF) for Cd, Zn, Pb and Fe, calculated for field-collected specimens of
Thlaspi praecox from different locations in Slovenia (mean ± SE; n=5). Only results of test with statistically significant differences
between the studied populations are presented. Different letters indicate statistically significant differences between individual sites
according to the one-way ANOVA, Holm-Sidak post-hoc test, at p<0.05

TF BAF

Cd Zn Pb Fe Cd Zn Pb

Žerjav 6.61±0.87a 11.7±2.9 1.9±0.6 1.9±0.3b 35±12bc 33±6c 0.51±0.10b

Mežica 5.30±0.67a 6.6±1.6 1.5±0.3 1.6±0.2b 110±11a 29±0.29c 1.65±0.10a

Črnivec 0.56±0.21c 6.8±1.5 0.9±0.3 2.9±0.6b 27±6bc 795±147a 0.72±0.13b

Komen 1.17±0.74c 6.5±2.2 2.7±1.3 2.2±0.8b 14±6c 241±101c 0.14±0.04c

Štanjel 1.92±0.35bc 8.5±2.3 2.5±0.7 1.2±0.3b 55±13b 314±72b 0.45±0.19bc

Lozice 0.62±0.07c 7.1±1.0 1.6±0.2 1.7±0.3b 40±5bc 633±85a 0.40±0.06bc

Zaplana 1.26±0.30bc 5.7±1.0 1.2±0.2 1.6±0.3b 22±4c 157±32bc 0.48±0.12c

Lokovec 2.85±0.49b 6.1±1.5 3.1±1.7 5.4±0.8a 111±20a 206±81bc 0.19±0.07c

Table 2 Translocation (TF) and bioaccumulation factors (BAF)
for Cd, Zn, Pb and Fe, calculated for field-collected specimens of
Thlaspi praecox from different locations in Slovenia (mean ±
SE; n=5). Only results of test with statistically significant

differences between the studied populations are presented.
Different letters indicate statistically significant differences
between individual sites according to the one-way ANOVA,
Holm-Sidak post-hoc test, at p<0.05
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2005) the grouping of these sequences inside the
T. praecox clade suggests that these sequences belong
to misidentified T. praecox representatives.

The estimated substitution rate for our sequences
was calculated to be 1.1×10−8 substitutions/site/year.
Although molecular clock hypotheses are still under
debate, for ITS a substitution rate of approximately
0.5% to 2.5% nucleotide divergence per 1 million
years can be assumed (Koch et al. 2003). Similar ITS
substitution rates have also been estimated for other
members of Brassicaceae (Kropf et al. 2003; Koch
and Al-Shehbaz 2004). Divergence dating showed
that the species T. praecox and T. caerulescens
diverged from the common ancestor around 1.2 Mya
with further separation within the T. praecox, as
northern populations (except sequence DQ337369)
formed a sister group to the south-western Slovenian
populations. The particularly strong climate oscilla-
tions in the northern hemisphere during this epoch
(Bennett 1997; Rutherford and D’Hondt 2000) prob-
ably altered the distribution ranges of the species.
Such conditions would increase the likelihood of
diminished gene flow and population isolation, leading
to the establishing of new plant species (Taberlet et al.
1998; Hewitt 2000). However, further examinations of
intraspecific differences using molecular techniques
like amplified fragment length polymorphism (AFLP),
and other types of markers like SSR and/or cpDNA
loci (Jimenez-Ambriz et al. 2007; Besnard et al. 2009)
are needed to be able to draw any firm conclusions on
any potential speciation events inside T. praecox.

The studied T. praecox populations accumulated a
wide range of Cd, Zn and Pb concentrations, which
was expected as they were collected from sites with
prominent differences in soil metal concentrations.
Cd, Zn and Pb (hyper)accumulation in T. praecox
shoots mainly depended on the metal concentrations in

the soil as revealed by the stepwise regression analyses.
Cd concentrations in shoots exceeding the hyperaccu-
mulation threshold (>100 mg Cd kg−1; Reeves and
Baker 2000) were seen for two populations from the
metal-polluted sites (Žerjav and Mežica) and in one
population from the non-polluted site (Lokovec),
indicating that as with T. caerulescens, Cd hyper-
accumulation is not a constitutive trait in T. praecox,
but rather specific for particular metalliferous popula-
tions. Evolutionary development of extraordinary Cd
hyperaccumulation abilities in particular T. praecox
populations may be closely related to the levels of this
non-essential element in the soil. Similarly studies of
T. caerulescens, which showed that ecotypes growing
naturally in low Cd-containing soils have much lower
hyperaccumulation capacity compared to the ecotypes
growing in high Cd-containing soils (e.g. Ganges)
(Basic et al. 2006a, b).

Only one of the collected specimens from the
polluted site (from Mežica population) accumulated
Zn above the criteria for Zn hyperaccumulation
(>10,000 mg Zn kg−1; Reeves and Baker 2000), with
16,500 mg Zn kg−1 in the aboveground biomass.
Otherwise shoot concentrations of up to 8,200 mg Zn
kg−1 were typically measured in the populations from
the polluted sites, and up to 4,300 mg Zn kg−1 in the
populations from the non-polluted sites. In studied
T. caerulescens populations, the Zn-(hyper)accumula-
tion was found to be a constitutive trait but with high
intraspecific variations present between and within
different populations (Escarré et al. 2000). Significant
differences in Zn shoot concentrations between the
T. praecox populations from the polluted and non-
polluted sites observed in this study and in our
previous work (Vogel-Mikuš et al. 2005) suggest
similar intraspecific variability in T. praecox.

The Pb hyperaccumulation threshold (>1,000 mg
Pb kg−1; Reeves and Baker 2000) was exceeded in
only the two populations from the polluted sites. The
studies of tolerance to and accumulation of Pb have
been mainly put aside in Thlaspi species. The only
known Pb hyperaccumulator from this genus is the
dwarfish plant that is typical of the Zn-mining region
near Arnoldstein (Austria) and the Cave del Predil
(Italy), Thlaspi rotundifolium ssp. cepaeifolium, with
the highest ever measured Pb concentrations of
8,200 mg kg−1 in shoots (Reeves and Brooks 1983.
It is, however, not clear whether this concentration
was a consequence of air-borne pollution or root-to-

Table 3 Pearson’s correlation coefficients (R) between trans-
location factors for Cd, Zn, Pb and Fe, calculated for field-
collected specimens of Thlaspi praecox from different locations
in Slovenia (n=40)

Cd Zn Pb

Zn 0.40*

Pb 0.42** 0.23ns

Fe 0.11ns 0.65*** 0.35*

ns not significant

*p<0.05, **p<0.01, ***p<0.001
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shoot transfer, and therefore reports of high Pb leaf
concentrations should be interpreted with caution. In
T. praecox plants collected at a metal-polluted site, Pb
concentrations seldom exceeded the Pb hyperaccu-
mulation criteria (1,000 mg kg−1) (Vogel-Mikuš et al.
2005), although in controlled pot experiments, where
air-borne pollution can be neglected, a relatively high
concentration of Pb was found in shoots (up to
950 mg kg−1) (Vogel-Mikuš et al. 2006). Element
localization studies of T. praecox leaf cross-sections
using micro-proton induced X-ray emission have shown
that Pb tissue localization patterns resemble those of Cd
(Vogel-Mikuš et al. 2008a, b). As such, similarities in
the mechanisms of transport and tissue partitioning of
both metals could explain the higher Pb accumulation
capacity seen in the higher Cd-accumulating T. praecox
populations.

Significantly higher TFCd were seen in the two
populations collected at the polluted sites, when
compared to those collected at the non-polluted site,
indicating more efficient translocation of Cd from
root to shoot in metalliferous than non-metalliferous
populations. In addition, there was a significant
positive correlation between Cd, Zn and Pb TFs,
indicating the possibility of common transport mech-
anisms from roots to shoots for measured metals.
HMA4, a metal-transporting P1B-type ATPase, has
been shown to have a key role in the root-to-shoot
transport of Zn and Cd in A. thaliana, probably by acting
as an efflux pump located on the plasma membrane of
xylem parenchyma cells and delivering Zn and Cd to
the xylem vessels (Mills et al. 2003, 2005). However,
no differences were seen in TcHMA4 expression levels
in the differentially Zn- and Cd-translocating T.
caerulescens accessions (Xing et al. 2008). Since
proportionally more Cd was stored in vacuoles of low
Cd-translocating accessions of T. caerulescens, a differ-
ence in the levels of vacuolar sequestration was
proposed as the key mechanism accounting for the
differences in metal translocation between different
Thlaspi populations (Xing et al. 2008).

In conclusion, we have shown that T. praecox is a
closely related species to T. caerulescens, with the
split from the common ancestor occurring around 1.2
Mya, and as such, both species share the constitutive
Zn-(hyper)accumulation trait. The Cd hyperaccumu-
lation in these T. praecox populations depends mainly
on the soil Cd concentrations, and is closely correlated
to the soil Zn and Pb concentrations. Differences in Cd

(hyper)accumulation between populations from non-
polluted and polluted sites were seen, as has also been
reported for T. caerulescens.
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