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Abstract Variation in plant N resorption may change
with stand development because plants tend to adjust
their ecophysiological traits with aging. In addition,
changes in soil nitrogen (N) pools associated with
stand development may also affect plant N resorption.
Here, we examined green- and senesced-leaf N
concentrations and resorption of trembling aspen
(Populus tremuloides Michx.) in boreal forest stands
of different ages (7, 25, 85 and 139 years, respective-
ly). All sampled stands originated from wildfires and
established on similar parent materials (glacial tills)
and had similar climates. N concentrations in both
green and senesced leaves increased between 27%
and 54% along the stand age chronosequence.
Resorption efficiency (percentage difference of N
between green and senesced leaves) and proficiency
(N concentration in senesced leaves) were higher for
leaves in younger stands than in older stands. An
analysis of covariance indicated that the patterns of
leaf N concentration and resorption were affected
significantly by stand age, but not by available soil N
concentration. Our results indicate that at an intra-

specific level, plants could adjust their N resorption
efficiency and proficiency with stand development.
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Introduction

In boreal forests, stand-replacing wildfire is wide-
spread and is considered as the principal natural
disturbance factor for secondary succession (Nepstad
et al. 1999; Lindenmayer et al. 2004; Dellasala et al.
2006; Bond-Lamberty et al. 2007). Previous studies
showed that production, biodiversity, carbon storage,
soil nutrients, and other processes of ecosystems
change with stand age, or time since stand-replacing
fire (Wardle et al. 1997; Reich et al. 2001; Deluca et
al. 2008; Hart and Chen 2008). There is a large
literature on the effects of time since fire on soil
characteristics (see review by Ice et al. 2004). For
example, several studies have documented that soil
nitrogen (N) availability increases (Brais et al. 1995;
Simard et al. 2001; Bond-Lamberty et al. 2006; Leduc
and Rothstein 2007; Duran et al. 2008) or decreases
(Van Cleve et al. 1983; Deluca et al. 2002) along
secondary successional gradients in boreal forests.

Although still in debate, nutrient resorption from
senescing leaves, an important mechanism of nutrient
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conservation, is often thought to change with soil
nutrient availability (Kobe et al. 2005; Richardson et
al. 2005; Yuan et al. 2005b; Huang et al. 2008; Yuan
and Chen 2009). Because soil nutrient availability
changes with stand development since stand-replacing
fire, and many ecophysiological plant traits have been
linked to plant aging (Callaghan 1980; Groom et al.
1997), plant nutrient resorption may also change with
stand age. However, no study, to our knowledge, has
addressed the effects of stand age on plant nutrient
resorption.

In North American boreal forests, widely distrib-
uted trembling aspen (Populus tremuloides Michx.) is
an ecologically and economically important tree
species. This species regenerates profusely after fire
and grows to form stands with different ages
(Brassard and Chen 2008; Hart and Chen 2008). It
remains part of the forest cover, although in diminish-
ing importance, for more than 150 years while the late
successional coniferous species, white spruce (Picea
glauca Moench.), balsam fir (Abies balsamea Mill.),
and white cedar (Thuja occidentalis Linn.) gradually
attain stand dominance (Bergeron and Dubuc 1989;
Chen and Popadiouk 2002). To date, many aspects of
the nutrient ecology of P. tremuloides have been
studied (e.g. Ruark and Bockheim 1988; Killingbeck
et al. 1990; Madritch et al. 2006), but there are still
many voids in our understanding, particularly in the
areas of resorption variation for this species with
stand development.

The aim of this study was to examine variability of
N resorption efficiency and proficiency in P. trem-
uloides during stand development covering a time
span of 140 years. Because plant ecophysological
traits are associated with aging, we hypothesized that
N resorption efficiency of P. tremuloides changes with
stand development no matter plant N resorption
efficiency is inversely related to soil N availability
(Kobe et al. 2005; Yuan et al. 2005a; Yuan et al.
2007) or remains unchanged (Aerts 1996).

Materials and methods

Study sites

Coinciding in part with those examined by Brassard
et al. (2008), and Hart and Chen (2008), our study
area was located in a boreal mixed-wood forest

region, ≈150 km north of Thunder Bay, Ontario,
between 49°38′ N and 49°27′ N and from 89°54′W to
89°29′ W. The climate is moderately dry, cool with
mean annual temperature and mean annual precipita-
tion being 2.6°C and 710 mm, respectively. The study
area is dominated by P. tremuloides, jack pine (Pinus
banksiana Lamb.), black spruce (Picea mariana
Mill.), and white birch (Betula papyrifera Marsh.).

We selected four stand-age classes, each with three
replications for this nutrient resorption study. All
selected stands regenerated naturally after wildfire.
Every effort was made to intersperse sampled stands
to avoid sampling stands of the same age in close
proximity to one another to minimize the impact of
spatial structure. For each stand, time since last stand-
replacing fire was estimated using tree rings. During
field sampling in 2006, the stands were aged 7, 25,
72, and 139 years old since fire, respectively
(hereafter referred to as 7-, 25-, 72-, and 139-year-
old stands) (Table 1). Other than stand age differ-
ences, all soils on the selected sites were classified as
the Brunisolic order on relatively deep glacial tills
parent material, and located in the same vegetation
zone as those studied by Hart and Chen (2008).

Plant sampling

In each stand, a plot of ≈0.2 ha, uniform in stand
composition, structure, understory vegetation, and soil
characteristics, was established, within which all leaf
samples were taken. Within the plot, we sampled 5
healthy, well-spaced dominant trees of P. tremuloides.
Both green and senesced leaves were sampled from
the same individuals. Because foliar N and P
concentrations of P. tremuloides are relatively stable
from the time of full leaf expansion to the onset of
senescence (Alban 1985), we sampled fully green
leaves in August 2006. Green leaves were collected
from upper, middle, and lower crown positions.
Branches with green leaves were sampled with the
aid of a shotgun. At least 25 leaves were collected
from each sample tree.

Recently fallen senesced leaves were collected in
October 2006 when leaves fully senesced. Also, at
least 25 leaves were sampled from each of these
selected trees, and were combined into one sample
per stand.

Leaf samples were placed in damp plastic bags and
brought back to the laboratory. Leaf area was
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determined within 24 h using a leaf area meter (LI-
3100; Li-Cor, USA). The leaf samples were then
oven-dried at 60°C to constant mass, weighed to
determine leaf mass per unit area (LMA), and ground
in a Wiley mill (No. 40 sieve). Green- and senesced-
leaf samples were digested using a persulfate–perox-
ide procedure in a block digestor and analyzed
colorimetrically for N with a Technicon Auto Ana-
lyzer II (Technicon Industrial Systems, Tarrytown,
New York).

Soil sampling

To determine soil conditions, five soil samples were
taken within each sample plot underneath these same
five selected trees in August 2006 with a metallic tube
(20 cm high and 10 cm in diameter) at the 0–15 cm
soil layer and analyzed for total N and available N
(NH4

+-N and NO3
−-N). The soil was sampled

randomly 1–5 m away from the trunk of each of five
individuals. Soil pH was measured in a suspension of
soil in 10 mM CaCl2 (3:5 v:v). The fresh soils were
sieved (<2 mm) and extracted in 1M KC1 (1:10 w/v)
for 45 min. Total N was determined using Kjeldahl
acid-digestion method (Bremner and Mulvaney 1982)
and soil available nitrogen (NH4

+-N and NO3
−-N)

was analyzed colorimetrically using a continuous-
flow ion auto-analyzer as mentioned above.

Definitions and calculations

Area-based N resorption efficiency (NRE) was calcu-
lated as N mass per unit of leaf area (grams per square
meter) of green (Ng) and senesced (Ns) leaves: NRE =
[(Ng−Ns)/Ng]×100%, where Ng was N concentration
in green leaves and Ns was N concentration in
senesced leaves. For the calculation, leaf data were
pooled together to derive the mean of each stand. The
N concentrations in senesced leaves were considered
a direct indicator of N resorption proficiency (NRP),
which is defined as the absolute level to which N is
reduced in senesced leaves (Killingbeck 1996). Plants
with a lower N concentration in their freshly fallen
leaves are considered more proficient.

Statistical analyses

Statistical tests were performed with SYSTAT 12 for
Windows (Systat Inc., Chicago, IL). Prior to analysis,
whenever needed, LMA and N data were transformed
logarithmically to meet the assumptions of normality
and homogeneity. NRE data were arcsin-transformed.

Table 1 Soil and plant characteristics of the four study stand-age classes in northwestern Ontario, Canada

Stand age (years) 7 25 85 139

Basal area (m2 ha−1) 19500±10071* 9.0±0.7 34.8±1.4 38.1±4.5

Soil pH 5.2±0.17a 5.3±0.0.04a 5.4±0.06a 5.2±0.11a

Soil total N (%) 0.05±0.009b 0.08±0.006ab 0.11±0.006a 0.11±0.009a

Soil available N (mg kg−1) 23.7±3.8a 24.0±2.1a 28.9±4.3a 33.3±4.2a

LMAg (g m−2) 77.2±2c 87.9±1b 94.4±2ab 99.8±2±a

LMAs (g m−2) 60.5±1c 71.3±1b 71.3±3b 78.8±1a

NgM (% dry mass) 2.0±0.07c 2.3±0.02b 2.4±0.07ab 2.6±0.05a

NsM (% dry mass) 0.64±0.02c 0.78±0.02b 0.90±0.04b 1.07±0.03a

NgA (g N m−2) 1.56±0.07d 2.00±0.01c 2.29±0.07b 2.56±0.04a

NsA (g N m−2) 0.39±0.02d 0.56±0.01c 0.64±0.02b 0.84±0.02a

NREM (%) 68.5±0.2a 65.6±0.9b 63.1±0.5b 58.4±0.6c

NREA (%) 75.3±0.6a 72.2±0.3b 72.1±0.5b 67.1±0.7c

Data are means±1 SE. Abbreviations: LMAg green-leaf mass per unit area (g m−2 ), LMAs senesced-leaf mass per unit area (g m−2 ),
NgM mass-based N concentration in green leaves (mg g−1 ), NsM mass-based N concentration in senesced leaves (mg g−1 ), NgA area-
based N concentration in green leaves (g m−2 ), NsA area-based N concentration in senesced leaves (g m−2 ), NREM mass-based N
resorption efficiency (%), NREA area-based N resorption efficiency (%). Different letters indicate significant (P<0.05) differences
among stand-age classes (Tukey’s HSD test). Data of basal area come from Hart and Chen (2008)

*The unit for 7-year-old sands is stand density (stems ha−1 )
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One-way analysis of variance was used to test the
effect of stand age on leaf N and soil N. When the
difference was significant, post-hoc multiple com-
parisons were subsequently made using Tukey–
Kramer test. Regression analysis was used to
determine the relationships between natural-log stand
age and green- and senesced-leaf N concentrations.
Analysis of covariance (ANCOVA) was used to
assess the effects of stand age and the covariant soil
N on plant variables. Soil available N, which reflects
N availability for plant uptake, was used in the
ANCOVA.

Results

Green-leaf mass per unit area (LMA) ranged from
77.2 to 99.8 g m−2 and increased with stand age
(Fig. 1A). Mass-based N in green leaves ranged from
20.2 to 25.7 mg g−1. Also, both mass- and area-based
N concentrations increased significantly with stand
age (Figs. 1B and C). Along the stand age chronose-
quence, mass-based N concentration increased by
27%. There were strong effects of stand age on green-
leaf LMA and N concentration (Table 1), both of
which were highest in the 139-yr stands and lowest in
the 7-yr stands.

N resorption efficiency (NRE) presented mean
values ranging from 58.4% to 68.5% based on leaf
mass and from 67.1% to 75.3% based on leaf area.
NRE differed significantly among stands, with the
highest values in 7-yr stands and lowest in 139-yr
stands (Table 1).

Mass-based N resorption proficiency (NRP), i.e., N
concentrations in senesced leaves, ranged from 6.4 to
10.7 mg g−1. NRP decreased with stand age (i.e., the
absolute N values increased with stand age). Along
the stand age chronosequence, mass-based NRP
decreased by 40% (Fig. 1).

Soil total N differed among four stand-age classes
(Table 1). There was a significant increase in soil total
N with stand age. However, soil available N did not
differ significantly with stand age. Most plant
variables were closely correlated to each other
(Table 2). A significant positive correlation was found
between green-leaf N and soil total and available N.
NRE based on leaf mass was negatively correlated
with soil total and available N (Table 2). ANCOVA
showed that plant response variables were mostly
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Fig. 1 Variations in green-and senesced-leaf mass per unit area
(LMA), mass-based and area-based N concentrations from the
four study stand-age classes in northwestern Ontario, Canada.
LMA=leaf mass per unit area. Vertical bars represent mean± 1
SE. ♦=7-yr stands, ■=25-yr stands, ▲=85-yr stands, ●=139-yr
stands. Filled and open symbols represent green and senesced
leaves respectively. (A) LMA vs. stand age (Green-leaf: ln y=
−46.1+11.1ln x, r2=0.91, P<0.001. Senesced-leaf: ln y= −40.2
+10.3ln x, r2=0.78, P<0.001). (B) [N]mass vs. stand age (Green-
leaf: ln y= −31.7+11.3ln x, r2=0.86, P<0.001. Senesced-leaf: ln
y= −8.4+5.7 ln x, r2=0.92, P<0.001). (C) [N]area vs. stand age
(Green-leaf: ln y= −0.7+5.9ln x, r2=0.93, P<0.001. Senesced-
leaf: ln y= −5.7+3.9ln x, r2=0.92, P<0.001)
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affected by stand age while soil available N was
insignificant (Table 3).

Discussion

There were significant shifts in green- and senesced-
leaf N concentrations within an individual species, P.
tremuloides along the stand age chronosequence
(Table 1), suggesting that senesced N concentration
(i.e., resorption proficiency) could change with stand
development. N resorption based on both leaf area
and mass showed similar patterns with stand devel-
opment, with the highest values in 7-year stands and
the lowest values in 139-year stands (Table 1). These

results supported our hypothesis that stand age has an
impact on plant N conservation strategies.

Our results showed an increase in soil total N
status with stand development in P. tremuloides
dominated stands (Table 1). Similar findings were
reported in Mountain Ash stands (Polglase et al.
1992) and boreal forests (Brais et al. 1995). However,
there was no significant difference in soil available N
among four stand-age classes, consistent with the
results by Rundel and Parsons (1980) who found that
nutrient levels were similar among the sites along an
age gradient surface soil. It is not surprising that there
were different patterns of soil total and available N in
our study since total amount of N does not reflect
plant-available N, which mainly comes from miner-

Table 2 Correlation matrix for selected plant and soil properties. Calculations were made using Spearman’s correlation coefficient

NgM NgA LMAg NsM NsA LMAs NREM NREA TN

NgA 0.958
(<0.001)

LMAg 0.846
(0.001)

0.937
(<0.001)

NsM 0.951
(<0.001)

0.965
(<0.001)

0.923
(<0.001)

NsA 0.916
(<0.001)

0.951
(<0.001)

0.944
(<0.001)

0.986
(<0.001)

LMAs 0.680
(0.015)

0.828
(0.001)

0.834
(0.001)

0.802
(0.002)

0.848
(<0.001)

NREM −0.895
(<0.001)

−0.930
(<0.001)

−0.930
(<0.001)

−0.965
(<0.001)

−0.951
(<0.001)

0.996
(<0.001)

NREA −0.741
(0.006)

−0.818
(0.001)

−0.846
(0.001)

−0.874
(<0.001)

−0.909
(<0.001)

−0.935
(<0.001)

0.888
(<0.001)

TN 0.881
(<0.001)

0.881
(<0.001)

0.888
(<0.001)

0.916
(<0.001)

0.937
(<0.001)

0.701
(0.011)

−0.888
(<0.001)

−0.797
(0.002)

AN 0.657
(0.020)

0.587
(0.045)

0.448
(0.145)

0.552
(0.063)

0.503
(0.095)

0.263
(0.409)

−0.587
(0.045)

−0.350
(0.265)

0.510
(0.090)

Values in parentheses are two-tailed probabilities for the null hypothesis r=0. In case of significance (P<0.05) a negative (−)
correlation is indicated. TN= soil total N (%), AN= soil available N (mg kg−1 ). Other abbreviations are described in the legend of
Table 1

Factor Stand age (years) Soil available N (mg kg−1)

LMAg (g m−2) 4.579ns 1.139ns

LMAs (g m−2) 10.831** 4.679ns

NgM (% dry mass) 1.408ns 0.114ns

NsM (% dry mass) 7.346* 0.436ns

NgA (g N m−2) 7.794* 0.248ns

NsA (g N m−2) 53.403*** 0.900ns

NREM (%) 11.219** 0.251ns

NREA (%) 14.322** 0.346ns

Table 3 Results of analysis
of covariance (ANCOVA)
with stand age as the factor
and soil available N as
covariant
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alization. Often high humus content is even negative-
ly correlated with N availability (Christian Körner,
personal communication). In this study, soil available
N was not significantly related to soil total N
(Table 1). In fact, there is no agreement on how N
transformations change with secondary succession. In
boreal forests, N mineralization rates have been
reported to increase (Polglase et al. 1992; Brais et
al. 1995) or decrease (Van Cleve et al. 1983; Wardle
et al. 1997; Deluca et al. 2002) with secondary
succession. This divergence in findings may be
dependent upon the methodologies used or the
severity and characteristics of the disturbance prior
to secondary succession (Vitousek et al. 1989).
Wildfire has a net negative effect on C and N
mineralization through consumption of organic sub-
strates (White et al. 2004), and therefore N mineral-
ization rate would increase through stand
development as soil organic matter stocks increase.
P. tremuloides is restricted to soils with little organic
matter after wildfire. Thus temporal patterns of N
availability largely parallel the loss and accumulation
of organic matter as stands develop. Our results
suggested that the N availability in our ecosystem
reflected the balance of the loss of soil organic matter
during fire and its accumulation after fire. Increasing
N in soil with stand development could also be related
to biological inputs of N fixation (Zackrisson et al.
2004; Deluca et al. 2008) and accumulative atmo-
spheric N deposition (Magnani et al. 2007).

In our study, N concentration in green leaves
increased with stand age (Table 1). Increasing N
concentration with stand age could be a direct
consequence of increasing soil N supply because
green-leaf N concentration, in some instances, reflects
site fertility (Lambers et al. 2008). In the present
study, soil N availability, however, did not change
with stand age (Table 1), suggesting factors other than
soil N could have affected leaf-level N variation in P.
tremuloides. The changes in green-leaf N with stand
development might be related to the dilution effects
because the greater leaf biomass production rates in
younger stands could result in reduced N concen-
trations even if absolute uptake rates are high.
Compared to old stands, young stands have rapid
biomass production and thus higher N demands
(Miller 1995), which could be a possible driver of
higher N resorption efficiency in young stands. Other
factors such as an altered light regime with stand

development (Ilisson and Chen, unpublished data)
could also influence green-leaf N concentrations
because plants growing at different irradiances can
have widely different traits such as photosynthetic
capacity, growth rates and N economy (Chen and
Klinka 1997; Hikosaka 2005).

All the stands we sampled were even-aged,
dominated by Populus. Therefore, plant age would
correspond to stand age. Because trees generally
become old as stand ages, it is difficult to separate
the effects of tree age from the effects of stand age on
growth (Bond 2000; Mencuccini et al. 2007). For
example, we could not sample 139-yr-old trees in the
youngest stands and vice versa. In fact, chronose-
quence approach is still disputed because the space
for time substitution assumption may not be met in
sampling design (Johnson and Miyanishi 2008).
However, this type of approach is useful for studying
long-term changes in ecosystem structure and func-
tion over the life of a stand (Piccolo et al. 1994;
Walker and del Moral 2003; Bloom and Mallik 2006).

In this study, P. tremuloides generally resorbs
50%–80% of its foliar N prior to leaf senescence,
consistent with woody plants elsewhere (Yuan and
Chen 2009). Earlier studies on tropical soil chronose-
quence in Hawaii suggested that the proportion of N
and P resorbed by a native tree species, Metrosideros
polymorpha, varies inversely with nutrient availabil-
ity, from about 40% in intermediate-aged, fertile sites
to nearly 70% in youngest and oldest low-N sites
(Vitousek 1998). However, we did not find a signif-
icant effect of soil N on resorption efficiency in P.
tremuloides (Table 3). No nutritional controls on N
resorption efficiency were also found in other studies
(see review by Aerts 1996).

It should be noted that calculations based solely on
the difference in the N concentration between mature
green and senescent leaves ignore possible changes in
specific leaf mass due to resorption of carbon
compounds during senescence. Thus, estimates of
proportional N resorption made on the basis of leaf
area may be more accurate than those made on the
basis of leaf mass (van Heerwaarden et al. 2003;
Luyssaert et al. 2005). In this study, we calculated the
resorption of N from senesced leaves based on N
content per unit leaf mass and per unit leaf area
(Table 1). The results showed that both mass- and
area-based N resorption responded to stand age in a
similar pattern (Tables 1 and 2).
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Our study supports the hypothesis that green-leaf
N concentration increase, but N resorption efficiency
decreases with stand development (Table 1). High N
resorption in young stands in comparison with old
stands suggests better conservation of N in more
recently disturbed stands. Our results for N concen-
trations in senesced leaves of P. tremuloides ranged
from 6.4 to 10.7 mg g−1, depending on stand age.
Killingbeck (1996) suggested that any values less
than 7 mg g−1 for N could be considered “complete
resorption,” and values greater than 10 mg g−1 for N
could be considered “incomplete resorption.” By
these criteria, our results suggested that N resorption
in our study shifted from complete to incomplete with
stand development.

Previous studies have shown that the efficiency
and proficiency of autumn N remobilization from
senescing leaves exhibits genetic variation in Populus
and other tree species (Aerts 1996; Killingbeck 1996;
Harvey and van den Driessche 1999; Weih and Nordh
2002). If N economy differs among ecotypes such as
mountain birch (Weih and Karlsson 1999) and among
genotypes such as Salix (Weih and Nordh 2002), the
N resorption in Populus would be expected to be
affected by both genotype and environment (Cooke
and Weih 2005). Unfortunately, we have no informa-
tion about either ecotype or genotype of our studied
species. According to our sampling approach, the
studied species of P. tremuloides, however, were
anticipated to come from the same ecotype and
genotype, suggesting all differences was only depen-
dent upon the effects of stand age.

The inverse of the N concentration in leaf litter has
been used as an index of leaf-level N use efficiency
(NUE) (Vitousek 1982; Aerts and Chapin 2000; Yuan
and Li 2007). Following this approach, N resorption
proficiency increased and leaf-level NUE decreased
with stand age (Fig. 1). Because leaf-level NUE was
often found to increase with decreasing soil N
(Vitousek 1982; Yuan et al. 2006; Yuan et al. 2008),
the higher leaf-level NUE in younger stands sug-
gested that P. tremuloides used N more efficiently
than in old stands, although these stands were similar
in soil N availability (Table 1).

In summary, the extent of N resorption seems to
change as stand ages: younger stands were more
efficient and also more proficient in resorbing N than
old stands. The significant effect of stand age on
green- and senesced-leaf N concentrations supports

the hypothesis that this species could adjust its
resorption efficiency and proficiency in response to
stand aging.
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