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Abstract Changes in chemical properties in soil
around plant roots influence many microbial processes,
including those having an impact on greenhouse gas
emissions. To potentially mitigate these emissions
according to the Kyoto protocol, knowledge about
how and where these gases are produced and con-
sumed in soils is required. In this review, we focus on

the greenhouse gases nitrous oxide and methane,
which are produced by nitrifying and denitrifying
prokaryotes and methanogenic archaea, respectively.
After describing the microbial processes involved in
production and consumption of nitrous oxide and
methane and how they can be affected in the
rhizosphere, we give an overview of nitrous oxide
and methane emissions from the rhizosphere and soils
and sediments with plants. We also discuss strategies to
mitigate emissions from the rhizosphere and consider
possibilities for carbon sequestration.
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Introduction

Plants affect local conditions in the rhizosphere soil in
many ways that influence microbial activity, abun-
dance and community composition (Lynch 1990;
Sørensen 1997). Several of these factors have a direct
impact on microbial communities emitting green-
house gases (GHG), which are of major concern for
global change (Molina and Rovira 1964a; Tiedje
1988). The three main terrestrial GHG subject to the
Kyoto protocol are carbon dioxide (CO2), methane
(CH4), and nitrous oxide (N2O). While CO2 is
produced by all living organisms, N2O and CH4 are
both produced and reduced by microbial guilds
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(Conrad 1996). These gases are of major concern
since they have global warming potentials about 298
and 25 times, respectively, that of carbon dioxide over
a 100 years period (IPCC 2007). Nitrous oxide is a
side product of the aerobic nitrification process and an
obligate intermediate in the denitrification pathway
(Conrad 1996), and can therefore be emitted by both
nitrifiers and denitrifiers. However, only the latter are
also a sink of N2O. Whether soils are a net source or
sink of atmospheric N2O depends on the environmen-
tal factors regulating consumption and production, but
most soils are a net source (Conrad 1996). Methane is
produced by methanogenic archaea in anaerobic soil
and consumed by CH4 oxidizing bacteria in aerobic
soil. The main terrestrial CH4 sources are wetland
ecosystems, where both methanogens and methano-
trophs are present and active. Methane oxidation
occurs in most soils, and upland soils are mostly sinks
(LeMer and Roger 2001).

Nitrous oxide production and consumption are
regulated by oxygen partial pressure, and nitrification
is additionally controlled by the concentration of
ammonia and pH, while denitrification is also con-
trolled by availability of carbon and nitrate (Tiedje
1988). Methanogenesis is dependent on strict anaerobic
and low Redox conditions as well as on the fermen-
tative production of precursors for the methanogens,
whereas CH4 oxidation is mainly dependent on oxygen
and CH4 availability (LeMer and Roger 2001). All the
above mentioned factors are affected by the presence
of plant roots. The oxygen partial pressure can be
altered in the rhizosphere because of respiration by
roots and root-associated microorganisms, root con-
sumption of water, and root penetration into the soil,
which decreases soil compaction and creates channels
for gas transfer. In contrast, wetland plants can alter the
oxygen partial pressure by diffusion of the oxygen
through aerenchyma to the roots and the surrounding
soil (Armstrong 1971). Plants also release readily
available organic compounds in soil solution through
rhizodeposition, of which root exudation is the largest
component (Nguyen 2003). These root-derived organic
compounds are considered as a major driving force for
many microbial processes in the rhizosphere (Lynch
1990). Finally concentrations of nitrate and ammonium
also fluctuate in the rhizosphere due to root uptake.

With better understanding of the controls on GHG
production and reduction in arable soil, it will be
possible to develop appropriate management strategies

for mitigation. The IPCC (2007) report comprehen-
sively covers options for mitigation of N2O and CH4,
in addition to CO2 from agricultural systems. However,
few strategies really fully utilize the unique nature of
the rhizosphere, and with greater understanding of
controls on rhizosphere biogeochemistry, we will be
better placed to mitigate GHG emissions at the site of
production within the rhizosphere soil, in addition to
indirectly through agricultural management. In this
review, we describe the microbial processes involved
in production and consumption of N2O and CH4 and
how they can be regulated in the rhizosphere. We then
give an overview of GHG emissions from the
rhizosphere and cropped soils and discuss strategies
to mitigate emissions and possibilities for carbon
sequestration.

Microbial processes producing and reducing
nitrous oxide and methane in rhizosphere soil

Nitrification

Nitrification is a two-step process, consisting of the
conversion of ammonia (NH3) to nitrite (NO2

−) and
its subsequent conversion to nitrate (NO3

−). The
pioneering work of Winogradsky established that this
process is performed by chemolithotrophic bacteria
that respire with oxygen and assimilate CO2. These
chemolithotrophic bacteria are classified into two
groups, based on their ability to oxidize ammonia to
nitrite (ammonia-oxidizing bacteria) or nitrite to
nitrate (nitrite-oxidizing bacteria) (Kowalchuk and
Stephen 2001). The nitrifying bacteria are phyloge-
netically affiliated to the β- and γ-Proteobacteria, but
recent discoveries have demonstrated Crenarchaea to
also be important ammonia oxidizers in soil (Leininger
et al. 2006). In addition to chemolithotrophic nitrifica-
tion, some bacteria and fungi possess the potential for
heterotrophic nitrification, oxidizing both organic and
inorganic nitrogen compounds, and this process is
believed to play a role mainly in forest soils (Killham
1986). However, many of the approaches to study
heterotrophic nitrification have been performed in pure
culture systems and the significance of heterotrophic
nitrification in soils still needs to be determined
(DeBoer and Kowalchuk 2001; Stams et al. 1990).
During nitrification, the conversion of ammonia to the
highly mobile nitrate ion minimizes emissions of
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ammonia, but provides opportunities for nitrogen
losses by leaching or denitrification from soil and the
root zone (Giles 2005). The loss of nitrogen from the
root zone is an economic drain due to fertilizer loss,
but also has environmental implications, such as nitrate
pollution of ground water, eutrophication of surface
waters and emissions of the greenhouse gas N2O.

Nitrification in the rhizosphere of upland soils

Plants affect several factors that influence nitrifica-
tion. A long-term field trial comparing unfertilized
cropped soil and unfertilized bare fallow showed that
plants stimulate nitrification (Enwall et al. 2007). This
could be due to the increased organic matter that in
turn enhances nitrogen turnover in the soil, in
combination with increased aeration. Nevertheless,
several studies have reported nitrification to be nega-
tively affected in the rhizosphere (Lensi et al. 1992;
Molina and Rovira 1964b; Norton and Firestone 1996;
Priha et al. 1999; Robinson 1972). As an example,
Wheatley et al. (1990) showed that Pisum sativum,
Hordeum vulgare, Brassica campestris rapifera and
Lolium perenne depressed potential nitrification at a
certain plant development stage. A recent study
demonstrated that this negative rhizosphere effect on
gross nitrification rates was variable along the plant
root (Herman et al. 2006). Thus, gross nitrification
rates in soil near the root tip of Avena barbata were the
same as those in bulk soil, whereas nitrification was
lower in soil near the older root sections. This was due
to rapid uptake of NH4

+ by the older parts of the root,
which limited nitrification rates. Not only plants, but
also plant species specific effects on nitrification have
been reported. During the growing season, nitrification
rates were four times greater in Deschampsia patches
than in Acomastylis patches (Steltzer and Bowman
1998), and when comparing potential nitrification in
the rhizosphere of Pisum sativum, Hordeum vulgare,
Brassica campestris rapifera and Lolium perenne,
differences up to 10 fold between the plants were
shown (Wheatley et al. 1990). Abundance of ammonia
oxidizing bacteria, nitrification rates and nitrate con-
centrations were also significantly lower in the
rhizosphere of Brachiaria humidicola compared to
other pasture species (Ishikawa et al. 2003; Sylvester-
Bradley et al. 1988). The observed plant species effects
were attributed to large nitrogen inputs by non-
symbiotic nitrogen fixation in the rhizosphere of some

plants (Brejda et al. 1994) or differential nitrogen
uptake or root respiration by the various species. In
general, the lower activity of nitrifiers in the rhizo-
sphere can be explained by a decrease in ammonium
concentration due to plant uptake or by the hetere-
trophic microbes being more competitive compared to
autotrophic nitrifiers in this carbon rich environment.

Some studies have suggested that the negative
effects on nitrification could be due to an inhibition
phenomenon, since the existence of plant-derived
nitrification inhibitors is well known. However, the
hypothesis that the plant itself is capable of releasing
inhibitors of nitrification into soil has been at the
centre of a controversy for many years because of the
absence of direct evidence (Lata et al. 2000; Munro
1966; Rice and Pancholy 1972). The first indirect
evidence of an inhibition phenomenon was provided
by Moore and Waid (1971), who showed that addition
of root washings from different plants reduced the rate
of nitrification up to 84% in proportion to the added
amount (Moore and Waid 1971). More recently, using
transplantation of Hyparrhenia diplandra grass origi-
nating from high- or low-nitrifying soils, Lata et al.
(2004) showed that there was a significant individual
plant effect on nitrification. Thus, plants that originated
from the low-nitrifying soil decreased nitrification
activity in the high-nitrifying soil, and vice-versa.

A direct demonstration of plants decreasing am-
monia oxidation activity in soil was obtained by
Subbarao et al. (2007), who used a bioluminescence
assay based on a recombinant Nitrosomonas europaea
(Iizumi et al. 1998) to detect ammonia oxidation
inhibitors in root exudates of 18 plant species.
Inhibition of nitrification varied widely among the
different plant species, and the authors concluded that
nitrification inhibition was probably a widespread
phenomenon in tropical pasture grass (Subbarao et al.
2006, 2007). Inhibition of nitrification has also been
observed when cultivating oil seed rape. The tissues
of Brassica contain many secondary compounds,
including glucosinolates, which, upon disruption of
tissues, are hydrolyzed to form iso-thiocyanates
(ITCs) and other toxic volatile sulphuric compounds
(Bending and Lincoln 1999). ITCs can inhibit nitrifi-
cation by either reducing the abundance of nitrifying
bacteria or lowering nitrification rates (Bending and
Lincoln 2000). However, the identification of the
chemical mediator(s) in root exudates responsible for
inhibition of nitrification in the rhizosphere is still
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missing. Plant control of nitrification could provide an
advantage in competition for nitrogen, and since
nitrification is the prior step to processes that can
reduce the plant available pool of nitrogen, this ability
of the plant to inhibit nitrification is a sophisticated
way to reduce nitrogen losses through nitrate leaching
or denitrification (Fillery 2007). Thus, inhibition of
nitrification can induce environmentally significant
changes in the ecosystem nitrogen balance (Lata et al.
2004).

Plant effects on nitrification in rice paddies
and wetland sediments

Under flooded conditions soils become anoxic almost
immediately beneath the soil–water interface. As a
result, nitrification is restricted to a millimetre-thick
surface layer. However, wetland plants have developed
several strategies to transport oxygen to the root-zone,
where it can radially diffuse to the rhizosphere
(Armstrong 1971; Frenzel et al. 1992, Colmer 2003,
Voesnek et al. 2006), thus establishing an aerobic
habitat for nitrification (Fig. 1).

Contrasting effects of wetland plants on nitrifiers
have been described. When comparing rice-planted
and unplanted pots, Chen et al. (1998) could not
detect any difference in nitrification rates. On the
other hand, a study conducted in irrigated rice fields
planted with three different rice cultivars revealed
significant differences in both size of the nitrifier
community and nitrification rates between the culti-
vars (Gosh and Kashyap 2003), which were attributed
to variation in root porosity among the cultivars. As in
upland soils, the effect of plants on nitrification in
water saturated systems is most likely dependent on
nitrogen concentration, since ammonia oxidizers are
competing for nitrogen with plants and heterotrophic
bacteria (Verhagen et al. 1994). Thus, Arth and
Frenzel (2000) observed that in unfertilized rice
paddy, assimilation by the rice roots lowered the
available ammonium to a level where nitrification
virtually could not occur.

Studies have also been performed to spatially
locate root-associated nitrification (Arth and Frenzel
2000; Li et al. 2004). In a fertilized rice paddy,
nitrification was detected by multi-channel micro-
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electrodes at a distance of 0–2 mm from the surface of
the rice roots, demonstrating that the effect of rice on
nitrification is limited to the root surface (Arth and
Frenzel 2000). Accordingly, Briones et al. (2002)
showed enrichment of ammonia oxidizing bacteria on
rice root surfaces, which suggests that root surface
populations of ammonia oxidizing bacteria play a
major role in determining nitrification rates in the rice
rhizosphere. Stimulation of numbers and activity of
nitrifying bacteria has also been described for other
oxygen-releasing plants (Bodelier et al. 1996; Engelaar
et al. 1995), indicating that nitrification in the
rhizosphere of aquatic plants could be a common
phenomenon in conditions where nitrogen is not
limiting. In constructed wetlands, ammonium removal
has been shown to be higher in Phragmites sp. stands
than in those planted with Typha sp. (Gersberg et al.
1986), but it remains unclear whether this is due
mainly to higher nitrification rates in the Phragmites
sp. rhizosphere, or due to a more efficient denitrification
in sediments covered with this species. Despite the
importance of wetland vegetation for nitrogen removal,
studies of plant and plant-species effects on nitrification
rates and ecology of nitrifiers are scarce.

Nitrate reduction and denitrification

Dissimilatory nitrate reduction into nitrite can be
performed by microorganisms that, in contrast to
nitrifiers, belong to most of the prokaryotic families
(Philippot 1999). The produced nitrite can be either
reduced into ammonia by dissimilatory nitrate reduction
to ammonium (DNRA, also termed nitrate ammonifi-
cation) or into nitric oxide (NO), nitrous oxide (N2O) or
dinitrogen gas (N2) during denitrification. In both
processes, nitrogen oxides are used as terminal electron
acceptors instead of oxygen for generation of a trans-
membrane proton electrochemical potential across the
cytoplasmic membrane. Denitrification is the main
biological process responsible for returning fixed
nitrogen to the atmosphere, thus closing the nitrogen
cycle. This reduction of soluble nitrogen to gaseous
nitrogen is negative for agriculture, since it can deplete
the soil of nitrate, an essential plant nutrient. The
denitrification N2O/N2 product ratio is variable, and
N2O may even be the dominant end product (Chèneby
et al. 1998). However, denitrification also provides a
valuable ecosystem service by mediating nitrogen
removal from nitrate-polluted waters in sediments and

other water saturated soils. The ecology of denitrifiers
in agricultural soils has recently been reviewed in
detail (Philippot et al. 2007).

Nitrate reduction and denitrification
in the rhizosphere of upland soils

Several studies have reported that plants can influence
the activity, diversity and abundance of nitrate
reducers and denitrifiers. Woldendorp (1962) was
the first to show that the living root system stimulated
denitrification. This early study was followed by
several more quantitative measurements of nitrate
reduction or denitrification activities. Rate increases
ranging from two to 22 times were observed in
rhizosphere soil compared to bulk soil (Bakken 1988;
Hojberg et al. 1996; Klemedtsson et al. 1987;
Philippot et al. 2006; Smith and Tiedje 1979). The
stimulation of denitrification in the rhizosphere is
positively correlated with soil nitrate concentration. At
low NO3

− concentrations, denitrification rates can even
be lower in the rhizosphere compared to the bulk soil
(Qian et al. 1997; Smith and Tiedje 1979). It has also
been reported that the rhizosphere effect on denitrifi-
cation was associated with air-filled pore space
(Wollersheim et al. 1987). Thus, denitrification rate
increased ten-fold at a low moisture tension, while at
medium, or high moisture tension, plants had no, or
even a negative, effect on denitrification (Bakken
1988). Accordingly, Prade and Trolldenier (1988)
showed that the rhizosphere effect on denitrification
was confined to air-filled porosity below 10–12% (v/v).

The primary driver of rhizosphere microbial
community development is the release of plant-
derived low molecular weight organic compounds
into the soil, and thus denitrification rates are often
positively correlated with total C or soluble organic C
(Baggs and Blum 2004; Bijay-Singh et al. 1988; Paul
and Beauchamp 1989). However, contradictory
results have been published concerning the influence
of the organic compounds released by roots on
denitrification. On one hand, it has been reported that
root exudates could not provide metabolizable organic
compounds to the denitrification process (Haider et al.
1987), or that root-derived organic compounds were
rapidly immobilized or mineralized by microorganisms
in the rhizosphere, and thus had little influence on
denitrification (McCarty and Bremner 1993). On the
other hand, Qian et al. (1997) argued that labile organic
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compounds from roots influence denitrification losses
of nitrogen. In two recent studies, Mounier et al.
(2004) and Henry et al. (2008) demonstrated that
addition of root exudates or mucilage to soil without
plants could stimulate nitrate reduction or denitrifica-
tion activity with increases in the range of those
observed in planted soil. This suggests that the higher
denitrification activity in soil surrounding the plant
roots is mainly due to rhizodeposition. However,
factors regulating denitrification in the rhizosphere are
strongly interwoven and the stimulating effect of root-
derived organic compounds on denitrification can only
be observed under non-limiting concentrations of
nitrate and oxygen.

While effects of plants on the activity of the nitrate
reducer or denitrifier communities have been widely
investigated, there are fewer studies on how plants
affect the composition of these functional communities.
The distribution of denitrifying isolates from soil with or
without maize, differed, and Agrobacterium-related
denitrifiers were enriched in the planted soil (Chèneby
et al. 2004). The nitrate reducer community structure
was also significantly different in the maize rhizo-
sphere compared to bulk soil (Chèneby et al. 2003;
Philippot et al. 2002). Analysis of the effect of root-
derived organic compounds on the structure and
density of nitrate reducing and denitrifying communi-
ties revealed minor or no changes after addition of
mucilage or artificial root exudates, even though nitrate
reduction and denitrification activity were strongly
stimulated (Henry et al. 2008; Mounier et al. 2004).
Therefore, even though root-derived organic com-
pounds can stimulate denitrification activity, it does
not seem to be a strong driver of the denitrifier
community structure in soil (Philippot et al. 2007).

Effects of plant species have mainly been studied
on denitrifier activity rather than denitrifier commu-
nity structure and are attributed to differences in
quality and quantity of organic compound flow from
roots. Higher denitrification rates in the rhizosphere of
legumes compared to other plants were observed in
several studies (Kilian and Werner 1996; Scaglia et al.
1985; Svensson et al. 1991). Significant differences in
denitrification activity below grass tufts among three
species were also reported by Patra et al. (2006). Some
studies have shown plant species to have a significant
influence on the composition of the denitrifier com-
munity (Bremer et al. 2007; Patra et al. 2006).
Nevertheless, comparison of the composition of the

nitrate reducer community under Lolium perenne and
Trifolium repens did not reveal any species effect
(Deiglmayr et al. 2004). Analysis of the denitrification
gene transcripts in the rhizosphere of three plant
species revealed that the active denitrifiers differed,
even though the denitrifier community structure based
on the total gene pool was similar for all plant species
investigated (Sharma et al. 2005).

Plant effects on nitrate reduction and denitrification
in rice paddies and wetland sediments

The release of oxygen by the roots of wetland plants
can stimulate nitrification and subsequently denitrifi-
cation after diffusion of nitrate into the reduced zone
of the sediment (Fig. 1). Thus, it is generally agreed
that denitrification rates in the rhizosphere of aeren-
chymatous plants are regulated by the rate of
nitrification (Arth et al. 1998; Reedy et al. 1989).
Furthermore, aerenchymatous plants could also affect
the nitrate reducers and denitrifiers by nitrate uptake
and exudation of organic compounds. Arth and
Frenzel (2000) showed that while nitrification oc-
curred at a distance of 0–2 mm from the surface
around individual rice roots, denitrification occurred
at 1.5–5.0 mm. There is a large body of literature
estimating denitrification rates from paddy rice (e.g.
Arth et al. 1998; Buresh and DeDatta 1990; Xing et al.
2002a; Zhu et al. 2003) and denitrification has been
recognized as one of the major ways of nitrogen loss in
this agroecosystem, thus contributing to the low
nitrogen fertilizer efficiency (Cassman et al. 1993;
Reddy and Patrick 1986).

In wetlands, vegetation coverage is an important
supplier of organic compounds, fueling denitrification
(Kallner-Bastviken et al. 2005). In addition, organic
compounds can also indirectly enhance denitrification
by increasing aerobic respiration, which lowers
oxygen levels in the sediment (Nielsen et al. 1990).
Thus, an increase in both size and activity of the
nitrate reducers was observed in the Glyceria maxima
rhizosphere (Nijburg et al. 1997). The composition of
the nitrate-reducer community was shown to be
driven by the presence of G. maxima when nitrate
was limiting, but when input levels of nitrate were
high, nitrate availability determined the community
composition. It is not known whether or not the
observed positive effects of wetland plants depend on
plant species. Kallner-Bastviken et al. (2003) did not
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find any difference in potential denitrification activities
in intact cores with Phragmites sp. or Typha sp. shoots,
although others have shown that samples from Typha
latifolia and Phragmites australis rhizospheres ex-
hibited significantly different nitrate reduction and
denitrification rates (Ruiz-Rueda et al. 2008). These
differences were connected to typical Typha sp. and
Phragmites sp. associated denitrifying communities.
Not sure what this sentence means Accordingly, in
another wetland, the denitrifying community structure
differed in sediment with an invasive cattail hybrid
Typha x glauca compared to sediment with the native
plant species, Scirpus sp. (Angeloni et al. 2006).

Methanogenesis and methane oxidation

Methanogenesis is the microbiological production of
CH4 using small organic compounds as a terminal
electron acceptor. Methanogenic organisms belong to
the phylum Euryarcheota within the domain Archaea,
and produce CH4 either by converting acetic acid to
CH4 and CO2, or by converting CO2 with H2 to CH4

(Conrad 2007). These simple substrates are provided
by other organisms through fermentation. Other forms
of carbon, such as formate or methylated compounds,
can also be used by methanogens. Methanogenesis
requires strict anaerobiosis and low Redox potential.
Thus, CH4 is produced only after depletion of other
electron acceptors; nitrate, sulphate, Mn(IV) and Fe
(III) (Conrad 2007), which should occur after the
Redox potential has dropped to Eh≈−300 mV (Kludze
et al. 1993). However, CH4 emissions have been
observed from irrigated rice fields already at Eh>
300 mV (Jiao et al. 2006).

A significant proportion of the CH4 produced in
anaerobic layers is oxidized before it reaches the
atmosphere. Therefore, net CH4 emissions are the
results of two opposite processes: CH4 production by
methanogenic archaea and CH4 oxidation by meth-
anotrophic bacteria. Methane oxidizers use CH4 as
their sole carbon and energy source and have an
obligatory aerobic metabolism, thereby depending on
access to oxygen. Diffusion rates of methane and
oxygen are key factors controlling the activity of
methanotrophs. They are divided into two families:
the Methylococcaeae, belonging to Gammaproteo-
bacteria, and the Methylocystaceae, belonging to the
Alphaproteobacteria, also known as type I and type II
(Bowman 1999; Hanson and Hanson 1996).

Due to homology between the enzymes catalyzing
the first steps in methane oxidation and ammonia
oxidation, ammonia oxidizing bacteria may also hold
the potential to co-oxidize CH4. However, several
studies have excluded a significant role of ammonia
oxidizers in CH4 oxidation (Bodelier and Frenzel
1999; Klemedtsson et al. 1999). The ecology of both
methanogens and methanotrophs has recently been
reviewed by Conrad (2007).

Plant effects on methane production and consumption
in rice paddies and other soils

Wetland plants regulate the CH4 budget in several
ways (Fig. 1). First, exudation by plant roots provides
carbon compound precursors to methanogenic archaea
(Aulakh et al. 2001a, b; Frenzel and Bosse 1996;
Kankaala and Bergström 2004; van Veen et al. 1989).
Pulse labelling of rice plants with 13C–CO2 or

14C–CO2

showed that plant photosynthates excreted from the
roots are converted to CH4 after being fermented to
acetate and H2, which indicates that plant photo-
synthates are a major source of CH4 in the rhizosphere
(Dannenberg and Conrad 1999; Minoda and Kimura
1994; Minoda et al. 1996). Watanabe et al. (1999)
estimated that the supply of organic compounds from
rice plants in the form of exudates and sloughed tissues
could represent between 37% and 40% of the carbon
sources for CH4 emission. Stimulation of methano-
genesis by exudation has also been shown in the
rhizosphere of natural wetland plants (Kludze and
DeLaune 1994; Saarnio et al. 2004).

A second effect of wetland plants is the passive
transport of CH4 from the anoxic soil to the
atmosphere through the plant aerenchyma. Transport
of CH4 from plant roots to the shoots and release into
the atmosphere can represent up to 90% of the total
CH4 flux (Butterbach-Bahl et al. 1997; Cicerone and
Shetter 1981; Holtzapfel-Pschorn et al. 1986; Nouchi
et al. 1990; Schültz et al. 1989). The aerenchyma of
wetland plants is also a conduit pipe for oxygen,
allowing oxygen diffusion into the rhizosphere and
the adjacent sediment, which can stimulate methane
oxidizing bacteria. The transport of oxygen by rice
roots was illustrated by the work of Frenzel et al.
(1992), who detected oxygen down to the depth of
40 mm in a flooded soil planted with rice, whereas it
was confined to a thin surface layer of 3.5 mm in the
unplanted soil. Another important consequence of the
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increased oxygen concentration in the soil is that the
Redox potential will change, and reductants such as
Fe2+, Mn2+ and H2S will be re-oxidized (Kludze et al.
1993). The increased Redox potential will severely
hamper CH4 production and so lower emissions.

A stimulatory effect of rice plants on CH4

production has been reported in several studies
(Dannenberg and Conrad 1999; Holtzapfel-Pschorn
et al. 1986) with decreasing rates with depth and
distance from the plant (Sass et al. 1991). Whether the
net increase of CH4 production observed in these
studies results from stimulation of methanogenesis,
CH4 plant-mediated transport or an inhibition of CH4

oxidation is difficult to know. However, in rice fields,
variations in CH4 emission were mostly attributed to
variations in methanotrophic activity (Schütz et al.
1989).

In contrast to CH4 production, which shows
pronounced variation during the year, the composition
of the methanogenic community in rice fields seems
to be rather stable (Krüger et al. 2005). The
methanogenic community structure was also very
similar between rice root and soil samples, with a
relatively lower abundance of Methanosaetacae on
the roots as the only observed difference. Recently,
Lu and Conrad (2005) demonstrated that rice cluster I
methanogens, an uncultured lineage forming a distinct
clade within the phylogenetic radation of Methano-
sarcinales and Methanomicrobiales, were the key
players in CH4 production from plant-derived organic
compounds in rice microcosms. In addition to rice
cluster I, Methanosarcinae, Methanosaetaceae, and
Methanosarcinaceae, were shown to be present on
rice roots (Chin et al. 2004).

The alteration of CH4 oxidation rates by plants
have been observed in several studies showing higher
potential rates in the root compartments than in root-
free compartments of rice microcosms (Bodelier and
Frenzel 1999; Gilbert and Frenzel 1998). However,
the extent to which root-associated methane oxidation
varies among plant taxa and among wetland ecosystems
is unknown (King 1996). Similarly to CH4 production,
temporal variation of CH4 oxidation was observed in
rice paddies. Thus, Eller and Frenzel (2001) found that
in situ CH4 oxidation was important only during the
vegetative growth phase of the plants and then later
became negligible. In contrast, Bosse and Frenzel
(1998) observed that CH4 oxidation occurred during
the whole growth period of rice. The fact that

methanotrophs are able to profit from the oxygen
release from the rice plants is reflected not only by
increase of their potential activities, but also by their
increase in numbers in the rhizosphere. Thus, MPN
counts of methanotrophs were 15 times higher in the
root compartment compared to in the non-root com-
partment (Bodelier and Frenzel 1999). A similar
increase was reported by Gilbert and Frenzel (1998),
who observed one order of magnitude higher numbers
of methane-oxidizing bacteria in the rhizosphere than
in the bulk soil. Methanotrophs are also found in
surface-sterilised roots and basal culms, which indi-
cates their ability to colonise the interior of roots and
culms (Bosse and Frenzel 1997). Investigation of the
methanotroph community structure in rice paddies
revealed the presence of both the Methylococcaceae
and Methylocystaceae families in soil and root com-
partments over the whole season (Eller and Frenzel
2001). A recent study demonstrated that Methylococ-
caceae and Methylocystaceae populations in the rhizo-
spheric soil and on the rice roots changed differently
over time with respect to activity and population size,
and that Methylococcaceae methanotrophs played a
particularly important role in the rice field ecosystem
(Shrestha et al. 2008).

Emissions of greenhouse gases
from the rhizosphere

Nitrous oxide emissions from rhizosphere soil

Evidence from different cropping systems

Emissions of N2O are typically greater in the presence
of growing plants, particularly legumes, than from
bare soil (e.g. Kilian and Werner 1996; Klemedtsson
et al. 1987). Emission factors vary from 0.1% to 7%
of nitrogen applied in different agricultural systems
(Skiba and Smith 2000), reflecting differences in
vegetation type, crop management and climate.
Measured emissions can vary significantly with crop
type, for example ranging from 0.2 to 0.7 kg N2O–N
100 kg−1 N applied for small grain cereals, 0.3–5.8 kg
N2O–N 100 kg−1 N applied from cut grassland
(Dobbie et al. 1999), and 3.9–8.7 kg N2O–N
ha−1 year−1 from maize fields (Sehy et al. 2003). In
legume fields, emissions range from 0.34 to 4.6 kg
N2O–N ha−1 year−1 (Eichner 1990), including natural
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emissions, those associated with cultivation, and those
derived from nitrogen fixed by the legume. Yang and
Cai (2006) demonstrated the effect of soybean growth
on N2O emission to vary with plant growth stage,
primarily being controlled by available nitrogen and
mineralization during the early growth stage, but in
later growth by quantity of root exudates, itself being
closely related to plant photosynthesis.

There are several reports of low N2O emissions
from rice paddy fields were low (Buresh and Austin
1988; Lindau et al. 1990; Smith et al. 1982), with less
than 0.1% of the applied nitrogen emitted as N2O in
temperate and tropical rice fields when soils are
flooded (Freney 1997). However, it has since been
found that N2O is mainly emitted during the non-
flooding periods (Xing 1998). For example, the
annual N2O emission from a rice-flooding fallow
system, which received 300 kg N fertilizer, and a
rice–wheat cropping system receiving 680 kg N
fertilizer were 1.4 and 4.3 kg N2O–N ha−1 year−1,
respectively (Xing et al. 2002b). Similar emission
rates (1.3 and 3.6 kg N2O–N ha−1 year−1) were
reported in other nitrogen fertilized rice cropping
systems with crop rotations including fallow or green
manure (Xiong et al. 2002).

Despite the plethora of data on emissions from
different cropping systems, few attempts have been
made to attribute N2O emission to rhizosphere soil
per se, where, for example comparisons are made
within and between crop rows. These have demonstrated
a strong influence of plant roots, with decreasing
emissions measured with distance away from the root
(Smith and Tiedje 1979). We also lack long-term
studies encompassing several cropping seasons or crop
rotations, so that any gradual loss of residual fertilizer-
or residue nitrogen remains unquantified, despite it
being recognized that in a variable climate, several
years’ data is required to obtain a robust estimate of
emissions (Dobbie et al. 1999).

Primary drivers of nitrous oxide production
in the rhizosphere and their effects
on the N2O-to-N2 ratio

Nitrogen application, oxygen partial pressure, carbon
availability and pH are considered the primary
determinants of rates of ammonia oxidation and
denitrification in the rhizosphere. Nitrogen fertilizer
application results in short-term increased N2O

emissions (Bouwman 1996; Mosier 1994) that last
between several days and up to a few weeks
(VanCleemput et al. 1994). This increase in N2O
emissions can be exacerbated by a raised denitrifier
N2O-to-N2 product ratio following nitrogen fertilizer
application since nitrate is preferred over N2O as an
electron acceptor for denitrifiers at concentrations of
>10 μg g−1 (Baggs et al. 2003; Blackmer and
Bremner 1978). Inubishi et al. (1996) found that
denitrifier N2O production rapidly responded to
nitrate application, whereas there was a lag in the
response of nitrifiers, even when a large quantity of
ammonium was added to soils. In contrast, Baggs
et al. (2003) observed that nitrification was the
predominant N2O producing process over denitrifica-
tion in the rhizosphere of Lolium perenne during the
first seven days after application of NH4NO3. In
conditions where nitrification and denitrification are
limited by ammonium and nitrate, respectively, roots
compete with the microorganisms for nitrogen and
may lower emissions. This means that sometimes
greater emissions are reported for fallow than for
cropped systems (Duxbury et al. 1982).

The anaerobic volume of soil is a key factor
affecting both nitrification and denitrification. Tillage
has an important role to play in altering the aeration
status of soil through modifying the soil structure,
with typically higher N2O emission from no-till soils
compared to tilled soils (Baggs et al. 2003, 2006;
Linn and Doran 1984). In terms of potential for
denitrification, this is exacerbated by the often higher
soil organic matter availability in the upper topsoil of
no-till soils (Nieder et al. 1989). Denitrification is the
predominant N2O producing process above 70–80%
water-filled pore space (WFPS; Davidson 1991), or at
oxygen partial pressures below 0.5% (Parkin and
Tiedje 1984), with ammonia oxidation demonstrated
to be predominant at lower WFPS (Bateman and
Baggs 2005). The N2O-to-N2 ratio falls approaching
100% WFPS, but the nitrous oxide reductase is
thought to lag behind the nitrate reductase in time
following anoxic conditions (Letey et al. 1980).

The role of organic carbon in the regulation of
N2O-to N2 ratios is still poorly understood and the
importance of root-derived organic compounds flow
in the rhizosphere is unknown against that of soil
organic matter. Haller and Stolp (1985) provided
evidence for rhizosphere stimulation of denitrification,
with Pseudomonas aeruginosa producing 1.8 ml N2O–
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N day−1, which was equivalent to consumption of
72 mg glucose-C day−1 from root exudation. Emissions
of N2O have also been reported to be raised, by a
factor of 10 or more, following cutting or damage of
plants (Beck and Christensen 1987). This is most likely
in response to organic compounds released from the
roots stimulating denitrification. Recently, an effect of
root exudate composition on the denitrifier N2O-to-N2

ratio was reported by Henry et al. (2008), where, N2O-
to-N2 ratios of 0.3 and 1 were observed in microcosms
amended with artificial root exudates containing 80%
and 40% of sugar, respectively. Increased belowground
organic compounds allocation by Lolium perenne
swards under elevated partial pressure of carbon
dioxide has also been demonstrated to stimulate
denitrifier N2O production (Baggs and Blum 2004;
Baggs et al. 2003).

Another key factor that can affect N2O production
in soil is pH, but plant-mediated pH effects on N2O
production during nitrification and denitrification
have yet to be directly determined. Activity of
ammonia oxidizing bacteria may be expected to be
reduced at low pH, due to a decline in NH3

availability. However, the pH effect on N2O emis-
sions by nitrification is not clear and both greater
(Martikainen and DeBoer 1993) and less (Goodroad
and Keeney 1984) nitrifier-N2O production has been
reported at soil pH 4 than at pH 6. Production of N2O
by denitrification can also be influenced by decreased
pH in the rhizosphere. The nitrous oxide reductase is
known to be sensitive to low pH (Firestone et al.
1980) and Thomsen et al. (1994) showed that

reduction of N2O to N2 was inhibited at low pH
values in Paracoccus. Accordingly, several studies
reported that decreasing soil pH increases N2O
production by denitrification (Nägele and Conrad
1990; Šimek and Cooper 2002).

Where is nitrous oxide produced in the rhizosphere?

Most of the above studies have measured net
emissions from cropped soil, but it is unknown
spatially where this N2O is produced in the rhizosphere.
However, it is generally accepted that denitrifier
activity decreases with distance from roots (Smith
and Tiedje 1979). The different drivers of nitrification
and denitrification support the idea that these processes
are spatially distinct within the rhizosphere, with
denitrification being more dependent on root-derived
organic compounds and lowered oxygen availability,
but nitrification sensitive to pH effects, and competi-
tion with plants for available ammonium (Fig. 2).
Spatial location of N2O production may also diverge
over time in conjunction with altered root exudation or
root respiration during plant growth and development.
The significance and location of any ‘hotspots and hot
moments’ have yet to be verified, and we currently still
rely on theoretical models (Arah and Smith 1989;
Smith 1980). Poor characterization at the micro scale
raises the question of whether the key process drivers,
for denitrification and nitrification are the same, and of
the same ranked significance, with differing scale?
Only if this is so, can known responses at the plot scale
be used to understand interactions within the rhizo-

N
2O

a b

Denitrification

Nitrification

Water filled pore
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Fig. 2 Conceptual
representation of the spatial
arrangement of microsites in
the rhizosphere, and
hypothesized N2O
production by nitrification
and denitrification with
distance from a plant root as
influenced by carbon,
oxygen and [NH4

+]
gradients. N2O production
is based on putative nitrifi-
cation and denitrification
rates
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sphere. However, at the plot or field level soil
hydrology and frequency and duration of rainfall
events often become the primary drivers of denitrifier-
N2O production (Dobbie and Smith 2006; Sextone et al.
1985).

Methane emissions from rhizosphere soil

Rice paddies are one of the most important sources of
atmospheric CH4, with a global emission ranging
from 30 to 50 Tg CH4 year−1, which account for
about 10% to 20% of the global CH4 budget. Rice
photosynthates can comprise up to more than 50% of
total CH4 emissions (Watanabe et al. 1999) and
transport of CH4 up to 90%. There is an impressive
literature on CH4 emissions from rice paddies. A
seasonal pattern of CH4 emissions is commonly
reported with two or three maxima observed in
irrigated rice fields during the cropping season. A
diurnal pattern is also observed with maximum rates
in the afternoon (Schültz et al. 1989). Mean CH4

emission rates observed in rice fields during the
growing season in China, India or the Philippines
ranged from 0.02 to 1.3 g CH4 m

−2 day−1, depending
mainly on the irrigation and fertilization regimes (Jing
et al. 2002; Gosh et al. 2003; Wassmann et al. 1999).
As examples of the great variability of CH4 emissions,
rates ranging from 0.0035 to 0.180 g CH4 m−2 day−1

were reported from flooded rice paddies in California
(Cicerone and Shetter 1981).

Methane emissions from cultivated or natural
wetlands are usually lower than 0.2 g CH4 m−2 h−1

(Le Mer and Roger 2001). In wetlands, aquatic plants
generally transport ten times the amount of CH4

relative to non-vegetated areas (Chanton 2005) and
this differ between plant species (Ding et al. 2005).
CH4 transport through the aerenchyma are estimated
to account for 50% to 90% of total emissions
(Cicerone and Shetter 1981). However, ebullition is
thought to account for 18–50% of total CH4 emissions
from Swedish wetlands (Christensen et al. 2003).

Fifteen percent of the net carbon fixed by wetlands
may be released to the atmosphere as CH4 (Brix et al.
2001). Thus, most of the CH4 flux in a northern
Minnesota peatland was derived from recently fixed
carbon in living vegetation, and not much from
decomposition of old peat (Chanton et al. 1995). In
peat-forming wetlands, bryophytes (liverworts, horn-
worts and mosses) are more sensitive to water table

position than vascular plants, and may therefore be
used as predictors of CH4 emission (Joabsson et al.
1999). Nilsson and Bohlin (1993) found that both
CH4 and CO2 concentrations in Swedish mires were
positively correlated with Sphagnum remains and
negatively correlated with Carex remains in peat.
This difference was attributed to less easily degrad-
able carbon in Carex compared to Sphagnum.
Importance of vegetation type was confirmed in a
large national inventory of Swedish mires comprising
3,157 measured chamber flux rates, where it was
estimated that sedge mires accounted for 96% of the
CH4 emitted from natural wetlands in Sweden
(Nilsson et al. 2001). Vegetation composition was
also found to be an important factor controlling CH4

emission from an ombrotrophic peatland, with greater
CH4 emissions observed from Eriophorum sp. areas
than from Sphagnum areas (Frenzel and Rudolph
1998). Accordingly, CH4 emissions of about 72 mg
CH4 m−2 day−1 were observed in areas containing
both E. vaginatum L. and Sphagnum, which was more
than six times higher than areas without E. vaginatum
(Greenup et al. 2000). Similar results were reported
by Minkkinen and Laine (2006), who observed the
highest emissions of 29 mg CH4 m−2 day−1 from E.
vaginatum L., with a decreasing trend to Sphagna
(10.0 mg CH4 m−2 day−1) and forest moss (2.6 mg
CH4 m−2 day−1). An effect of plant cover was also
reported in freshwater marshes in China with higher
CH4 fluxes during the summer season of 168 to
744 mg CH4 m

−2 day−1 in the rhizosphere of a Carex
marsh than in the Deyeuxia angustifolia marsh (Ding
et al. 2004).

Potential feedback controls of greenhouse gas
production in the rhizosphere

Carbon sequestration in the rhizosphere

Carbon sequestration in soil is described as a
promising way for reducing the increasing atmospheric
carbon dioxide concentration (3.2 Pg C y−1) and
carbon storage in agricultural soils is mentioned
under Article 3.4 of the Kyoto Protocol. The
terrestrial carbon reservoir is 1,500∼1,600 Pg of
organic-C in the first meter depth (Eswaran et al.
1995), which is more than twice that in the vegetation
or the atmospheric pools (Lal 2004). Terrestrial
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carbon sequestration is controlled by the balance of
carbon inputs from primary production and subsequent
storage in soil, and outputs through degradation of
organic compounds, for which both plants and microbes
are accountable. Carbon input from plants mainly
includes transfer of the carbon stored in dead plant
biomass into the soil by decomposition, and accumula-
tion of soil organic matter due to the humification
process after plant death is well documented. The
humification rate varies depending on climatic con-
ditions, and plant biochemical composition. Perennial
and early successional systems increase storage of
soil carbon (Robertson et al. 2000), but in agricultural
soils, carbon losses exceed the gains. Conversion of
natural ecosystems to agricultural land resulted in
the loss of 30% to 75% of their antecedent soil
organic carbon pool, which is estimated at 50 to
100 Pg of C (0.8 Pg per year) (Jarecki and Lal 2003;
McLauchlan et al. 2006; Schlesinger 1984). The
rhizosphere could hypothetically make a significant
contribution to carbon input, since about 17% of the
plant-fixed carbon is transferred to the rhizosphere
soil through root exudates, which corresponds to up
to 50% of the plant biomass (Nguyen 2003).
However, only a few studies on soil carbon input
from rhizodeposits exist and hitherto, it has been
shown that most of the root exudates are oxidized to
carbon dioxide within a few hours (Jones and Hodge
1999; Kuzyakov and Demin 1998; Verburg et al.
1998), and less than 5% of the carbon transferred to
the rhizosphere through root exudates is incorporated
into soil organic matter (Kumar et al. 2006; Nguyen
2003). Another source of C input in the rhizosphere
is Mycorrhiza which act as a plant C-sink. Thus, a
recent study suggested that turnover of mycorrhizal
external mycelium may be of importance for the
transfer of root derived C to soil organic matter
(Godbold et al. 2006). On the other hand, the
rhizosphere can also be source of carbon dioxide
through the decay of soil organic matter, which can
be stimulated by plant-derived carbon and is referred
to as the ‘rhizosphere priming effect’ (Kuzyakov and
Demin 1998). However, the supply of labile carbon,
such as soluble sugars, amino acids, root mucilage or
rhizosphere extract, induces no or little affect on
decomposition of soil organic matter, compared to
more recalcitrant plant derived carbon, such as
ryegrass, cellulose or wheat straw (Fontaine et al.
2007; Mary et al. 1992, 1993).

Whilst the rhizosphere may have a potential
contribution to carbon sequestration, the amount of
carbon stored in soil mainly depends on land-
management practices, edaphic factors and climate.
There is a large body of literature on management
strategies to increase the net carbon storage in agricul-
tural soils (Post et al. 2004). Such practices include
reduced tillage, increasing residue inputs, crop rotation
with cover crops, green manures, or perennial crops.
Most of the increases in soil carbon associated with
these practices result from reversing processes by
which traditional management has depleted the soil
carbon stocks that accumulated under native perennial
vegetation (Cole et al. 1997). Thus, assuming a
recovery of 50% of carbon losses in agricultural soils,
the global potential for C sequestration over the next
50–100 years would be approximately 25–50 Pg C. In
Europe, estimates of the carbon sequestration capacity
of agricultural soils are up to 16–23 Tg C year−1

(Freibauer et al. 2004; Smith et al. 1998).

Opportunities for mitigation of nitrous oxide
emissions in the rhizosphere

Most pertinent to mitigation of rhizosphere N2O
emissions in arable soil are synchronization of
nitrogen application to crop demand, precision farm-
ing strategies with use of slow- or controlled-release
fertilizers (McTaggart and Tsuruta 2003), application
of nitrification inhibitors such as dicyandiamide (Di et
al. 2007; Hoogendorn et al. 2008) and drainage and
aeration of soil (Monteny et al. 2006). It has been
estimated that a better synchronization of nitrogen
application to crop demand and more closely inte-
grating animal waste and crop residue application
with crop production, could decrease N2O emissions
by about 0.38 Tg N2O–N (Cole et al. 1997).
Controlled-release fertilizer, nitrification inhibitors
and water management could further lower these
emissions by about 0.3 Tg N2O–N, resulting in a total
potential reduction of 0.7 (0.36 to 1.1) Tg N2O–N,
representing 9% to 26% of current emissions from
agricultural soil (Cole et al. 1997). Another option to
mitigate N2O emissions in arable soil is no-tillage
farming (Li et al. 2005), but its benefits may only be
realized in the long-term (Six et al. 2004). One
emerging and potentially promising option that did
not appear in the IPCC report is the combined
application of lime and zeolite. This has recently
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been demonstrated to lower N2O emission and
increase reduction to dinitrogen in urea amended soil
(Zaman et al. 2007), and its potential to be used in the
rhizosphere warrants further investigation. A more
speculative mitigation possibility is in manipulating
exudated carbon compounds and their flow into the
rhizosphere, through plant breeding. However, we
still do not know if there is any active selection for
organic compounds within the denitrifier community,
and any carbon preference, and the impact of this on
the selection of denitrifiers that have a nitrous oxide
reductase or the impact on the regulation of the
nitrous oxide reductase itself. Until these relationships
are verified, it may be preferable to manage agro-
ecosystems to encourage temporary nitrogen immo-
bilization with re-mineralization in the spring in
timing with crop demand.

Opportunities for mitigation of CH4 in the rhizosphere

Mitigation of CH4 emission can be achieved by
lowering methanogenesis and/or CH4 transport to
the atmosphere, or by stimulating methanotrophy. In
upland soils, such as forest and agricultural soils, no
or little CH4 is produced, instead atmospheric CH4

can be oxidized. Forest soils tend to be good sinks for
methane, because the trees help to keep the water
table well below the surface, which allows for
methanotrophy. Thus, well drained non-agricultural
soils contribute 5% to 10% of the global CH4 sink
(Cicerone and Oremland 1988; Crutzen 1991). How-
ever, the low concentration of CH4 in upland soils, is
likely to be the limiting factor for CH4 oxidation.
Increasing the CH4 sink can be done through selection
of tree species, since forest composition affects CH4

uptake rates (Menyailo and Hungate 2003). Conver-
sion of natural ecosystems to agricultural land usually
lowers CH4 oxidation, but mitigation of CH4 emissions
can be achieved by limiting cultural practices affecting
CH4 and O2 availability. For example, soil compaction
by tractors may reduce CH4 oxidation by 50% (Hansen
et al. 1993), and drainage can also be crucial in
determining the size of the soil methane sink.

Mitigation of methane production in peatland
ecosystems

Plant species differ in properties that constrain
microbial respiration as well as properties that

promote CH4 oxidation, and this plant associated
CH4 oxidation has been reported from a wide range of
wetland species (Sorrell et al. 2002). Further exam-
ples include CH4 oxidation associated with roots and
rhizomes of Sparganium eurycarpum, where 1% to
58% (mean 27%) of the total CH4 flux was oxidized
(King 1996). In the rhizosphere of Carex lasiocarpa
and C. meyeriana, CH4 oxidation lowered potential
CH4 emissions by 3.2–35.9% and 4.3–38.5%, respec-
tively (Ding et al. 2004). Similarly, Popp et al. (2000),
found that rhizospheric CH4 oxidation in a Carex-
dominated fen in Canada lowered net CH4 emissions
by around 20%. Lower CH4 oxidation was observed
in Carex-dominated wetlands compared to other types
of sedge vegetation (Eriophorum and Juncus) in
southern Sweden (Ström et al. 2005). In agreement,
it was shown that CH4 oxidation was not associated
with Eriophorum (Frenzel and Rudolph 1998).

The importance of plant cover in influencing net
CH4 emissions is also related to their capacity to
transport CH4 through their aerenchyma. Transport is
linked to root porosity (intercellular gas spaces and
aerenchyma), which differ substantially among plants
(Colmer 2003) but also within genus (e.g. 5% to 30%
in Rumex, Laan et al. 1989) or between cultivars
(Huang et al. 1994). Thus, the choice of plant species
in, for example, constructed wetlands could be a way
to contribute to CH4 mitigation. Plant cover can also
have implications for the management of peatlands as
sources or sinks for CH4. In addition, lowering of
CH4 emissions could be accomplished through drain-
age, independent of any ecological or financial
considerations. On the other hand, drainage of peat
increases the emissions of CO2 and N2O. Thus it has
been shown that drainage for forestry stimulates N2O
emission on fertile and fertilized sites and that
agricultural use of peatland induces considerable and
long-lasting emissions of CO2 and N2O (Alm et al.
2007).

Mitigation of methane production in rice paddies

The complexity of the role of the rice plant for
regulating CH4 production has been well investigated
and reviewed (Aulakh et al. 2001b; Conrad 2002;
Frenzel 2000; Wassmann and Aulakh 2000). Up to
90% of the CH4 emitted in rice paddies is released
through rice transport (Cicerone and Shetter 1981;
Conrad 2007), while between 19% and 90% of the
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CH4 produced is oxidized (Bosse and Frenzel 1997;
Conrad 1996; Gilbert and Frenzel 1995; Holtzapfel-
Pschorn et al. 1985), with up to 75% of the CH4

oxidation taking place in the rhizosphere (Frenzel
2000). Accordingly, strategies to lower net CH4

emission from rice fields include reduction of CH4

production, increasing CH4 oxidation, and lowering
CH4 transport through the plant. Among the CH4

emission mitigation strategies that do not compromise
rice productivity, introduction of drainage periods
during the crop cycle appears to be the most efficient
(Neue 1993). Thus, it has been estimated that
intermittent drainage periods in one third of the
poorly drained rice fields in China could reduce
10% the agricultural CH4 emissions (9.9 Tg, Kern et
al. 1997). However, a major drawback of this strategy
is that it consumes two to three times more water than
continuous flooding and can increase the N2O
emissions (Hou et al. 2000). Another strategy to
lower emissions may be oriented toward rice cultivar
selection and use of rice cultivar characterized by a
low root exudation and porosity to limit production
and transport of CH4. There are 90,000 known rice
cultivars with large variations in genotype and
phenotype that can affect CH4 production, rhizo-
spheric CH4 oxidation and plant-mediated CH4

transport efficiency. Accordingly, several studies
reported large differences in CH4 emissions between
cultivars that can reach up to 500% (Jia et al. 2002;
LeMer and Roger 2001; Wassmann and Aulakh
2000). Mitigation of CH4 emissions in rice paddies
also includes amendment with compost residues
instead of uncomposted material (Conrad 2007;
LeMer and Roger 2001) and direct seeding instead
of transplanting.

Concluding remarks

Emissions of CH4 and N2O from soils and how they
are affected by the presence of plants have now been
investigated for several decades and most studies
have shown a strong influence of plant roots. The soil
oxygen partial pressure is a major factor regulating
nitrification, denitrification, methanogenesis and
methanotrophy, which is clearly reflected in studies
reported in this review indicating that the rhizosphere
effect on these underpinning processes controlling
greenhouse gas emissions vary widely from upland to

wetlands soils. Thus, in uplands soils, inhibition of
nitrification by plants is commonly reported whereas
denitrification is most often stimulated in the rhizo-
sphere. Also in upland soils, methanotrophy largely
dominates over methanogenesis. By contrast, nitrifica-
tion in wetlands is stimulated next to the roots where
radial oxygen losses occurred. Wetland plants also
stimulate methanogenesis through root exudation and
can facilitate CH4 transportation to the atmosphere in
their tissues. The development of molecular
approaches allowed significant progress in the knowl-
edge of the ecology of the microbial guilds involved in
greenhouse gas emissions and now we know that the
size and/or the diversity of the nitrifier, denitrifier,
methanogen and methanotroph communities are also
influenced by the presence of plant roots. However, it
remains unclear whether these changes in microbial
communities in the rhizosphere affect greenhouse gas
emissions. Because the rhizosphere effect is complex
and results from the action of several strongly
interwoven factors such as organic carbon and oxygen
availability, further research is required in order to
reconcile apparently conflicting results. In addition,
prediction of a general rhizosphere effect is difficult
since there is evidence that it is both plant species and
soil-type dependent. Thus, our incomplete knowledge
of the complex rhizosphere effect on microbial guilds
controlling greenhouse gas emissions is still limiting
the development of plant-based strategies to mitigate
emissions of both CH4 and N2O.
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