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Abstract The effects of phosphorus (P) status on
arsenate reductase gene (OsACR2.1) expression,
arsenate reductase activity, hydrogen peroxide
(H2O2) content, and arsenic (As) species in rice
seedlings which were exposed to arsenate after −P
or +P pretreatments were investigated in a series of
hydroponic experiments. OsACR2.1 expression in-
creased significantly with decreasing internal P con-
centrations; more than 2-fold and 10-fold increases
were found after P starvation for 30 h and 14 days,
respectively. OsACR2.1 expression exhibited a signif-
icant positive correlation with internal root H2O2

accumulation, which increased upon P starvation or
exposure to H2O2 without P starvation. Characteriza-
tion of internal and effluxed As species showed the
predominant form of As was arsenate in P-starved
rice root, which contrasted with the +P pretreated
plants. Additionally, more As was effluxed from P-
starved rice roots than from non-starved roots. In
summary, an interesting relationship was observed
between P-starvation induced H2O2 and OsACR2.1

gene expression. However, the up-regulation of
OsACR2.1 did not increase arsenate reduction in P-
starved rice seedlings when exposed to arsenate.
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Introduction

Arsenic (As), a group A carcinogen (Smith et al.
1992), is commonly found in rice (Oryza sativa L.) at
higher grain concentrations than in other cereals, such
as wheat (Triticum aesticum L.) and barley (Hordeum
vulgare L.) (Williams et al. 2007). Being a phyto-
toxin, As can also impair crop yields and degrade
arable lands (Heikens 2006). Although rice is often
grown in sub-oxic conditions where arsenite prevails,
a significant amount of arsenate (the oxidized form of
inorganic As) can exist in paddy rhizospheres, due
principally to oxygen release from rice roots (Chen et
al. 2008). Rice agro-ecosystems can be contaminated
by As mainly by irrigation with As-tainted ground-
water, mineral exploration, processing industries, and
as a result of As pesticide use (Zhu et al. 2008a).
When rice is grown in paddy soils which did not
exceed global background As levels, internal plant As
concentrations in rice straw and grain can still be high
in comparison with other cereal crops (Williams et al.
2007).
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In contrast, phosphorus (P), the chemical analogue
of As, is one of 17 essential elements required for
plant growth (Bieleski 1973; Raghothama 1999), and
often the overriding nutritional limitation in modern
cereal farming (Runge-Metzger 1995; von Uexküll
and Mutert 1995). It is estimated that crop yields on
around 30–40% of the world’s arable land are limited
by P availability (Runge-Metzger 1995; von Uexküll
and Mutert 1995). Sensitivity to arsenate in rice
seedlings is closely associated with P nutrition; even
cultivars found to be susceptible to arsenate can be
made more resistant by raising levels of intracellular P
(Geng et al. 2006). Therefore, arsenate-induced
toxicity in rice can be more prevalent in situation
where As contamination is found coexisting with low
available P. Further understanding of the complex
relationship between As and P is needed to improve
agronomic methods and rice yield.

The initial step in arsenate metabolism, in all
organisms studied so far, is reduction to arsenite.
Arsenate reductase is one of the key enzymes
involved in this transformation (Rosen 2002; Duan
et al. 2005; Ellis et al. 2006; Dhankher et al. 2006). It
is believed that this enzyme plays a crucial role in
determining not only in planta As speciation but also
translocation, and can affect the plants ability to
withstand As-induced stress. Recently, two genes
(OsACR2.1 and OsACR2.2) in rice encoding arsenate
reductase were cloned and characterized (Duan et al.
2007). Upon arsenate exposure, OsACR2.1 expression
was demonstrated to be much higher than OsACR2.2,
resulting in much greater enzyme activity. Therefore,
OsACR2.1 is thought to be more important than
OsACR2.2 as arsenate reductase in rice. In addition to
reducing arsenate, OsACR2.1 exhibits phosphatase
activity. Phosphatase activities are commonly in-
creased when internal levels of P are depleted (Duff
et al. 1991; del Pozo et al. 1999; Baldwin et al. 2001;
Vance et al. 2003). However, how OsACR2.1 expres-
sion is regulated when rice is P limited still needs to
be determined.

P deficiency and As exposure result in H2O2

accumulation in a number of plants, including rice
(Schachtman and Shin 2007; Shin et al. 2005; Geng et
al. 2006; Mascher et al. 2002). H2O2 is a signaling
molecule in plants (Shin and Schachtman 2004),
which has been shown to be involved in lots of
different chemical messenger pathway responses,
especially those relating to tissue damage and/or

potassium deprivation (Shin and Schachtman 2004;
Joo et al. 2001; Orozco-Cárdenas et al. 2001).
Therefore, it is essential to investigate whether H2O2

is the medium connecting P deficiency and OsACR2.1
expression.

In order to understand how P status and H2O2

affect OsACR2.1 gene expression and how this
influences As metabolism within rice seedlings, a
number of experiments were conducted to unravel
these questions.

Materials and methods

Plant growth

Rice (Oryza sativa L. cv Jiahua 1) seeds were
sterilized in 10% H2O2 solution for 15 min followed
by thorough washing with de-ionized water. The
seeds were germinated in moist perlite. After 3 weeks,
uniform seedlings were transplanted to PVC pots (7.5
cm diameter and height 14 cm, one plant per pot)
containing 500 ml 1/6 strength macronutrients solu-
tion and 1/4 strength micronutrients solution. After 1
week, 1/3 strength macronutrients solution and 1/2
strength micronutrients solution was used. The nutri-
ent solution composition was the same as that used by
Duan et al. (2007), which contained 1.3 mM
KH2PO4, and was renewed every 2 days. The plants
were cultivated in a growth room at a 14-h light
period (260–350 μE m−2 s−1); 28/20°C day/night;
60% relative humidity. All the experiments were
carried out with three replicates.

Plant treatments

Plants for P, arsenate reductase and phosphatase
activity analysis

Nine pots of 7-week-old rice plants were treated with
P-free (−P) nutrient solution (KCl was added instead
of KH2PO4) for 0, 7 and 14 days. When the plants
were harvested, they were 9 weeks old and were
thoroughly washed with tap water, and then with de-
ionized water; adhering water was then removed with
filter paper. For arsenate reductase and phosphatase
activity analysis, root and shoot materials were frozen
in liquid nitrogen, crushed to powder and stored in
liquid nitrogen for enzyme activity analysis. For P

130 Plant Soil (2008) 313:129–139



concentration analysis, root and shoot materials were
oven-dried at 70°C for 2 days, and dry weight was
determined.

Plants for OsACR2.1 expression and H2O2 content
analysis

Twenty-one pots of 6-week-old rice plants were
treated with −P nutrient solution for short-term
starvation (0, 6 and 30 h) and long-term starvation
(0, 3, 7 and 14 days). The plants were harvested and
kept in liquid nitrogen for H2O2 content analysis,
RNA extraction and real-time PCR.

Plants for H2O2 exposure

Twelve pots of 8-week-old rice plants were treated
with 0, 0.5, 1 and 2 mM H2O2 for 6 h. The
concentrations of H2O2 and treatment time were
chosen based on the results described by Shin and
Schachtman (2004). The plants were harvested and
kept in liquid nitrogen for H2O2 content analysis,
RNA extraction and real-time PCR.

Plants for total As and As speciation analysis
in plants and efflux solution

Twelve pots of 5-week-old rice plants were selected
for this experiment. Six pots were pretreated with P-
free nutrient solution for 14 days, and then exposed to
20 μM arsenate in P-free culture for 48 h (−P
treatment). The other 6 pots of rice plants were
cultivated in normal nutrient solution for 14 days, and
then exposed to 20 μM arsenate in normal nutrient
solution for 48 h (+P treatment). For total As and As
speciation analysis, plants were harvested quickly and
kept in −80°C; for efflux experiment, plants were
washed quickly with ice-cold phosphate buffer (0.5
mM Ca(NO3)2 4H2O, 5.0 mM MES, 1.0 mM
K2HPO4 3H2O), and then put into 25-ml normal
nutrient solution for efflux experiment. Accumulative
efflux time was 0.33, 0.67, 1, 5, 10, 30, 60, 90, 120
and 180 min.

Determination of H2O2 and protein concentrations

For the H2O2 assay, fresh roots (2.0 g) were
homogenized in refrigerated acetone (2.0 ml). The
reaction mixture was precipitated by Ti (SO4)2 and

ammonia, and the pellet was dissolved in 2.0 M
H2SO4 and the absorbance was read at 415 nm
(Mulherjee and Choudhuri 1983). Protein contents
were determined according to Bradford (1976), using
Coomassie Brilliant Blue G-250 (Sigma) as dye and
albumin (Bovine V; Sigma) as a standard.

Enzyme assays

Arsenate reductase activity was assayed using the
coupled enzymatic reaction described by Duan et al.
(2005). The assay was performed in 50 mM MOPS/
MES buffer (pH 6.5), containing 1.5 mM NADPH, 1
unit yeast (Saccharomyces cerevisiae) glutathione
reductase (Sigma), 1 mM GSH, 10 mM sodium
arsenate, and protein extracts were added as indicated,
in a total volume of 1.5 ml. All the measurements were
performed at 37°C. NADPH oxidation was monitored
by using a U-3010 spectrophotometer (Hitachi, Tokyo,
Japan). The amount of NADPH oxidized was calcu-
lated using a molar extinction coefficient of 6,200 M −1

cm−1. Control samples were added to correct for
NADPH consumption independent of sodium arsenate.

Phosphatase activity was assayed at 37°C with 20–
30 mg rice root protein extracts with the indicated
amounts of p-nitrophenyl phosphate (pNPP) in 0.1 M
MOPS/MES buffer, pH 6.5 (Zhou et al. 2006). The
assay was initiated by the addition of pNPP, and the
rate of hydrolysis was estimated from the increase in
absorption at 405 nm. Each value was corrected for
nonenzymatic pNPP hydrolysis. The phosphatase
activity were analyzed by using an extinction coeffi-
cient for nitrophenol of 18,000 M−1 cm−1.

Analysis of total As and P concentrations

Oven-dried plant materials were digested in nitric acid
on a heating block (Digestion Systems of AIM500; A.
I. Scientific, Australia); the temperature was at 100°C
for 1 h and then at 120°C for 60 h. Reagent blank and
standard reference (GBW07605, from the National
Research Center for Standard Materials, China) were
used to verify the precision of analytical procedures.
The concentrations of P were measured by inductive-
ly coupled plasma optical emission spectrometer
(ICP-OES, Optima 2000 DV; Perkin-Elmer, USA).
The concentrations of As were measured by an atomic
fluorescence spectrometry (AF-610A; Beijing Ruili
Analytical Instrument, Beijing, China).
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As speciation analysis

Samples of 0.2 g were weighed into 50-ml extraction
vessels, and then steeped in 10 ml of 1% HNO3 and
left overnight, heated to 95°C in a microwave
accelerated reaction system (CEM Microwave Tech-
nology, USA) for 30 min, and then filtered. To
minimize speciation, transformation samples were
kept dark, on ice and run within a few hours of
extraction. Spikes revealed any transformation of As
species was minimal.

Arsenic speciation was assayed by high performance
liquid chromatography-inductively coupled plasma-
mass spectrometry (HPLC-ICP-MS) (7500a Agilent
Technologies) as detailed in (Zhu et al. 2008b).
Chromatographic columns were obtained from Hamil-
ton and consisted of a precolumn (11.2 mm, 12–20
μm) and a PRP-X100 10-μm anion-exchange column
(250×4.1 mm). The mobile phase consisted of 8 mM
diammonium hydrogenphosphate ((NH4)2HPO4) and
8 mM ammonium nitrate (NH4NO3), adjusted to pH
6.2 using ammonia. Total As in the extract solutions
was determined by ICP-MS.

RNA extraction and cDNA synthesis

Total RNA was isolated from each rice root using the
TRIzol reagent (Invitrogen, Carlsbad, CA, USA)
according to manufacturer’s instructions. Concentra-
tions of RNA were measured using a Nanodrop ND-
1000 spectrophotometer (NanoDrop Technologies).
The integrity of RNA samples were assessed by
agarose gel electrophoresis. cDNA was synthesized
from 5 μg of total RNA after DNase treatment
(Invitrogen), using 200 U of MMLV Reverse Tran-
scriptase (Invitrogen) and oligo-(dT)18 as a primer, in
20-μl reactions, as described in Sambrook et al.
(1989).

Real-time PCR analysis

UBQ5 was used as internal control (Jain et al. 2006).
Relative quantitative RT-PCR was performed in a 25-
μl reaction volume, containing 1 μl cDNA, 200 nM
each gene-specific primers, and SYBR Premix ExTaq
(Takara Bio) using Bio-Rad iQ5. The primer sequen-
ces are given in Table 1. All the PCRs were
performed under the following conditions: 94°C for
30 s, 40 cycles of 94°C for 10 s, 58°C for 30 s and
72°C for 30 s. The specificity of amplification was
verified by melting curve analysis (60–95°C) after 40
cycles. The products were run on a gel to check the
specificity of the primers. Three biological replicates
for each sample were used for real-time PCR and
three technical replicates were analyzed for each
biological replicate.

Statistical analysis

Analysis of variance (ANOVA) on concentrations of
nutrients and enzyme activities were performed using
SPSS 11.5 for windows. Curve fitting was performed
using Sigma Plot 9.0 (Jandel Scientific, Erkrath,
Germany).

Results

Plant growth and P concentrations

Dry weights and P concentrations were analyzed in
plants under the treatments of 0-, 7- and 14-day P
starvation. No significant difference was found in dry
weights of rice roots and shoots after 7-day P
starvation. However, a significant decrease in shoot
dry weight was found after P starvation for 14 days
(Table 2, P<0.05). Internal P concentrations in rice

Table 1 Primer sequences used for real-time PCR analysis

Gene name Accession no.a Primer sequences b Amplicon lenghth (bp)

OsACR2.1 AY860059 3455′- GGAAGAATCAGGAACAAAGAACATC-3′ 152
4965′- CAGGAAGCGAGTAGAGTTACAAC-3′

UBQ5 AK061988 5065′-ACCACTTCGACCGCCACTACT-3′ 69
5745′- ACGCCTAAGCCTGCTGGTT-3′

a Full-length cDNA accession number
b Forward (upper line) and reverse (lower line) primer sequences along with their position (number given as superscript on the left) on
the full-length cDNA sequence
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roots and shoots decreased significantly with increas-
ing P starvation time, by 50% and 75% after P-
starvation for 7 and 14 days, respectively (Table 2,
P<0.05).

Arsenate reductase and phosphatase activities

Arsenate reductase and phosphatase activities were
determined in root extracts deprived P for 0, 7 and 14
days. After 7 days of P starvation, no significant
difference was found in arsenate reductase and
phosphatase activities; while after 14 days of P
starvation, activities of both enzymes increased
significantly (Fig. 1; P<0.05).

OsACR2.1 expression and H2O2 accumulation
in response to P starvation

Relative OsACR2.1 transcription levels and H2O2

accumulation were determined after short-term (6
and 30 h) and long-term (3, 7 and 14 days) P

starvation. Both OsACR2.1 expression and H2O2

accumulation increased with increasing P starvation
time (Fig. 2A), but only slightly before 7 days and
rapidly after 7 days. OsACR2.1 expression increased
3-fold and 10-fold after 7- and 14-day P starvation,
respectively. H2O2 accumulation increased 1.5-fold
and 4-fold after 7- and 14-day P starvation, respec-
tively. There was a significant positive linear correla-
tion between OsACR2.1 expression and H2O2

accumulation in rice roots (r=0.9681, P<0.0001)
(Fig. 2B).

OsACR2.1 expression in response to exogenous
H2O2 accumulation

H2O2 accumulation and relative OsACR2.1 expres-
sion increased significantly with increasing H2O2

concentrations in the nutrient solutions (Fig. 3B; P<
0.05). H2O2 accumulation and OsACR2.1 expression
in the roots treated with 2 mM H2O2 were 5-fold and
13-fold higher, respectively, than that of the control (0

Table 2 Biomass and phosphorus concentrations in rice roots and shoots after P starvation for 0, 7 and 14 days

Treatments Biomass (g) P concentrations (mg g −1 DW)

Root Shoot Root Shoot

−P 0 days 0.28±0.03 a 0.92±0.02 a 9.12±0.39 a 12.24±0.45 a
−P 7 days 0.29±0.01 a 0.86±0.05 a 3.70±0.24 b 6.23±0.41 b
−P 14 days 0.25±0.01 a 0.72±0.02 b 2.46±0.19 c 3.20±0.19 c

Data are means ± SE (n=3). Treatments with the different letter s(a, b, c) are significantly different (P<0.05)
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mM H2O2). OsACR2.1 expression and H2O2 accu-
mulation in rice roots exhibited a significant positive
linear correlation (r=0.9350, P<0.0001; Fig. 3A).

As concentrations and species in plants and efflux
solutions

Total As concentrations in rice shoots and the whole
plants were significantly increased by pretreatment with
P-free nutrient solution. However, no significant differ-

ence was found in total As concentrations in roots when
rice plants were pretreated with or without P (Table 3).

In rice seedlings, As was present mainly as arsenite
and arsenate; no organic As was found. After P
starvation for 14 days, arsenite concentration de-
creased by 58% in the rice roots, from 508 μg g −1 in
non-starved plants to 214 μg g−1 in P-starved plants;
percentage of arsenite in total As also decreased
significantly after P starvation, 95% in non-starved
plants and 51% in P-starved plants (Fig. 4). For all
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samples, the average extraction efficiency of 1% nitric
acid was 88±2% and the average column recovery
was 88±3%.

The amount of As effluxed from P-starved plant
roots was higher than that from the non-starved ones
(Fig. 5A). In the efflux solution, the predominant
species were arsenate (76%) from P-starved plants,
and arsenite (86%) from non-starved plants, no
organic As was found (Fig. 5B). The species of
effluxed As was in good agreement with As species in
plant roots (Fig. 4).

Discussion

Cellular P levels decreased in rice seedlings starved of
P for 7 days; however, this decrease was not sufficient
to impact on the phosphatase activity (Table 2 and
Fig. 1). The effect of P starvation became significant
only after P supply was withheld for 2 weeks. In this

study, P starvation for 2 weeks resulted in a 40%
increase in the phosphatase activity, whilst only
moderately impacting on plant biomass (Table 2 and
Fig. 1). After 2 weeks of P starvation, P concen-
trations of both rice roots and shoots were still above
the critical internal P-deficiency concentrations for
rice (Fageria 1976), suggesting that the plants were
not suffering from severe P-deficiency stress.

It is unknown why the arsenate reductase activity
and OsACR2.1 expression were stimulated during
prolonged P starvation. OsACR2.1 exhibits dual
functions as a phosphatase and arsenate reductase
(Duan et al. 2007). AtACR2 (also named as Arath or
CDC25) has been shown to be an arsenate reductase
(Dhankher et al. 2006), in addition to being a small
CDC25 dual-specificity tyrosine-phosphatase iso-
form; the latter functions by dephosphorylating both
Thr-14 and Tyr-15 residues on the cyclin-dependent
kinases to release free P (Landrieu et al. 2004).
OsACR2.1 is a homolog of AtACR2, sharing 52.5%

Table 3 Total arsenic concentrations in rice roots and shoots which were exposed to 20 μM arsenate for 48 h after pretreatment with
−P or +P nutrient solutions for 14 days

Treatments As (μg g −1 DW)

Root Shoot Whole plant

−P 475.30±45.17 a 110.10±10.55 a 210.35±16.15 a
+P 554.60±36.07 a 34.81±4.31 b 145.15±13.47 b

Data are means ± SE (n=3). Treatments with the different letter s(a, b) are significantly different (P<0.05)

0

100

200

300

400

500

600

-P root +P root -P shoot +P shoot

Treatments

A
rs

en
ic

 c
on

ce
nt

ra
tio

ns
 (

  g
 g

  D
W

)
µ

-1

Arsenate

Arsenite

Fig. 4 Arsenate and arse-
nite concentrations in rice
roots and shoots which were
exposed to 20 μM arsenate
for 48 hours after pretreat-
ment with −P or +P nutrient
solutions for 14 days. Data
are means ± SE (n=3)

Plant Soil (2008) 313:129–139 135



similarity with AtACR2 and containing the active site
motif HC(X)5R with the superfamily of phosphotyr-
osine protein phosphatases (PTPases), and has been
shown to exhibit phosphatase activity (Duan et al.
2007; Landrieu et al. 2004). Therefore, rice may
utilize OsACR2.1 as a phosphatase during critical
periods in response to P-deficiency stress.

The number of chemical messengers available for
plants to induce developmental responses is small.
Therefore, many signaling pathways may utilize the
same messengers (Bennett et al. 2005). H2O2 has
been shown to play a role as a signal molecule in
plants (Bailey-Serres and Mittler 2006), regulating not

only numerous gene expressions directly (Alvarez et
al. 1998; Desikan et al. 2000), but also acting as a
second messenger for the induction of defense genes
(Orozco- cárdenas et al. 2001). Shin and Schachtman
(2004) found that potassium deprivation increased
H2O2 accumulation and that H2O2 was involved in K+

signaling. This study shows a close relationship
between P starvation-induced H2O2 and OsACR2.1
gene expression (Fig. 2B) in rice roots. Whether the
association is strictly causative is not confirmed,
although it is still of interest as it has never been
documented before (to the best of the authors’
knowledge). Manipulation of internal H2O2 level
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resulted in further association with gene expression,
supporting our first observations (Fig. 3). Therefore,
H2O2 could possibly act as a signaling molecular
controlling OsACR2.1 expression in rice roots. Fur-
ther experiments are underway with H2O2 mutants to
further test this hypothesis.

As cellular P levels decrease, homeostasis mecha-
nisms try to readdress the nutrient balance by increasing
the expression of P transporters and subsequently P
uptake. This can lead inadvertently to greater arsenate
absorption (Meharg and Hartley-Whitaker 2002).
Short-term uptake experiments (data not shown) with
rice seedlings starved of P for 2 weeks showed higher
As accumulation than P-replete plants when exposed
to arsenate. In the presence of P, arsenate uptake can be
strongly suppressed because of competition for the
same membrane transporter (Abedin et al. 2002). In
this study, no significant difference was observed in
root As concentrations between P-starved rice plants
which were exposed to arsenate without P and those of
P-replete plants exposed to arsenate in the presence of
1.3 mM P. However, a significant difference was
observed in shoot As concentration between the
different P status rice plants, with shoot levels in the
−P treatment being ~3 times higher (Table 3; P<0.05).

Rice plants starved of P may suffer from As
phytotoxicity more than the P-replete plants. This may
explain why As concentration in the −P rice roots was
not significantly elevated compared with +P roots
because of a decreased As uptake as a result of
phytotoxicity. Another possible reason is the uptake of
arsenite. Xu et al. (2007) showed that plant roots
mediated rapid transformation of arsenate in hydro-
ponic medium. After P-replete rice were exposed to 10
μM arsenate for 24 h, 11% of the As in the nutrient
solution was found to be in the form of arsenite. In this
study, P-replete plants were exposed to 20 μM arsenate
for 48 h and more arsenite could possibly be found in
the growth medium compared with the result of Xu et
al. (2007). As arsenite enters plants via glycerol
transporter, its uptake is not limited by the amount of
P present (Meharg and Jardine 2003).

Internal damage caused by As is governed by the
plant’s ability to improve the propensity of As to be
bound to reduced glutathione and/or phytochelatins, as
well as intracellular compartmentation. This is depen-
dent on the amount and type of As binding ligands
available, as well as the extent and rapidity of the
reduction of arsenate to arsenite (Meharg and Hartley-

Whitaker 2002). Xu et al. (2007) showed that As
reduction was rapid in 20-day-old rice exposed to
arsenate. It was expected that P-starved rice would
reduce arsenate more effectively than P-replete plants
because of the increased arsenate reductase activity and
OsACR2.1 expression after a prolonged period of P
starvation (Figs. 1 and 2). However, the data of root As
speciation revealed that the proportion of arsenate in
the P-starved rice was far higher than that in the +P
rice (Fig. 4). The data of root As speciation was
consistent with in the speciation pattern of As effluxed
by roots, with the P-starved rice effluxing predomi-
nantly arsenate whilst the P replete plants releasing
mainly arsenite (Fig. 5B).

As the arsenate reductase activity or OsACR2.1
expression was not measured in this experiment after
−P or +P rice were exposed to As, it is uncertain if
arsenate induced arsenate reductase activity in the P-
replete rice to levels exceeding that of the P-starved
plants. OsACR2.1 expression and arsenate reductase
activity have been shown previously to be higher in
−P rice compared with +P plants when exposed to As
(Duan et al. 2007); although in that study a shorter
duration of P starvation was used. In a similar
experiment with wheat, no significant differences
were observed in root arsenate reductase activity
between the +P and −P treatments (Wang et al.
2007). Arsenate reduction may also be mediated by
non-enzymatic reactions, such as reduction by gluta-
thione (Delnomdedieu et al. 1994). Therefore, it is
possible that non-enzymatic reactions or some other
arsenate reduction pathways were active in reducing
arsenate in the +P rice but failed after P starvation for
a prolonged period.

In conclusion, this study highlights the complexity
of the As–P relationship in rice. For the first time, we
demonstrate a possible relationship between H2O2

and OsACR2.1 gene expression in rice roots as well
as some interesting rice root As speciation findings
resulting from the prolonged starvation of P.
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