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Abstract The hypothesis that positive links exist
among plant taxonomic diversity, belowground mi-
crobial taxonomic and metabolic diversities was
tested for four secondary vegetation successional
stages (tussock (T), shrub (S), secondary forest (SF)
and primary forest (PF)) in Huanjiang county, SW
China. Soil bacterial communities were characterized
by DNA fingerprinting and metabolic profiling.
Along the succession, Shannon diversity indices
followed the order SF>PF>S>T for plant taxonomic
diversity, T>SF>PF>S for bacterial operational taxo-
nomic diversity, SF>T>S>PF for fungal operational
taxonomic diversity, and SF>PF>S>T for bacterial
metabolic diversity. Significant positive correlations
were found between bacterial and fungal taxonomic
diversities. However, there was no significant corre-
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lation between soil microbial taxonomic diversity and
bacterial metabolic diversity. Two-way ANOVA
revealed that vegetation and season, as well as their
interaction, had significant effects on soil microbial
(fungal and bacterial) taxonomic diversities, but that
there were no seasonal effects on metabolic diversity.
However, PCA and MANOVA revealed highly signif-
icant differences among the bacterial community-level
physiological profiles, reflecting the successional se-
quence. The findings from this survey support the
notion that there are strong interactions between
aboveground and belowground communities and sug-
gest that bacterial metabolic and plant taxonomic
diversities, but not microbial taxonomic and metabolic
diversities, can be correlated.

Keywords BIOLOG - Microbial community -
PCR-DGGE - Seasonal variation - Vegetation effects

Abbreviations
CLPP Community-level physiological profil-
ing pattern

DGGE Denaturing gradient gel electrophoresis
EDTA Ethylene diamine tetraacetic acid
MANOVA Multivariate analysis of variance

PCA Principle component analysis

PC Principle component

PCR polymerase chain reaction

UPGMA Unweighted pair group method with

arithmetic mean
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Introduction

Soil ecosystems are highly complex, containing a
tremendous amount of species. Indigenous microbial
populations in soil are of fundamental importance for
ecosystem functioning due to their capacity to
determine nutrient cycles (Doran and Zeiss 2000).
Land use change represents the most substantial
human alteration of ecosystems, dramatically altering
plant community compositions and typically lowering
their diversity (Vitousek et al. 1997). The direct
effects of changes in plant community composition
and/or diversity on ecosystem processes have been
evaluated in a number of studies (Naeem and Li 1997;
Tilman 1999), as have their effects on soil microbial
diversity (Bossio et al. 2005; Crecchio et al. 2007;
Lupway et al. 1998; Yao et al. 20006). The relationship
between aboveground plant diversity and below-
ground microbial diversity has also been examined:
Carney and Matson (2006) studied the influence of
tropical plant diversity on soil microbial communities
within an experimental system, Costa et al. (2006)
studied the effects of different crops on bacterial and
fungal rhizosphere communities using molecular
fingerprinting, and De Deyn and Van der Putten
(2005) reviewed the link between aboveground and
belowground diversity. However, little is known
about how soil microbes respond to changes of plant
diversity in secondary vegetation succession.

Karst is a distinctive topography, created by the
action of acidic water on carbonate bedrock, such as
limestone, dolomite, or marble. Globally, the Karst
landscape occupies 22,000,000 km?, accounting for
15% of the total land area (Yuan 1991). The Karst
area of SW China covers 550,000 km? (Li et al.
2002), but Karst also occurs at the European
Mediterranean seacoast and the east coast of South
America (Ouyang 1998). An increasing human
population and other heavy anthropogenic impacts
have seriously damaged the vegetation in the Karst
region of SW China (Yao et al. 2001). Proper
ecosystem functioning is seriously threatened by soil
degradation, which impairs water and nutrient flows,
and ultimately plant growth (Pan and Cao 1999).
Microbial communities are an important component
of soil quality and may serve as indicators for changes
in soil health (Scow et al. 1998), but the effects of
ecosystem degradation on soil microbial communities
are largely unknown.
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In this study, involving investigations on microbial
diversity at two seasonal time points along a
vegetation succession, we addressed the question of
whether positive links exist among plant taxonomic
diversity, belowground microbial taxonomic and
metabolic diversities; Moreover, seasonal variations
on soil microbial taxonomic diversity were discussed.

Materials and methods
Study sites

Four secondary vegetation succession stages were
selected around the Guzhou village, Huanjiang
county, Guangxi province in SW China (24°50" N,
107°55" E). A subtropical mountainous monsoon
climate dominates in the area with a mean annual
rainfall of 1389 mm and a mean annual air temper-
ature of 18.5°C. The wet season with 70% of annual
precipitation lasts from April until end of August. The
local Karst formation consists of layers of limestone,
arranged horizontally with well developed vertical
fissures. The shallow soils with depth of only 0-
20 cm have been mollic inceptisols, but are largely
eroded or degraded due to overuse, as is vegetation
cover.

Three secondary successional communities (tus-
sock (T), shrub (S), and secondary forest (SF)) were
identified at the study site. The T community, in an
area not cultivated for 3 years but suffering from
substantial anthropogenic disturbance (grazing and
mowing), is located in a peak-cluster depression at
lower altitude and with less steep slopes than the
others studied communities located in sharp hillsides.
The S and SF communities had only experienced little
occasional disturbance for 18 years and 50 years,
respectively, due to the implementation of conserva-
tion projects in the area. A neighboring undisturbed
primary forest community (PF) (25°07'54" N, 108°00’
08" E) in the Mulun National Nature Reserve was
selected as a control ecosystem characterized by
different dominant species and undisturbed by human
action. For each of the stages S, SF, and PF a single
sampling site (with dominant species typical of the
study region) was selected. For the T successional
stage three sampling sites were chosen to account for
the larger variability in plant cover observed in this
initial stage of succession. The plots for plant survey
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and soil sampling were 5 mx5 m for the T, 20 mX
10 m for the S, and 40 mx20 m for both the SF and
PF vegetation successional stages.

Plant survey and soil sampling

Each plot (except for T) was subdivided into four
rectangular subplots from which three were chosen
for vegetation surveys in June 2006. In the SF and PF
communities, each subplot (quadrat) was divided into
three layers (arboreal, shrubby and herbaceous),
whereas the vegetation in the S community subplots
was divided into two layers (shrubby and herba-
ceous). For the arboreal layers, all woody stems
(including climbing plants) with diameters at breast
height (DBH) >2.5 cm were tallied, identified and
measured for DBH to the nearest 0.1 cm. For the
shrubby (tree seedlings and woody climbing plants
<2.5 cm stem diameter) and herbaceous (herbaceous
climbing plants and ferns) layers the fascicles and
heights of each plant species were tallied. All plant
species were identified and their percent cover was
visually estimated.

From each plot (T) or subplot (S, SF, PF), five to
eight soil sub-samples to a depth of 15 cm were
collected along an S-shaped transect, using a soil
corer 3 cm in diameter. The soil sub-samples were
pooled to one composite sample per plot (T) or
subplot (S, SF, PF), according to the method of Klose
et al. (2004), yielding three replicates per successional
stage. Sampling was carried out in June and Decem-
ber 2006, corresponding to the wet and dry seasons,
respectively. The soil samples were stored in plastic
bags in an icebox for transport to the laboratory,
where they were kept at 4°C until analyzed. Sieved
soil samples (<2 mm) were divided into three
portions. One part of soil was stored at —70°C for
PCR-DGGE fingerprinting, another part was stored at
4°C for BIOLOG profile analyses, and a further part
was air dried for physical and chemical analyses. Soil
properties are reported in Table 1.

DNA extraction and community fingerprinting

Total bacterial community DNA was extracted from
500 mg fresh soil, using the commercial FastDNA
Spin Kit for Soil (BIO101, Vista, CA, USA) accord-
ing to the manufacturer’s protocol. Prior to PCR, the
DNA was further purified with the GeneClean kit

(BIO101). PCR was carried out with a PTC-100
thermal cycler (M.J. Research, Inc., Watertown, MA),
and the primer systems targeted the small subunit
rRNA genes of bacteria and fungi. For bacteria,
amplification of 16S rDNA sequences was performed
with the primer pair F984GC/R1378, yielding a
433 bp DNA fragment suitable for total community
fingerprinting (Heuer et al. 1999). For fungi, the NS1
primer and the fungus-specific primer GCfung (May
et al. 2001) were used to amplify the 5" end of the 18S
rDNA (370 bp). Both F984GC and GCfung had GC
clamps of 40 bp DNA' (Muyzer et al. 1993), as
needed for optimal DGGE analysis (Ferris et al.
1996). All PCR reactions were carried out in 50 upl
with 0.02% (w/v) bovine serum albumin and 200 nM
of each primer for bacteria, and 400 nM for fungi,
200 uM dNTPs (QIAGEN Inc., Hilden, Germany),
1.5U of HotStarTaq DNA polymerase (QIAGEN Inc.,
Hilden, Germany), and 1 pl (bacteria) or 4 pl (fungi)
of 1:9 diluted template DNA (5~30 ng pl™'). For
bacteria the touchdown PCR protocol of Gelsomino
and Cacco (2006) was used with initial denaturation
at 95°C for 15 min. For fungi the initial denaturation
(95°C for 15 min), was followed by 35 amplification
cycles (95°C for 1 min, 57°C for 1 min, 72°C for
2 min), and a final extension at 68°C for 10 min, and
cooling to 4°C.

DGGE was performed using a DCode™ Universal
Mutation Detection System (Bio-Rad Laboratories,
Hercules, CA, USA). 20 ul of PCR products were
loaded on 6% (bacteria) or 8% (fungi) wt/vol
polyacrylamide gels in 1XTAE buffer (40 mM Tris
base, 20 mM acetic acid, and 1 mM disodium EDTA,
pH 8.3) containing a linear chemical gradient of 40—
60% (bacteria) or 15-35% (fungi) denaturant (100%
denaturant corresponding to 7 M urea in 40% (v/v) of
deionized formamide). Electrophoreses were run in
IXxTAE buffer at 60°C with a constant voltage of
100 V for 7 h. Images of gels stained with ethidium
bromide were recorded with a Polaroid camera system
(SYNGENE Inc., USA).

Bacterial community metabolic (BIOLOG) profiles

Community-level physiological profiling patterns of
soil bacterial communities (CLPPs) were assessed

' GC-clamp sequence: 5-CGCCCGGGGCGCGCCCCGGGC
GGGGCGGGGGCACGGGGGG-
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Table 1 Soil parameters in the secondary vegetation succession stages tussock (T), shrub (S), secondary forest (SF), and primary

forest (PF)*

Variables T S SF PF

pH (1:2.5 H,0) 6.82+0.10a 7.72+£0.02b 7.24+0.38ab 7.99+0.02b

SOM (g kg'™") 22.73+£2.23a 59.9+4.00b 97.48+6.84c 90.04+10.69¢
Total N (g kg™") 1.16+£0.15a 3.53+0.15b 5.68+0.4¢c 4.82+0.49¢

C/N 11.51£0.49b 9.81+0.24a 9.95+0.19a 10.79+0.22ab
CEC (cmol ) kg™ 9.88+2.25a 28.05+0.55b 34.62+1.95b 32.56+3.13b

Sand (2-0.05 mm) (%) 17.38+4.64c 8.21+0.97ab 15.54+1.21cb 3.83+1.16a

Silt (0.05-0.002 mm) (%) 53.39+1.62¢ 38.43+0.62b 33.93+3.03a 30.16+2.34a

Clay <0.002 mm (%) 28.35+4.76a 51.2+0.64b 47.88+1.68b 45.03+£3.47b

Bulk density (kg dm ™) 1.35+0.03¢ 1.17+0.03b 0.88+0.03a 0.86+0.07a

#Sampled in June 2006. Values are the means of three replicates with associated standard errors. Means in a row with the same letter

are not significantly different at P<0.05 (Duncan)

using BIOLOG® 96-well Eco-Microplates (Biolog
Inc., Hayward, USA) with 31 different carbon sources
and a negative control (water), replicated three times
in each microplate. Microorganisms were extracted
from the soil samples according to Zak et al. (1994).
150 ul of a 1:1000 (w/v) soil suspension were
dispensed into each of the 96 wells and then the
microplates were incubated at 25°C in the dark for
7 days. Color development (reflecting carbon utiliza-
tion) in the wells was followed by absorbance
measurements at 590 nm every 24 h using a Micro-
plate E-Max Reader (Bio-Rad).

Data analysis

Banding patterns of DGGE profiles were analyzed
with the Bio-Rad Quantity One software to calculate
Dice distances among lanes and draw UPGMA
similarity dendrograms (Crecchio et al. 2004). After
subtracting the background from the gradient gel
image by the strip method, lane background subtrac-
tion of the nonlinear background was achieved by
using the rolling disk mechanism with an intensity of
5. For identification and quantification of the DNA
bands the tolerance and optimization parameters were
set to 1%. To eliminate variation in band intensity,
caused by different amounts of loaded PCR product
relative ribotype intensities per lane were calculated
by dividing the intensity of the corresponding band by
the sum of the intensities of all bands within the lane.

In the analysis of the BIOLOG data the midpoint
(72-h incubation) in overall color development was used
as a reference point of color development changes with
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time (Garland 1996). The number of positive wells
were counted according to Glimm et al. (1997), with
an OD correction to 2 when OD>2 as these positive
wells could contribute to the metabolic diversity. The
CLPP data were analyzed by PCA after accounting for
the different initial cell densities (Garland 1997) and
logarithmic transformation (Weber et al. 2007). Princi-
pal components were calculated on the basis of the
covariance matrix, since all variables were based on
the same scale and may therefore contain information
(Weber et al. 2007). MANOVA was conducted for
statistical comparisons of community catabolic profiles
among treatments (Glimm et al. 1997).

For the plant, DGGE, and utilization data, Shan-
non indices were calculated as H' = — 3 (p;)(Inp;)
(Magurran 2004), where p; is (a) the importance value
of the ith plant species, which was calculated as the
sum of the relative density, relative abundance and
relative frequency for arboreal layer, and as the sum of
the relative height and relative cover for shrubby and
herbaceous layer in each plot, respectively (Ou et al.
2005), (b) the percentage of the total intensity
accounted for by the i band (Miiller et al. 2002), or
(c) the total coloration accounted for by the i substrate
(Zak et al. 1994), respectively. Here, Shannon diversity
indices were chosen, because they do not only reflect
richness, but also evenness of communities (Magurran
2004). Shannon diversities were compared by two-way
analysis of variance (ANOVA), using SPSS11.5 (SPSS
Inc., Chicago, USA) software. Vegetation and sam-
pling time were used as fixed factors. Comparisons
among successional stages were made using Duncan’s
test at P<0.05.
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Results
Plant survey

The three T communities had different dominant
species (Table 2). The shrubby layer of the S and
the arboreal layer of the SF communities shared the
same dominant evergreen broadleaved species (i.e.
Bauhinia brachycarpa var.cavalerier), which was one

Table 2 The dominant plant species for a vegetation succes-
sion on Karst *

Stages Layer Ranking of dominant plant species

T1 H Imperata cylindrica (0.27)
Selaginella delicatula (0.21)
Ficus tikoua (0.19)
Microstegium vegans (0.29)

Erigeron acer (0.23)

T2 H

Neyraudia reynaudiana (0.2)
Apluda mutica (0.52)
Lysimachia alfredii var. alfredii (0.13)
Sanicula chinensis (0.11)
Bauhinia brachycarpa var.cavaleriei (0.37)
Broussonetia papyrifera (0.13)
Alchornea trewioides (0.1)
H Pueraria lobata (0.27)
Imperata cylindrica (0.19)
Pacederia scandens var. tomentosa (0.08)
Bauhinia brachycarpa var.cavaleriei (0.24)
Sterculia euosma (0.15)
Phoebe calcarea (0.14)
S Bauhinia championii var. championii (0.17)
Dalbergia hancei (0.1)
Lonicera japonica (0.06)
H Nephrolepis auriculata (0.36)
Neyraudia reynaudiana (0.13)

T3 H

SF A

Drynaria roosii (0.1)

Platycarya longipes (0.21)

Boniodendron minius (0.21)

Rapanea neriifolia (0.19)

S Ampelocalamus calcareous (0.16)
Rapanea neriifolia (0.12)
Murraya euchrestifolia (0.09)

H Carex sp. (0.37)

Clematis florida (0.16)
Cymbidium cyperifolium (0.07)

PF A

*H, S and A refer to the herbaceous, shrubby and arboreal
layer, respectively. Value in parentheses indicates the important
value of plant species (see associated section in Materials and
methods). For succession stage abbreviations see Table 1

of prevalent evergreen broadleaved species in the
study area. The SF and PF plant communities belong
to the evergreen broadleaved forest and evergreen-
deciduous broadleaved mixed forest, respectively.
The tree layer of the SF community was dominated
by the evergreen broadleaved species (Bauhinia
brachycarpa var.cavaleriei, Sterculia euosma, Phoebe
calcarea; Table 2). A completely different set of
species, including two deciduous arboreal trees
(Platycarya longipes and Boniodendron minius) and
one evergreen arboreal tree (Rapanea neriifolia), were
dominant in PF (Table 2). Plant species diversity in
the four succession stages followed the order:
SF>PF>S>T, with significant differences between
the T, S, and SF communities (Fig. 4a).

Microbial taxonomic diversity

Variability among sample replicates in the composi-
tion of the bacterial communities was considerable
(Fig. 1a). At the summer and winter sampling times
the bacterial communities from PF soils were distinct
from those of the other soils, with low variability
among replicates (59-76% similarity). Conversely,
the communities in the S and T soils showed more
variability, ranging between 42-86% and 42-66%
similarity, respectively. Seasonal community differ-
ences were bigger than those among sample replicates
(Fig. 2a). In contrast to the bacterial communities the
fungal communities (Fig. 1b) showed even more
variability, but also more distinctly dominant ribo-
types. Variability was highest among replicates of the
PF succession stage (12-50% similarity, Fig. 2b) with
the consequence that these fungal communities could
not be distinguished from the other ones.

Bacterial community metabolic (BIOLOG) diversity

The catabolic capability of soil bacterial communities
differed considerably among successional stages.
PCA on bacterial CLPPs showed that PC1 accounted
for 28.1% and PC2 for 17.7% of the total variance
(Fig. 3). A multivariate analysis (Wilkinson’s lambda)
on CLPP differences was conducted, using the first
five PCs which account for 75.1% of total variation.
First, the comparisons among four treatments resulted
in an F-criterion of 7.19 at 35, 53 degrees of freedom
(»<0.001), indicating significant differences of
CLPPs among the bacterial communities. Subsequent
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Fig. 1 DGGE community fingerprints of PCR amplified
bacterial 16S (a) and fungal 18S (b) rDNA fragments from
secondary vegetation succession stages. Capital letters denote
vegetation successional stages (7 tussock, S shrub, SF

Univariate tests for different PCs indicated that three
groups (T, SJun and the others) showed significant
differences (p<0.05) in Post Hoc Tests on PClI

(Fig. 3).

Differences in microbial taxonomic and metabolic
diversity

Vegetation and season, as well as their interaction,
had significant effects on bacterial taxonomic diver-
sity (»<0.05, p<0.001, p<0.05, respectively), as well
as fungal taxonomic diversity (p<0.001, p<0.001, p<
0.01, respectively); vegetation and the interaction of
vegetation and season (p<0.001, p<0.05, respective-
ly), but not season, had significant effects on bacterial
metabolic diversity (Table 3).

0.42 0.50 0.60 0.70 0.80 0.90 1.00

a
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Tdunt
T SJun3
SJun2
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Tdun3
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| TDec3
SFJunt
SDec2
SDec3
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I SFJun2
SFJun3
SFDec3
SFDec2
SFDec1
PFDec3
PFDec2

PFJun1
PFJun2
PFDect
PFJun3

b

secondary forest, PF primary forest) and subscripts months of
sampling. Numbers stand for replicate soil samples. M refers to
the 100 bp DNA ladder for bacteria and a collection of
previously detected fungi, respectively

Multiple comparison (Duncan test) of Shannon
diversity indices indicated that the metabolic diversity
of bacterial communities in SF were significantly
different (p<0.05) from those of the other succession
stages in the same season, except for that in PF in
June. These differences in bacterial metabolic diver-
sity agree with the plant diversity patterns (Fig. 4a,b).
Indeed, there is a positive linear correlation
(v = 0.085x + 2.640, *=0.834, 1=7.090, p<0.001)
between plant species (x) and bacterial metabolic ()
diversities. Bacterial and fungal diversities in T soil
sampled in December were the highest with signifi-
cant differences relative to those in the other
succession stages of the same season (Fig. 4c), but
the soil bacterial metabolic diversity in T was the
lowest among all four succession stages in the two
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Fig. 2 UPGMA cladograms based on Dice similarity of bacterial (a) and fungal (b) community composition of soils from different
vegetation successional stages and seasonal sampling times (for abbreviations and PCR-DGGE profiles see Fig. 1)
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Fig. 3 Ordination biplot of a principal component analysis on
the substrate utilization patterns of microbial communities from
four vegetation successional communities derived from a
Biolog Eco plate assay. Shown are the means of three
replicates with associated standard errors. For abbreviations of
succession stages see Fig. 1
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sampling seasons (Fig. 4b). In summer the bacterial
diversities in all successional stages showed no
significant differences among succession stages, but
the soil fungal diversity in SF was significantly higher
than in all other succession stages (Fig. 4c).

The soil bacterial and fungal diversity in T, and
bacterial diversity in S, differed significantly between
seasons (t-tests: p<0.01, p<0.01, p<0.05, respective-
ly). However, soil microbial taxonomic diversities in
SF and PF, and fungal diversity in S had no
significant seasonal shifts (Fig. 4c).

The Pearson’s correlation analysis indicated that
there was a strong positive correlation between
bacterial and fungal Shannon diversities (Fig. 5). No
significant correlations were found between soil
microbial taxonomic and metabolic diversity (data
not shown).

Discussion
Plant diversity and bacterial metabolic diversity

Aboveground and belowground components of ter-
restrial ecosystems have been shown to be closely
linked (van der Heijden et al. 2008; Wardle et al.
2004). In our study, higher plant diversity correlated
positively with higher bacterial metabolic diversity
(Fig. 4a & b). A possible mechanism behind this
finding could be that higher plant diversity generally
leads to higher plant biomass productivity (Cardinale
et al. 2007), which could then lead to larger amounts
of C entering the soil system (Liu et al. 2007). In fact,
we found exactly the same ranking for plant diversity
and SOM among the four succession stages (Table 2).
Alternatively, an increase in plant richness and
diversity could have led to greater resource heteroge-
neity in the soil (Rodriguez-Loinaz et al. 2008).
Although the relationship between plant species
diversity and plant productivity is still controversial
(Chris and Richard 2006; Partel et al 2007), there are
many published studies reporting higher productivity
of species-rich relative to species-poor plant commu-
nities (Tilman and Downing 1994; Tilman et al.
1997).

Taxonomic diversity of plants and soil microbes

Although vegetation has significant effects on soil
microbial taxonomic diversity (Table 3), the diversi-
ties of bacteria and fungi do not positively correlate
with plant diversity along the vegetation succession
(Fig. 4). Bacterial and fungal diversities were highest
in T in December, but the plant species diversity was
lowest in T among all four succession stages (Fig. 4a).

Table 3 Two-way ANOVA tables for the effect of vegetation type, season of sampling, and their interaction on bacterial and fungal

taxonomic, and bacterial metabolic diversities (H)

Main effect H'bac H'fungi H'meta

df F P df F P df F P
Vegetation 3 3.746 * 3 15.125 ok 3 90.061 HkE
Season 1 29.001 ok 1 19.505 ok 1 0.176 NS
VegetationxSeason 3 4.922 * 3 8.566 ok 3 5.358 *
Residual 16 16 16
Total 23 23 23

* Significant levels: ***P<0.001; **P<0.01; *P<0.05; NS not significant (P>0.05)
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Fig. 4 Plant species (a) and soil bacterial metabolic Shannon
diversities (b) and soil bacterial and fungal taxonomic
diversities (c¢) at two sampling times in a secondary vegetation
succession. Values represent the means of three replicates with
associated standard errors. Different letters indicate a significant
difference at p<0.05, according to Duncan tests. Significant
seasonal variation of soil bacterial and fungal taxonomic
diversities (¢) for four soil microbial communities by the
independent samples t-test are shown as a short line and * (**P<
0.01; *P<0.05), all non-significant seasonal diversity comparisons
were omitted. For vegetation type abbreviations see Fig. 1
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As the main primary producers in terrestrial ecosys-
tems, plants are thought to have profound effect on
soil communities and processes, especially those in
the rhizosphere (Bever 1994, 2002; Wilson and
Hartnett 1997). Consequently, changes in nutrient
quality and availability caused by changes in plant
diversity are expected to alter the number, activities
and diversity of soil microorganisms (Hooper et al.
2000). Although each stage of succession was
characterized by a particular plant species assem-
blage, Chabrerie et al. (2003) found that microbial
communities show a degree of resilience with respect
to changes in plant community composition. Similar-
ly, our findings show that there is no direct link
between plant and microbial taxonomic diversity.

Taxonomic structure of bacterial and fungal
communities

The soil bacterial communities in T and S were more
similar to each other than those in SF and PF. This
indicates that soil bacterial communities may show
successional changes that follow those in above-
ground vegetation as reported by Kardol et al.
(2007). More variability in the soil bacterial commu-
nities of replicate samples from T and S than samples
from SF and PF may indicate that there were more
different niches in the oligotrophic environments of T
and S (Table 1). In contrast to bacteria, the fungal
communities generally showed more variability and
more distinctly dominant ribotypes, which is in
agreement with the results of Costa et al. (2006).
The significant positive correlation between the
bacterial and fungal diversities points at the existence
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Fig. 5 Relationship fungal and bacterial diversities (H'). Linear
correlation: y = 0.319x + 2.387 (+*=0.305, p=0.005)
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of a close relationship between these two groups of
microorganisms in the studied soils. Fungi can be
important in shaping the soil bacterial assemblages in
trophic web interactions (Singh et al. 2008). Artursson
et al. (2005) demonstrated selection of distinct bacterial
populations following inoculation of the AM fungus
Glomus mosseae in soils and, a direct effect of mycelia
exudates on bacterial assemblage was found in culture
(Toljander et al. 2007). Moreover, fungi can act as
vectors for bacterial migration (Kohlmeier et al. 2005).

Relationship between bacterial taxonomic diversity
and metabolic diversity

No positive correlations between taxonomic and
metabolic diversity were found, which is in accor-
dance with some previous studies. For example,
O’Donnell et al. (2001) suggested that factors other
than community structure, such as soil pH, were more
important in regulating metabolic activity. The most
likely explanation for a lacking correlation between
bacterial taxonomic and metabolic diversity is that
bacteria and fungi possess dormant growth stages
(Chabrerie et al. 2003) and that DNA approaches
capture the whole and not only the physiologically
active communities. In general, depending on the
conditions of nutrient supply, only a fraction of the
microbes in soils are active (Chabrerie et al. 2003),
whereas the large majority is either dormant or dead
(McGill et al. 1986). This inactive part of the total
microbial communities contributes to the soil ‘mem-
ory’ (Chabrerie et al. 2003). In agreement with this,
Sharma et al. (2006) found that napA and nirS DGGE
profiles derived from DNA showed no changes,
whereas those from cDNA showed a clear succession
of denitrifying bacteria. Moreover, different groups of
soil microbes show metabolic redundancy, which
means that any loss of microbial taxonomic diversity
does not necessarily have to result in loss of
metabolic functions (Wertz et al. 2000).

Seasonal variation

Bacterial and fungal taxonomic diversities differed
(Fig. 4c; Table 3) between seasons, which agrees with
previous findings of seasonal shifts in microbial
communities (Schmidt and Lipson 2004; Monson et
al. 2006; Wallenstein et al. 2007). Seasonal variation
in the supply of substrates for microbial growth was

found to shift from carbon polymers/phenolics (win-
ter) to proteins (snowmelt) to rhizodeposition (sum-
mer) (Schmidt et al. 2007). However, bacterial
metabolic diversity in this study did not differ
between winter and summer (Table 3). The observa-
tion of seasonal shifts in microbial taxonomic
diversity, but not in metabolic diversity may point at
the existence of changes in microbial dormancy and
metabolic redundancy. Occurrence of seasonal varia-
tion of microbial taxonomic differed between succes-
sion stages as assessed by independent t-tests
(Fig. 4c). We may hypothesize that in the more
oligotrophic T soil (Table 1) more r-selected microbes
with more pronounced seasonal population shifts
were favored, leading to the significant seasonal
differences in taxonomic diversity. On the contrary,
we may imagine that the more steady and copiotro-
phic soil environments in SF and PF favored more
K-selected organisms (Fierer et al. 2007), showing
more constant community compositions over vegeta-
tion seasons. However we found bacterial metabolic
diversity in PF to differ significantly between seasons.
Seasonal litters fall in the deciduous forest PF may
explain seasonal differences in bacterial metabolic
diversity in this succession stage, but not in the
evergreen forest SF.

As it appears from unchanged bacterial metabolic
diversities in T, S and SF, litter leaching (Qiu et al.
2005) and organic matter decomposition (Schmidt et
al. 2007; Zogg et al. 1997) during the plant growth
season (summer) were no determinant factors of
bacterial activities in our study sites. Similarly,
changes in soil moisture content that may have
occurred were previously found not to explain the
activity of microbial communities (Bossio et al. 1998;
Krave et al. 2002). Irrespective of the season, differ-
ences in plant community composition appeared to
explain differences in bacterial metabolic diversity in
the present and a previous field study (Rogers and
Tate 2001).

The microbial community from the S succession
stage is special in so far as the bacterial taxonomic
diversity, indeed, showed significant seasonal changes
(Fig. 4c), whereas neither the fungal taxonomic, nor
the bacterial metabolic diversity did so. Compared to
T the soil environment of S appears to have been
relatively more seasonally stable, because in T there
were significant seasonal changes in bacterial and
fungal taxonomic diversities. No seasonal differences
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were found for the SF and PF succession stages. This
shows that with plant succession development meta-
bolic functioning of soil microbial communities
become more stable over plant growth seasons and
that bacteria are more susceptive than fungi to
seasonal fluctuations in the soil environment. With
respect to bacterial CLPPs it is interesting to note that
the succession stage S lay in between of the old (SF
and PF) and young (T) succession stages in summer
and was more similar to SF and PF in winter (Fig. 3).
This may show that competition among metabolic
functional groups could be important in succession-
ally intermediate bacterial communities when the
availability of nutrient resources changes over the
seasons.

Summary

In summary, this study showed that bacterial meta-
bolic, but not taxonomic diversity can follow an
increase in plant diversity. Moreover, we found
evidence pointing towards an increased seasonal
stability of soil bacterial metabolic diversity over
successional plant community development. Seasonal
differences in microbial taxonomic and metabolic
diversity were more often found in younger than
older plant succession stages. Finally, our field survey
showed that bacterial and fungal taxonomic diversity
can be correlated. We conclude that apparent anthro-
pogenic impacts on the integrity of plant community
diversity may be paralleled by changes to the soil
microbial community and that metabolic functioning
of bacterial communities in disturbed environments
(reflected by younger succession stages) may become
less stable over the plant growth season, with yet
unknown consequences.
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