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Abstract The protective effect of polyamines

against Cd toxicity of rice (Oryza sativa) leaves

was investigated. Cd toxicity to rice leaves was

determined by the decrease in protein content.

CdCl2 treatment results in (1) increased Cd

content, (2) induction of Cd toxicity, (3) increase

in H2O2 and malondialdehyde (MDA) contents,

(4) decrease in ascorbic acid (ASC) and reduced

glutathione (GSH) contents, and (5) increase in

the activities of antioxidative enzymes (superox-

ide dismutase, glutathione reductase, ascorbate

peroxidase, catalase, and peroxidase). Spermidine

(Spd) and spermine (Spm), but not putrescine

(Put), were effective in reducing CdCl2-induced

toxicity. Spd and Spm prevented CdCl2-induced

increase in the contents of H2O2 and MDA,

decrease in the contents of ASC and GSH, and

increase in the activities of antioxidative enzymes.

Spd and Spm pretreatments resulted in a decrease

in Cd content when compared with H2O pretreat-

ment, indicating that Spd and Spm may reduce the

uptake of Cd. Results of the present study suggest

that Spd and Spm are able to protect Cd-induced

oxidative damage and this protection is most

likely related to the avoidance of H2O2 generation

and the reduction of Cd uptake.
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Abbreviations

APX Ascorbate peroxidase

ASC Ascorbic aicd

CAT Catalase

DAB 3,3¢-Diaminobenzidine

DHA Dehydroascorbate

DW Dry weight

FW Fresh weight

GR Glutathione reductase

GSH Reduced glutathione

GSSG Oxidized glutathione

POX Peroxidase

Put Putrescine

ROS Reactive oxygen species

SOD Superoxide dismutase

Spd Spermidine

Spm Spermine

Introduction

Cadmium (Cd), a heavy metal toxic to humans,

animals, and plants, is a widespread pollutant

with a long biological half-life (Wagner 1993). Cd

is readily taken up by plants, leading to toxic

symptoms such as growth reduction (Chen and
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Kao 1995). Cd damages the photosynthetic

apparatus (Krupa 1988; Siedlecka and Baszynski

1993), lowers chlorophyll (Stobart et al. 1985;

Larsson et al. 1998), and alters proline and

polyamine contents (Sharma and Dietz 2006).

Oxygen is essential for the existence of aerobic

life, but toxic reactive oxygen species (ROS),

which include the superoxide anion O2
–, hydroxyl

radical (OH•) and hydrogen peroxide (H2O2),

are generated in all aerobic cells during metabolic

processes (Asada 1999; Foyer et al. 1994, 1997).

Initially, ROS were only regarded as damaging to

cells (Apel and Hirt 2004). More recently, ROS

emerged as ubiquitous signaling molecules par-

ticipating in the recognition of and the response

to stress factors (Foyer and Noctor 2005).

Injury caused by these ROS, known as oxida-

tive stress, is one of the major damaging factors in

plants exposed to environmental stress. Plants

cope with oxidative stress by using antioxidative

enzymes such as superoxide dismutase (SOD),

ascorbate peroxidase (APX), glutathione reduc-

tase (GR), peroxidase (POX), catalase (CAT),

and the low molecular weight antioxidants, ascor-

bic acid (ASC) and glutathione (GSH) (Asada

1999; Noctor and Foyer 1998). Three lines of

evidence indicate that one mechanism of Cd

toxicity is related to oxidative stress in plant cells.

First, Cd can promote the generation of ROS

(Kuo and Kao 2004; Olmos et al. 2003; Piqueras

et al. 1999; Romero-Puertas et al. 2003, 2004;

Sandalio et al. 2001; Schützendübel et al. 2001;

Shah et al. 2001). Second, Cd can inhibit or

stimulate the activities of antioxidant enzymes

(Chaoui et al. 1997; Dixit et al. 2001; Gallego

et al. 1996; Innelli et al. 2002; Kuo and Kao 2004;

León et al. 2002; Shah et al. 2001; Shaw 1995).

Third, treatment with Cd results in cellular

oxidative damage or lipid peroxidation (Chaoui

et al. 1997; Chien et al. 2002; Dixit et al. 2001;

Gallego et al. 1996; Kuo and Kao 2004; Lozano-

Rodrı́guez et al. 1997; Shah et al. 2001; Shaw

1995).

The polyamines putrescine (Put), spermidine

(Spd), and spermine (Spm) are polycationic

cellular molecules and are present in all living

organisms. Experimental evidence now indicates

that polyamines are involved in a number of

cellular and molecular processes in plants

(Bouchereau et al. 1999; Wallace et al. 2003).

The levels of polyamines in plants are altered in

response to heavy metals (Sharma and Dietz

2006). Weinstein et al. (1986) showed an up to 10-

fold increase in Put content with a marginal rise in

Spd and Spm contents in Cd-treated oat seedlings

and detached oat leaves. Similar results were

obtained in Cd-treated detached rice leaves (Hou

and Kao 1993). It has been shown that polyam-

ines are able to protect against oxidative damage

caused by paraquat (Benavides et al. 2000; Chang

and Kao 1997; Kurepa et al. 1998; Minton et al.

1990), acid rain (Velikova et al. 2000) and heavy

metals such as Cd and Cu (Groppa et al. 2001).

Borrell et al. (1997) demonstrated that polyam-

ines inhibited lipid peroxidation in senescing oat

leaves. Evidence has been provided to show that

polyamines are effective radical scavengers in a

number of chemical and in vitro enzyme systems

(Drolet et al. 1986) and that the reduction in

polyamine content in leaves of Glycyrrhiza inflata

under osmotic stress promoted the increase in the

production of ROS (Li and Wang 2004). A close

interrelationship between polyamines and oxida-

tive stress was documented by the finding that

leaf necrosis caused by ozone in tomato plants

could be suppressed by an exogenous supply of

polyamines (Ormrod and Beckerson 1986). How-

ever, Bors et al. (1989) claimed that the scaveng-

ing of radicals by polyamines cannot explain the

protection against ozone damage observed after

exogenous application. Recently, Tang et al.

(2004) demonstrated that exogenously added

polyamines recover browning tissues into normal

callus cultures of Virginia pine by decreasing

oxidative damage. In the present study, we

investigated the effect of polyamines on Cd

toxicity of rice leaves, and we observed that

oxidative damage caused by CdCl2 is reduced by

Spd and Spm.

Materials and methods

Plant material

Rice (Oryza sativa L., cv. Taichung Native 1)

seeds were sterilized with 2.5% sodium hypochlo-

rite for 15 min and washed extensively seeds with
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distilled water. These seeds were then germinated

in Petri dishes with wetted filter paper at 37�C

under dark conditions. After 48 h incubation,

uniformly germinated seeds were selected and

cultivated in a 500 ml beaker containing half-

strength Kimura B solution as described previ-

ously (Hsu and Kao 2005). The hydroponically

cultivated seedlings were grown for 12 days in a

Phytotron (Agricultural Experimental station,

National Taiwan University, Taipei, Taiwan) with

natural sunlight at 30�C day/25�C night and 90%

relative humidity. The apical 3 cm of the third leaf

was used in all experiments. Detached rice leaves

were pretreated with distilled water or polyamines

for 6 h at 27�C in darkness and then transferred to

distilled water or 5 mM CdCl2 for 4, 8, 12, and

18 h at 27�C in the light (40 lmol m–2 s–1).

Determination of protein, H2O2, lipid

peroxidation, GSH, oxidized glutathione

(GSSG), ASC, dehydroascorbate (DHA),

and Cd

For protein determination, leaf segments were

homogenized in a 50 mM sodium phosphate

buffer (pH 6.8). The extracts were centrifuged

at 17,600 · g for 20 min, and the supernatants

were used for determination of protein by the

method of Bradford (1976) and antioxidative

enzyme activities. The H2O2 content was mea-

sured colorimetrically as described by Jana and

Choudhuri (1982). H2O2 was extracted by homog-

enizing leaf tissue with phosphate buffer (50 mM,

pH 6.5) containing 1 mM hydroxylamine. The

homogenate was centrifuged at 6,000 · g for

25 min. To determine H2O2 content, the ex-

tracted solution was mixed with 0.1% titanium

chloride in 20% (v/v) H2SO4. The mixture was

then centrifuged at 6,000 · g for 15 min. The

absorbance was measured at 410 nm. Using this

method, we obtained that absorbance increased

linearly with the amount of H2O2 and addition of

H2O2 to leaf extracts resulted in the predicted

increase of absorbance, i.e. added H2O2 was fully

recovered (data not shown). The H2O2 content in

leaf extracts was calculated using the extinction

coefficient of 0.28 lmol–1 cm–1. In some experi-

ments, H2O2 was also visually detected in the

leaves by using 3,3-diaminobenzidine (DAB) as

substrate (Orozco-Cárdenas and Ryan 1999).

Detached rice leaves were supplied through the

cut ends with DAB (1 mg ml–1) solution for 24 h

under light at 27�C. Leaves were them decolor-

ized in boiling ethanol (95%) for 0.5 h. This

treatment decolorized the leaves except for the

brown polymerization product produced by DAB

with H2O2. After cooling, the leaves were

extracted at room temperature with fresh ethanol.

The H2O2 staining was repeated four times with

similar results.

MDA, routinely used as an indicator of lipid

peroxidation, was extracted with 5% (w/v)

trichloroacetic acid and determined by the thio-

burbituric acid reaction as described by Heath and

Packer (1968). GSH and GSSG in 3% sulfosali-

cylic acid extract and ASC and DHA in 5% (w/v)

trichloracetic acid extract were determined as

described previously (Hsu and Kao 2005). For

determination of Cd, leaves were dried at 65�C for

48 h and the dried material ashed at 550�C for

4 days. The ash residue was incubated with 31%

HNO3 and 17.5% H2O2 at 72�C for 2 h, and

dissolved in distilled water. Cd was then quantified

using an atomic absorption spectrophotometer

(Model AA-6800, Shimadzu, Kyoto, Japan).

Polyamine determination

Leaf tissues were homogenized with 5 ml of 5%

(w/v) perchloric acid. Polyamine contents were

determined using high performance liquid chro-

matography (Waters 484, Milford, USA) after

benzoylation as described previously (Chen and

Kao 1991).

Enzyme extraction and assays

For extraction of enzymes, leaf tissues were

homogenized with 0.1 M sodium phosphate buf-

fer (pH 6.8) in a chilled pestle and mortar. For

analysis of APX activity, 2 mM ASC was added

to the extraction buffer. The homogenate was

centrifuged at 12,000 · g for 20 min and the

resulting supernatant was used for determination

of enzyme activity. The whole extraction proce-

dure was carried out at 4�C. SOD was determined

according to Paoletti et al. (1986). One unit of

SOD was defined as the amount of enzyme that
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inhibits by 50% the rate of NADH oxidation

observed in blank sample. POX activity was

measured using a modification of the procedure

of MacAdam et al. (1992). The activity was

calculated using the extinction coefficient

(26.2 mM–1 cm–1 at 470 nm) for tetraguaiacol.

One unit of POX was defined as the amount of

enzyme that caused the formation of 1 lmol

tetraguaiacol per min. CAT activity was assayed

according to Kato and Shimizu (1987). One unit

of CAT was defined as the amount of enzyme

which degraded 1 lmol H2O2 per min. APX

activity was determined according to Nakano and

Asda (1981). One unit of activity for APX was

defined as the amount of enzyme that degraded

1 lmol of ASC per min. GR was determined by

the method of Foster and Hess (1980). One unit

of GR was defined as the amount of enzyme that

decreased 1 A340 per min.

Statistical analysis

Statistical differences between measurements

(n = 4) on different treatments or on different

times were analyzed following the Duncan’s

multiple range test or Student’s t-test.

Results

Cd promotes protein loss

In plants, the most general symptom of Cd

toxicity is chlorosis (Das et al. 1997). In rice, we

have shown that detached leaves and seedlings

treated with CdCl2 show chlorosis and protein

loss (Chien and Kao 2000; Hsu and Kao 2003,

2005). In the present study, Cd toxicity in

detached rice leaves caused by excess Cd was

assessed by a decrease in protein content. Increas-

ing concentration of CdCl2 from 0.1 to 5 mM

progressively decreased protein content in

detached rice leaves in the light and no further

decrease was observed at 10 mM CdCl2 (data not

shown). Thus, 5 mM CdCl2 was used in the

present investigation. The promotion of the loss

of protein by CdCl2 was evident 8 h after treat-

ment (Fig. 1A). Cd concentration in the control

leaves remained unchanged during 18 h of incu-

bation (Fig. 1C). However, Cd concentration in

CdCl2-treated leaves increased with increasing

duration of incubation (Fig. 1C). The increase in

Cd concentration in CdCl2-treated leaves was

evident 4 h after treatment (Fig. 1C).

Cd induces oxidative stress

MDA content in CdCl2-treated detached rice

leaves was observed to be greater than that in

water-treated controls at 8 h after treatment

(Fig. 1B). This showed that Cd toxicity in

detached rice leaves was linked to lipid peroxi-

dation. Lipid peroxidation is caused by ROS

(Thompson et al. 1987). CdCl2 treatment also
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Fig. 1 Changes in the contents of protein (A), MDA (B),
and Cd (C) in rice leaves treated with CdCl2. Detached
rice leaves were pretreated with H2O for 6 h in the dark
and then treated with H2O or 5 mM CdCl2 for 4, 8, 12, and
18 h in the light. * and ** represent values that are
significantly different between H2O and CdCl2 treatment
at P < 0.05 and P < 0.01, respectively
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caused an increase in H2O2 content (Fig. 2A). To

verify in situ the increase in H2O2 in leaves

treated with CdCl2, a histochemical method with

DAB that is based on the formation by H2O2 of

brown polymerization product was used. The

development of DAB-H2O2 reaction product in

H2O- and CdCl2-treated leaves is shown in Fig. 3.

It is clear that the DAB-H2O2 reaction product

was observed after H2O2 and CdCl2 treatments.

All these results support the involvement of ROS

as the chemical species inducing Cd toxicity in

rice leaves.

CdCl2-treated rice leaves had higher activities

of SOD, GR, APX, and CAT than the controls at

4 h after treatment (Figs. 2B–E). Higher activities

of POX were observed at 8 h after treatment

(Fig. 2F). GSH, GSSG, and ASC contents were

observed to be lower than the controls at 4 h after

treatment (Figs. 4A–C). However, DHA content

in Cd-treated leaves was observed to be higher

than the contents at 18 h after treatment (Fig. 4D).

The increased activities of antioxidative enzymes

and the decreased contents of ASC and GSH in

response to CdCl2 are further suggestive of strong

induction of oxidative stress.
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Fig. 2 Changes in the
contents of H2O2 (A) and
the activities of SOD (B),
GR (C), APX (D), CAT
(E), and POX (F) in rice
leaves treated with CdCl2.
Detached rice leaves were
pretreated with H2O for
6 h in the dark and then
treated with H2O or
5 mM CdCl2 for 4, 8, 12,
and 18 h in the light.
* and ** represent values
that are significantly
different between H2O
and CdCl2 treatment at
P < 0.05 and P < 0.01,
respectively
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Fig. 3 Histochemical detection of H2O2 with DAB stain-
ing in rice leaves. Detached leaves were pretreated with
H2O, Spd, and Spm, respectively, for 6 h in the dark, and
then treated with either H2O, H2O2, or CdCl2 for 18 h in
the light. The concentrations of Spd, Spm, H2O2, and
CdCl2 were 5, 5, 1, and 5 mM, respectively
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Spd and Spm reduce Cd-induced oxidative

damage

To test if polyamines could reduce the toxicity

caused by CdCl2, as judged by the changes in

protein levels, detached rice leaves were pretreat-

ed with either water or polyamines for 6 h in the

dark and then transferred to either water or CdCl2
for 18 h in the light. Spd and Spm, but not Put,

pretreatments reduced Cd toxicity (Fig. 5). We

also observed that Spd and Spm were effective in

reducing Cd-induced lipid peroxidation (Fig. 6A)

and H2O2 production (Figs. 3, 6B), Cd-increased

antioxidative enzyme activities (Fig. 7), and Cd-

decreased ASC and GSH contents (Fig. 8). Fur-

thermore, detached rice leaves pretreated with Spd

or Spm for 6 h in the dark had higher endogenous

levels of Spd and Spm, and Spm, respectively, than

those pretreated with water (Table 1). However,

Put pretreatment had no effect on endogenous

levels of Spd and Spm (Table 1).

Spd and Spm inhibit the uptake of Cd

To test if endogenous Spd and Spm affect Cd

uptake, Cd content in detached rice leaves pre-

treated with Spd or Spm followed by treatment of

CdCl2 was determined. It was observed that Spd

and Spm pretreatments resulted in a decrease

(about 27%) in Cd content when compared with

H2O pretreatment (Fig. 9).

Discussion

It has been shown that Cd increased ethylene

production in detached rice leaves (Hou and Kao

1993). Here, we show that Cd induced H2O2
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production in rice leaves (Fig. 2A, 3). Wounding

is known to induce ethylene production (Yu and

Yang 1980) and H2O2 generation (Orozco-Cárd-

enas et al. 2001). Ethylene biosynthesis shares a

common precursor with Spd and Spm, thus

wounding may induce a direct modification of

the synthesis of Spd and Spm. When detached

rice leaves are used to study H2O2, ethylene,

polyamines, and senescence, wounding is always a

problem. However, in the present study, each

long and narrow rice leaf was cut transversely;

thus, the area of wounding was very small.

Therefore, H2O2 and ethylene production of

detached leaves induced by Cd is unlikely to be

complicated by the wounding effect.

Cd is known to increase the production of

H2O2 (Kuo and Kao 2004; Schützendübel et al.

2001; Olmos et al. 2003) and induce lipid

peroxidation (Chien et al. 2002; Gallego et al.

1996; Kuo and Kao 2004). These results suggest

that Cd treatment causes an oxidative stress in

plants. Our results not only have shown that

CdCl2 increased the content of H2O2 (Figs. 2A, 3)

and the activities of SOD, APX, GR, CAT, and

POX (Figs. 2B–F), but also demonstrated that

caused a decrease in GSH and ASC contents

(Fig. 4). Meanwhile, protein loss (Fig. 1A) and

lipid peroxidation (Fig. 1B) were observed in

CdCl2-treated rice leaves. All these results sug-

gest that CdCl2 causes an oxidative stress and that

CdCl2-induced toxicity in rice leaves is mediated

through oxidative stress.

GSH functions as a direct antioxidant of ROS

and is involved in the generation of ASC, which is

utilized as a substrate for APX (Noctor and Foyer

1998). In the present study, we observed that the

decrease in GSH content is one of the earliest

steps in oxidative stress induced by CdCl2 in rice

leaves, which occurred at 4 h after treatment

(Fig. 4B). It may be suspected that the decrease

in GSH may favor the accumulation of ROS in

Cd-treated rice leaves. In a review, Schützendü-

bel and Polle (2002) also suggest that the deple-

tion of GSH is apparently a critical step in Cd

toxicity.

Cd induced a significant accumulation of H2O2

in rice leaves (Figs. 2A, 3). Accumulation of

H2O2 has also been observed in Cd-treated pine

and pea roots, pea leaves, and tobacco cells

(Olmos et al. 2003; Romero-Puertas et al. 2003;

2004; Schützendübel et al. 2001). There are

reports showing that NADPH oxidase was possi-

bly involved in Cd-induced H2O2 production in

pea leaves and tobacco cells (Olmos et al. 2003;

Romero-Puertas et al. 2004). Our unpublished

observations indicate that diphenyleneiodonium

chloride and imidazole, inhibitors of NADPH

oxidase, prevented Cd-induced H2O2 production

in rice leaves.

Data from the present study indicate that

Cd-induced oxidative damage in rice leaves is

reduced by Spd and Spm. This conclusion is based

on the observations that pretreatment with Spd

and Spm prevented Cd-induced loss of protein

(Fig. 5), increase in the contents of MDA (Fig. 6)

and H2O2 (Figs. 3, 6B), decrease in the content of

ASC and GSH (Fig. 8), and increase in the
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activities of antioxidative enzymes (Fig. 7). Grop-

pa et al. (2001) also demonstrated that Spm and

Spd were effective in reducing Cd-caused lipid

peroxidation in sunflower leaf discs. It is generally

accepted that polyamines are highly protonated at

physiological pH, which favors electrostatic bind-

ing of polyamines to negatively charged compo-

nents of membranes, leading to membrane

stabilization through ionic interactions (Slocum

et al. 1984). The more pronounced protective effect

of Spd and Spm could be accounted for by its longer

chain and greater number of positive charges,

which allows membrane stabilizing ability.

The decrease in ASC and GSH contents in rice

leaves treated with CdCl2 suggests that ASC and

GSH contents may be regulated by the synthesis

and oxidation. GSH is the precursor of phyto-

chelatins, cysteine-rich peptides, synthesized via

phytochelatin synthase (Cobbett and Goldsb-

rough 2002). A severe depletion of GSH is a

common response to Cd caused by an increased

consumption of GSH for phytochelatin produc-

tion (Schützendübel and Polle 2002). Thus, the

sharp decline in GSH content in CdCl2-treated

rice leaves may also be due to phytochelatin

biosynthesis.

The present results indicated that Spd and Spm

reduced Cd-decreased ASC and GSH contents

(Fig. 8). Theses observations suggest that the

capacity of Spd and Spm to scavenge H2O2 might

g
m

sti
n

u
(

D
O

S
1-

)
niet

or
p

0.0

0.1

0.2

0.3

0.4

0

1

2

3

4

5

6

g
m

ti
n

u
(

T
A

C
1-

)
niet

or
p

0.0

0.1

0.2

0.3

g
m

sti
n

u
(

X
O

P
1-

)
ni et

o r
p

0.0

0.5

1.0

1.5

2.0

2.5

g
m

sti
n

u
(

X
P

A
1-

)
niet

or
p

0

1

2

3

4

5

a

b b

c

a

b b

c

a
aa

b

a

b
b

c

a a
a

b

g
m

ti
n

u
(

R
G

1-
)

niet
or

p

H 2
O

H 2
O

H 2
O

CdCl 2

pS
d

CdCl 2

pS
m

CdCl 2

H 2
O

H 2
O

H 2
O

Cd
Cl

2
pS
d

C
dC

l 2
pS
m

C
dC

l 2

A

B

C

D

E

Fig. 7 Effect of
pretreatments with Spd
and Spm on the activities
of antioxidative enzymes
[SOD (A), GR (B), APX
(C), CAT (D), and POX
(E) in detached rice
leaves in the presence or
absence of CdCl2.
Detached rice leaves were
pretreated with H2O,
5 mM Spd, and 5 mM
Spm, respectively, for 6 h
in the dark and then
treated with H2O or
5 mM CdCl2 for 18 h in
the light. Values with the
same letter are not
significantly different at
P < 0.05

34 Plant Soil (2007) 291:27–37

123



increase in rice leaves that were pretreated with

Spd or Spm followed by treatment of CdCl2
(Fig. 6B).

In considering a possible mechanism for the

reduction of Cd-induced oxidative damage by

polyamines, we speculated that Spd and Spm

might inhibit Cd uptake from the medium. Here,

we show that Cd content in detached rice leaves

pretreated with Spd and Spm followed by treat-

ment of CdCl2 was lower that those pretreated

with H2O. Our findings suggest that increase in

endogenous Spd or Spm may block, though

slightly (27%), the uptake of Cd (Fig. 9). In the

present study, pretreatment of detached rice

leaves with exogenous Spd or Spm was found to

reverse almost completely the Cd-induced H2O2

generation and lipid peroxidation (Fig. 6). It

appears that Spd and Spm were able to protect

Cd-induced oxidative damage and this protection

was related to the avoidance of H2O2 generation

and the reduction of Cd uptake.
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