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Abstract

The effects of available soil N and P and the effect of simulated browsing (leave removal) on foliar con-
densed tannin (CT) concentration were tested on young Colophospermum mopane (J. Kirk ex Benth)
J. Leonard (Mopane) plants. Although clear differences in growth occurred between different levels of soil
N, no differences in foliar CT concentration were found. Changes in available soil P and physical damage
did not affect the plant growth or chemical composition. The complete absence of response of CT concen-
tration to physical damage and soil nutrients may be related to the age of the trees in this study. It is pro-
posed that existing theories on the interaction between soil properties and carbon based defences in trees
are expanded, to include the potential responses of young trees to different soil nutrient levels.

Introduction

Even in dry, herbivore rich savannas, vegetation
quantity is usually not limiting herbivore densities
(The green world theory, Hairston et al., 1960).
Therefore, plant species may reduce herbivore
pressure through chemical and physical defences
(Boege, 2004; Karban and Myers, 1989; Mole,
1989 and references therein). One form of chemi-
cal defence is the production of condensed tan-
nins (CT). Tannins are estimated to be the fourth
most abundant biochemical produced by vascular
plants (Hernes and Hedges, 2000) and are impor-
tant in ecosystem processes (Kraus et al., 2003,
2004a; Northup et al., 1995; Sjoberg et al., 2004).

The high costs associated with production of
tannins are thought to impose a selective penalty
on plants, but these are thought to be traded off

against improved herbivore defence. Two types of
tannins exist: hydrolysable and condensed. Low
levels of hydrolysable tannins in forage may
increase nutrient intake by temporal binding of
proteins (Bernays et al., 1989; Class et al., 2003;
Mole, 1989) whereas CT can reduce protein avail-
ability (Bernays et al., 1989; Mangan, 1988; Mole,
1989; Robbins et al., 1987; Soest, 1987) and may
influence forage selection (Belowsky and Schmidtz,
1994; Class et al., 2003; Cooper et al., 1988;
Matson et al., 2004). This makes understanding the
factors that influence tannin production by plants
important to understand ecosystem functioning.

Tannins are part of a larger chemical group,
the polyphenols. The variation in polyphenol
concentration of plants has been related to
potential leaf age (Coley, 1988) and environmen-
tal factors, such as soil properties (Osier and
Lindroth, 2001), temperature stress (Rivero et al.,
2001), light intensity (Dudt and Shure, 1994),
and herbivory (Furstenburg and Van Hoven,

* FAX No: +31-53-4874388.
E-mail: Ferwerda@itc.nl

Plant and Soil (2005) 273: 203–209 � Springer 2005
DOI 10.1007/s11104-004-7538-1



1992; Kraus et al., 2003; 2004b; Osier and Lind-
roth, 2001 and references therein), but these rela-
tions are not clearly understood, and different
studies show different results (Styles and Skinner,
1997). Although it may be generally believed that
chemical defences can be induced, and result in
lower herbivore pressure, this theory is strongly
debated (Koricheva et al., 2004; Nykanen and
Koricheva, 2004).

A number of hypotheses have been proposed,
which explain changes in foliar phenolic com-
pound production in response to soil nutrient
levels and herbivory. Coley et al. (1985) and
Coley (1988) link differences in the concentration
of CT and fibres between species to intrinsic
growth rates, leaf longevity of plants, and herbi-
vore pressure. These authors hypothesise that the
concentration of CT increases with increasing
leaf longevity, decreases with increasing growth-
rate and increases with increasing herbivore pres-
sure. The carbon-nutrient balance hypothesis
(Bryant et al., 1983) predicts a shift from
N-based to C-based defences in a situation where
soil nutrient levels become more limited, because
of the relative low cost of carbon, resulting in an
increase of phenolic compound concentration. In
response to herbivory, they predict that plants
respond to browsing by producing shoots with
well-developed chemical defences.

The recent process-based ‘protein competition
model of phenolic allocation’ by Jones and
Hartley (1999) is an extension of the carbon-
nutrient balance hypothesis. This model explains
relative phenolic compound production of plants
through an internal chemical balance between N
demand for protein production and phenolic
compound production. In this model, phenylala-
nine controls the production of polyphenols and
proteins, which in turn is regulated by soil N and
P availability. According to the model, phenolic
compound production increases with decreasing
soil N and P. Jones and Hartley (1999) further-
more predict an increase in the production of
phenolic compounds in response to physical
damage to the plant as a result of induced
phenylalanine ammonia lyase concentration.

The presented study is part of a broader study
on the effects of herbivores on Savannah wood-
land structure and chemical composition, with a
focus on Colophospermum mopane (J. Kirk ex
Benth) J. Leonard (Mopane) woodlands, which

cover an area of 550,000 km2 in Southern Africa
(Mapaure, 1994). Mopane is used for many
domestic purposes such as firewood, construc-
tion, and ropes (Madzibane and Potgieter, 1999;
Mashabane et al., 2001). Although mopane
leaves are rich in proteins, deterrent tannin levels
in mopane are also high and effectively prevent
continuous browsing by many herbivores for
most of the year (Styles and Skinner, 1997). Only
African elephants (Loxodonta africana) (Ben-sha-
har, 1996; Ben-Shahar and Macdonald, 2002;
Smallie and O’Connor, 2000), Eland (Tragelaphus
oryx) (Styles and Skinner, 1997), and some
insects are known to regularly use mopane as a
food source. Also, seasonal browsing by the
Greater Kudu (Tragelaphus strepsiceros) and
other, smaller ruminants (Styles and Skinner,
1997) have been reported to occur. Cattle cannot
survive the dry-season on mopane leaves alone
because of low intake rates (Ludeman, 1966;
Timberlake, 1995), but when mixed with maize,
urea and bone meal, mopane can be used as ‘bush
meal’ for cattle to survive dry periods, making it
an important food source to reduce livestock
losses in the dry season (Timberlake, 1995).

Mopane trees were grown in a greenhouse
experiment on soils with different levels of avail-
able N and P, to test how foliar CT concentra-
tion in mopane is affected by soil nutrients and
herbivory. To test the effects of severe browsing
by herbivores on foliar CT levels, leaves were
removed from the plants after 4 months of
growth and left to regrow foliage for 2 months.
Based on work by Bryant et al. (1983), Coley
(1988), Coley et al. (1985) and Jones and Hartley
(1999), the following hypotheses were formu-
lated: Increased soil N levels result in a decrease
of leaf CT concentration; An increase in soil P
results in a decrease of CT concentration of
leaves; Physical damage by removal of leaves
induces CT production which results in an
increase of CT concentration in leaves.

Materials and methods

Plant material and growing conditions

Seeds of mopane were obtained through the
Skukuza nursery, in Kruger National Park, and
transported to the Netherlands. The one-seeded
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pods of mopane have a thick husk, and in order to
increase the germination success, this protective
outer layer was removed from all seeds. The peeled
seeds were soaked for 24 h in soil saturated with
water to initiate the germination process, after
which they were placed at 20 �C for 1 week to ger-
minate. By then approximately 90% of the seeds
had germinated, and the seedlings were transferred
to plastic plant containers (diameter 15 cm, height
20 cm) with two seedlings per pot, to compensate
for the potential loss of seedlings after transplant-
ing. The seedlings were allocated one of four soil
treatments described below. All treatments were
based on the same initial mixture of 1 unit of black
soil added to 7 units of coarse sand, to which pow-
dered nitrogen fertiliser (Ca(NO3)2 � 4H2O) or
phosphorous fertiliser (P2O5) was added. The low-
est nutrient levels were based on concentrations
found in East African savannas (Ludwig et al.,
2004). Twelve pots were filled with untreated sand/
soil mixture (Treatment N)P); 3.25 g N m)3 and
2.1 g P m)3). The three other series of 12 pots
contained an additional 35.75 g N m)3 (Treat-
ment N+P); 39.00 g N m)3 and 2.1 g P m)3), an
additional 17.4 g P m)3 (Treatment N)P+;
3.25 g N m)3 and 19.5 g P m-3), or both (Treat-
ment N+P+; 39.00 g N m)3 and 19.5 g P m)3).
The levels of nutrients applied were adapted from
those used in a field experiment by Ludwig et al.
(2001). As anticipated, a number of plants died
after transplanting, leaving only one plant per pot.
Therefore it was decided only to include the most
successful (tallest) plant for all pots in this study.
After 2 months, the smaller of two plants was
removed from each pot, taking care to minimise
disturbance to the rest of the substrate and to the
other plant. A latin-squares design randomly dis-
tributed the treatments. Plants were grown in day-
light (from May to November) with the
photoperiod extended to 12 h with greenhouse
lights. The automated greenhouse control system
monitored air temperature and humidity through-
out the experiment. Temperature was kept at
25 �C during the day, and 20 �C at night, air
humidity was kept over 70%, and plants were
watered once a day.

Sampling

During the growth, basic physical parameters,
such as stem length and number of leaves, were

recorded to determine the effect of soil nutrients
on plant growth. After 4 months, the plants were
large enough to allow sampling of leaves for
chemical analysis.

Furstenburg and Van Hoven (1992) found an
increase in foliar CT concentration in Acacia
nigrescense, within 30 to 100 minutes after brows-
ing by giraffes commenced. This elevated concen-
tration of foliar CT remained for 40–66 h.
Therefore, in the current study sampling was done
in phases. Except for a few small plants of which all
leaves were collected, and a control group, of which
no leaves were collected, all mature leaves on one
side of the main-stem were collected after 4 months
of growth (t ¼ 0). The leaves on the other side of
the main-stem were removed after 1 day for half of
the remaining plants (t ¼ 1), and for the other half
after 4 days (t ¼ 4). After 2 months sampling,
most plants had re-sprouted, and all fully devel-
oped leaves were collected of all previously sam-
pled plants (t ¼ 60), as well as of the control group,
of which no leaves had been removed before (Con-
trol). After harvest all leaves were dried at 70 �C
for 48 h, and stored for analysis.

Chemical analysis

Condensed tannins concentration was determined
for all sample sets. Condensed tannins was
extracted from ground leaves following
(Hagermann, 1988; Hagerman, 2002) and the
concentration was determined with the improved
acid butanol assay (Porter et al., 1986). Purified
Quebracho tannin was used to standardise the
measurements (Waterman and Mole, 1994).
Because the reactivity of tannins to the acid
butanol assay is species–specific, the obtained
concentration is a relative measure of concentra-
tion, and cannot be used to calculate absolute
concentrations (Waterman and Mole, 1994).

N and P concentration was determined for
the samples of t ¼ 0. A mixture of sulphuric
acid, selenium and salicylic acid was used for
destruction of the samples (Novozamsky et al.,
1983) after which N and P concentration were
measured with a Skalar San-Plus auto analyser.
Some of the plants were small, and not all
analyses could be performed for all samples,
therefore differences in the number of samples
available for statistical analysis occurred between
treatments.
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Statistical analysis

A Shapiro–Wilk’s W test for normality was per-
formed on arcsine transformed data of the CT,
N, and P concentration of leaves, N/P ratio, and
CT/N ratio, as well as on the number of leaves
and stem length, for the individual treatments.
These factors did not deviate from normality.
Therefore we used a factorial ANOVA to test
for differences in leaf CT, N, P, N/P ratio, and
CT/N ratios between treatments at t ¼ 0, with
soil N (low and high) and soil P (low and high)
as factors. Tukeys’ unequal n HSD test was used
to discriminate groups for which differences
occurred.

Differences in foliar CT concentration
between t ¼ 0, 1, 4, 60 were determined using a
one-way ANOVA. A one-sided t-test was used to
test whether the foliar CT concentration of the
control group is lower than the foliar CT concen-
tration of samples from t ¼ 60.

Results

Effect of soil treatments

The growth (measured through the number of
leaves and stem length), and foliar N concentra-
tion were higher for plants growing on soils with
an increased soil N than those growing on soils
with low N (Table 1, Figure 1). This effect was

not influenced by soil P concentration (Table 1,
Figure 1). The foliar P concentration was not
influenced by soil nutrients (Table 1). The N/P
ratio in plants growing on high N soils was more
than double that of the N/P ratio of plants
growing on soils with lower N concentration
(Table 1). Foliar concentration of CT was not
affected by the amount of N or the amount of P
in the soil (Table 1).

Effect of leaf removal

There was no difference in foliar CT concentra-
tion between plants damaged by removal of
leaves, and the control group (Table 2), although
the foliar CT concentration of leaves did increase
with time (Table 2).

Discussion

Effect of soil nutrients

We did not find any differences in foliar CT con-
centration for mopane seedlings grown on soil
with different N and P (Table 2). These results
do not agree with results found in other studies
on other plant species. These predicted a decrease
of phenolic compounds with an increase of soil
nutrients (Coley et al., 1985; Jones and Hartley,
1999). This relationship was recently confirmed
by Kraus et al. (2004b), who found significant

Table 1. Average foliar condensed tannin (CT) concentration (quebracho tannin equivalents in mg g)1), N (mg g)1), P (mg g)1),
N/P ratio, and CT/N ratio in mopane leaves after growing seedlings for 4 months (t = 0) on four different soil nutrient levels.
(N): Low soil N, N+: High soil N, P): low soil P, P+: High soil P)

Treatment N) P) N) P+ N+ P) N+ P+

n 7 9 8 11

CT 381a 430a 400a 335a

95% Conf. Int. 260–526 314–564 282–538 243–443

N 13.66a 13.97a 24.83b 23.72b

95% Conf. Int. 10.24–17.55 10.91–17.42 20.46–29.62 20.05–27.69

P 2.17a 2.27a 1.82a 1.61a

95% Conf. Int. 1.64–2.78 1.79–2.81 1.37–2.34 1.24—2.02

N/P ratio 6.37a 6.29a 13.68b 15.02b

95% Conf. Int. 5.08–7.81 5.14–7.54 11.93–15.52 13.47–16.65

CT/N ratio 0.385a 0.332a 0.163a 0.141a

95% Conf. Int. 0.214–0.605 0.191–0.512 0.066–0.304 0.062–0.251

Groups (a or b) were discriminated with a Tukeys’ unequal N HSD test, after significant differences (P < 0.05) were detected using
a factorial ANOVA on ArcSin transformed data, with factors: Soil N (low and high) and soil P (low and high).
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increases of foliar total phenol and CT concen-
trations in response to reduced soil fertility for
one year old trees grown under controlled condi-
tions. Kraus et al. (2004b) also found significant
changes in the ratio between CT and N, in
response to fertilisation. In the present study this
difference did not occur (Table 1). This could
indicate that neither P nor N were limiting for
growth in this study. However, the strong differ-
ences in growth for plants grown on different N
levels (Figure 1) indicate that N limitation occurs
for the low N treatment. Although there is a
trend of lower number of leaves and shorter
stems for plants grown on soils with lower P con-
centration, these differences are not significant
(Figure 1). This indicates that the amount of P
available to the plant may not be limiting

growth, even when no P is added to the original
soil mixture.

Koerselman and Meuleman (1996) and
Verhoeven et al. (1996) suggested using the ratio
between leaf N and P as an indicator of the type
of nutrient limitation, where a ratio of more then
16 indicates P limitation, and a ratio of less then
14 indicates N limitation, based on wetland stud-
ies in temperate climates. Ludwig et al. (2001)
found that an N/P ratio of 12 or higher indicates
P limitation in an open savanna. This suggests
that variation exists in N/P ratio thresholds for
different ecotypes. In this study we found an
increase of N/P ratio from 6.45 for plants grown
on N poor soils, to 15 for plants grown on N
rich soils, which was not influenced by soil P
concentration (Table 1). Again, this suggests that

Figure 1. Growth of Colophospermum mopane seedlings on different soil nutrient levels during the first 4 months after planting,
measured by (a) the average number of leaves and (b) the average main stem length. Initial sampling took place four months after
planting (t ¼ 0). Averages were calculated for all plants grouped by treatment. The graphs of individual treatments are off-set along
the time axis for clarity. Groups (a or b) were discriminated with a Tukeys’ unequal N HSD test, after significant differences
(P < 0.05) were detected using a factorial ANOVA, with factors: Soil N (low and high) and Soil P (low and high).

Table 2. Average foliar condensed tannin (CT) concentration (Quebracho tannin equivalents in mg g)1 dry weight), 95% confi-
dence interval, and number of samples of mopane leaves, harvested at different times as described in the methods section

Sample Date CT 95% Conf. Int. n

t = 0 September 11th 383a 334–435 35

t = 1 September 12th 385a 312–467 15

t = 4 September 15th 429a 353–511 16

t = 60 November 10th 589b 528–653 35

Control November 10th 552b 470–640 8

The first samples (t = 0, t in days) were collected after 4 months of growth. Groups (a or b) were determined using a one-way
ANOVA in combination with an unequal N HSD post hoc test. The difference between samples collected at t = 60 and the control
group was tested using a Tukeys’ t-test, using a 95% significance threshold.
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the P levels in this study were probably not limit-
ing for mopane.

Effect of leaf removal

Physical damage to the plants by removal of
leaves did not influence CT concentration in the
remaining leaves (Table 2). The concentration of
foliar CT in leaves which had re-grown after com-
plete defoliation, collected at t ¼ 60, is signifi-
cantly higher then the concentration in samples
collected at t ¼ 0, 1, 4, with t in days after the first
sampling date (Table 2). This difference cannot be
attributed to the effect of removal of leaves: When
comparing the foliar CT concentration in leaves
that re-grew after plants were completely defoli-
ated (t ¼ 60) with those from the control group
(plants which had not been defoliated) there is
no difference in concentration (P ¼ 0.29). The
increase of CT over time is probably the result of
plant aging. Young plants often have a different
physiology than mature plants. The young plants
invest a lot of energy in the development of bio-
mass. As described in the protein competition
model (Jones and Hartley, 1999), growth results
in allocation of C for protein production, instead
of polyphenol production. This would result in
lower phenol concentration in young plants com-
pared to older plants, and may dominate the
effect of soil properties on the production of phe-
nolic compounds.

Bryant et al. (1983) suggested that high tannin
levels in young boreal forest trees have evolved
in response to the high risk of browsing by hares.
Based on this, combined with the theory that CT
concentration is negatively correlated to the
potential growth rate of a species (Coley, 1988;
Coley et al., 1985), we propose that juvenile
plants may exhibit higher levels of tannins than
mature plants for slow growing species, or spe-
cies which invest a lot of energy in development
of root systems, before developing aboveground
biomass. Fast growing species can reduce bio-
mass loss from browsing by increasing vertical
growth. These plants therefore allocate C to
growth instead of to the production of C-based
defences. Therefore these species will exhibit
lower levels of CT in the juvenile form than older
species. When we apply this hypothesis to
mopane, we notice that under ideal growing con-
ditions, mopane plants can reach a main stem

length of up to 0.5 m in 4 months, and even
nutrient limited plants reach an average height of
0.2 m in 4 months (Table 1). Under field condi-
tions this tree can reach up to 4 m height within
8 years (Sharma et al., 1989). It can therefore be
considered to be a fast growing species. And
although an increase of foliar CT concentration
in time occurs, the effect of nutrient limitation on
the tannin concentration is absent, which is in
line with the hypothesis presented here.
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