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Abstract

Flooding results in major changes in the soil environment. The slow diffusion rate of gases in water limits the
oxygen supply, which affects aerobic root respiration as well as many (bio)geochemical processes in the soil. Plants
from habitats subject to flooding have developed several ways to acclimate to these growth-inhibiting conditions,
ranging from pathways that enable anaerobic metabolism to specific morphological and anatomical structures that
prevent oxygen shortage. In order to acclimate in a timely manner, it is crucial that a flooding event is accurately
sensed by the plant. Sensing may largely occur in two ways: by the decrease of oxygen concentration, and by
an increase in ethylene. Although ethylene sensing is now well understood, progress in unraveling the sensing of
oxygen has been made only recently. With respect to the signal-transduction pathways, two types of acclimation
have received most attention. Aerenchyma formation, to promote gas diffusion through the roots, seems largely
under control of ethylene, whereas adventitious root development appears to be induced by an interaction between
ethylene and auxin. Parts of these pathways have been described for a range of species, but a complete overview
is not yet available. The use of molecular-genetic approaches may fill the gaps in our knowledge, but a lack of
suitable model species may hamper further progress.

Introduction

Flooding of the soil, also called waterlogging, can
have a tremendous impact on the growth and survival
of plants, and thereby on agricultural as well as natural
ecosystems. In the last decades considerable progress
has been made in our understanding of the mecha-
nisms that enable certain plant species and cultivars
to withstand periods with excess soil water, or even
complete submergence. Much of the research has been
carried out with crop plant species, such as rice (Oryza
sativa), maize (Zea mays) and sunflower (Helianthus
annuus), but also wild species originating from wet-
land habitats have been used, mostly for comparative
studies (e.g., Justin and Armstrong, 1987; Laan et al.,
1989; Smirnoff and Crawford, 1983; Visser et al.,
1996a).
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The main effect of soil flooding is a considerable
slow-down of the exchange of oxygen, as gas diffusion
rates are four orders of magnitude slower in water than
in air (Jackson, 1985). Consequently, flooded soils
rapidly develop anoxic conditions at depths greater
than a few centimetres, as the demand by aerobic res-
piration of soil organisms greatly exceeds the influx
of oxygen from the atmosphere. Shortage of oxygen
is obviously detrimental to the development of root
systems, and those roots whose aerobic metabolism
entirely depends on oxygen from the soil will cease
growth, and may eventually die (Bradford and Yang,
1981; Drew, 1997). Additionally, anoxic soils may
accumulate phytotoxic products from microbial reduc-
tion processes (such as hydrogen sulphide, Fe2+ and
Mn+; Ernst, 1990; Laanbroek, 1990; Lamers et al.,
1998; Ponnamperuma, 1984), and the gaseous plant
hormone ethylene (Smits and Scott-Russell, 1969;
Campbell and Moreau, 1979; Visser et al., 1996b),
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which can strongly inhibit root growth (Konings and
Jackson, 1979; Visser et al., 1997).

In-depth discussions of the large variety of adapta-
tions that have evolved in plant species prone to soil
flooding, have been presented in recent reviews, such
as publications on root function, physiology and bio-
chemistry (Jackson and Ricard, 2003), aerenchyma
development (Jackson and Armstrong, 1999; Evans,
2003), gas diffusion in plants (Colmer, 2003), root-
to-shoot signalling (Jackson, 2002), changes in gene
expression (Subbaiah and Sachs, 2003) and root
metabolism (Drew, 1997; Geigenberger, 2003; Gibbs
and Greenway, 2003a, b). In the current review we
will focus on how plants sense the changed condi-
tions of a waterlogged soil. Much of this is still
unclear and speculative, but recently progress has been
made. Furthermore, we will discuss the two best de-
scribed signal-transduction pathways leading to mor-
phological and anatomical acclimation to soil flood-
ing; namely, those resulting in aerenchyma formation
and in adventitious rooting. Finally, we conclude with
a brief summary of the most prominent advances and
our view on the future development of the field.

Sensing of flooded conditions

Signals

Plants use external and internal signals to sense
changes in the environment, such as shifts from
aerial to aquatic. These signals are often the first
step in transduction cascades leading to rapid down-
regulation of metabolic pathways to decrease oxygen
consumption, and, in the long-term, to morpholog-
ical adjustments such as aerenchyma development
and fast shoot elongation to increase oxygen entry
(Geigenberger, 2003).

The two internal gaseous signals, oxygen and eth-
ylene, are frequently associated with the responses
of plants or plant parts surrounded by water. Sub-
mergence has a dramatic effect on the endogenous
concentrations of these two components due to the
very slow diffusion of gases in water compared to that
in air (Jackson, 1985). In non-photosynthesising or-
gans such as roots, oxygen levels will rapidly decline
due to continuous oxygen consumption in respiration,
and the very slow delivery of aerial oxygen to the root.
Ethylene, on the other hand, will accumulate to phys-
iologically active levels in submerged tissues, due to
production in almost every organ and hampered dif-
fusion to the atmosphere (Voesenek and Blom, 1999).

However, a prerequisite for continued ethylene pro-
duction is the presence of at least some molecular
oxygen, since conversion of the ethylene precursor 1-
aminocyclopropane-1-carboxylate (ACC) to ethylene,
catalysed by ACC oxidase, uses molecular oxygen as
a co-substrate (Kende, 1993).

Ethylene

Elevated ethylene levels are important for the induc-
tion of morphological and anatomical traits upon soil
flooding, such as formation of aerenchyma and ad-
ventitious roots. During the last decade enormous
progress has been made in disentangling the ethylene-
response pathway from hormone perception at mem-
brane structures to transcriptional regulation in the
nucleus. This was mainly achieved with a genetic and
molecular analysis of Arabidopsis mutants disturbed
in ethylene perception and signalling.

In plants, ethylene is perceived by a family of re-
ceptor molecules located in the endoplasmic reticulum
(ER) (Chen et al., 2002). These receptor molecules
share strong homology with bacterial two-component
regulators (Chang et al., 1993), and are by default
functionally active and are switched to an off-state
by ethylene binding to the N-terminal transmembrane
part of the dimerized molecule. Ethylene receptors
form a complex with a protein called CONSTITU-
TIVE TRIPLE RESPONSE (CTR). CTR proteins are
activated by association with the receptors at the ER
and repress downstream ethylene responses. In the
presence of ethylene, the ethylene receptor proteins
presumably undergo conformation changes that inac-
tivate them. Under these conditions CTR is released
from the ER and also becomes inactivated (Gao et al.,
2003). Consequently, this derepression will result
in ethylene responses. Further downstream ethylene
signals are transduced via several positive regulators
(e.g., ETHYLENE INSENSITIVE2 (EIN2), EIN5
and EIN6) ending with the transcription factors EIN3
and EIN3-like (EIL) (Guo and Ecker, 2003). An im-
mediate target for EIN3 is the ethylene-responsive
gene Ethylene Response Factor1 (ERF1). The ERF1
protein belongs to the family of so called ETHYL-
ENE RESPONSE ELEMENT BINDING PROTEINS
(EREBPs) transcription factors. These EREBPs play
an important role in controlling expression of ethylene
target genes (Solano et al., 1998).

For all known ethylene responses the obligatory
components of the signal transduction cascade range
from the receptor molecules to the transcription factor
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family EIN3/EIL. The branch point resulting in the
wide array of ethylene responses lies downstream of
EIN3/EIL (Guo and Ecker, 2003).

Oxygen

Oxygen is another internal gas signal that changes dra-
matically upon submergence. The stress induced by
low oxygen concentrations is not restricted to flooding
environments, but can occur in tissues characterized
by fast metabolic rates (e.g., root meristems, phloem
tissue). In these tissues the rate of oxygen delivery via
diffusion is too slow to keep pace with its consumption
(Geigenberger, 2003).

It is important to distinguish real anoxic condi-
tions from those where cytochrome oxidase activity
is not limited by oxygen, but where the oxygen lev-
els are below ambient. Falling oxygen levels are
sensed in plants, and lead to a fast inhibition of
respiration, a lowering of the adenylate status, and
a down-regulation of the TCA cycle and glycolysis
(Geigenberger, 2003). These changes are consistent
with the down-regulation of genes that encode en-
zymes involved in the biosynthesis of cell walls, lipids
and flavanoids, defense responses and protein degra-
dation in Arabidopsis roots exposed to low oxygen
(Klok et al., 2002). This inhibition of biosynthetic
fluxes and metabolic rates occurs even at oxygen lev-
els that are much higher than the Km of cytochrome
oxidase and alternative oxidase (AOX), indicating that
it is very likely that oxygen sensing operates inde-
pendently of the electron transport chain. However, it
cannot be ruled out that diffusion limitation in bulky
tissues might, in fact, mean that a proportion of the
cells are exposed to oxygen levels below the Km of cy-
tochrome oxidase and AOX. The observed metabolic
shift is assumed to be adaptive, since it decreases oxy-
gen consumption and saves ATP, and thus delays the
onset of anoxia (Geigenberger, 2003). In a micro-array
study with Arabidopsis roots exposed to low oxygen it
became evident that next to a set of down-regulated
genes, several genes were up-regulated. These up-
regulated genes belong to three categories: (i) genes
involved in ethanolic and lactic fermentation, (ii)
genes that potentially play a role in post-anoxia injury,
and (iii) genes related to ethylene synthesis, ethylene
signalling, programmed cell death and cell-wall loos-
ening (Klok et al., 2002). The first two classes could be
interpreted as pre-adaptive genes that are expressed to
continue energy production in subsequent anoxic peri-
ods, and that enhance survival in post-flood phases in

which oxygen re-enters the plant. The third category
of genes is strongly associated with aerenchyma for-
mation which leads to a more long-term acclimation
to enhance entry of oxygen.

Thus, in order to timely respond to decreasing oxy-
gen levels, plants need to sense oxygen concentrations
that are between the Km of cytochrome oxidase and
AOX and normoxia. This oxygen-sensing system in
higher plants operates independently of changes in
energy metabolism. This contention is supported by
findings that induction of the ADH1 gene by low oxy-
gen concentration cannot be mimicked by respiratory
inhibitors (Bucher et al., 1994). One of the first
detectable changes upon oxygen deprivation is an
elevation of cytosolic Ca2+ (Subbaiah et al., 1994),
probably caused by calcium mobilization from mito-
chondria (Subbaiah et al., 1998), suggesting that mito-
chondria are at the centre of oxygen sensing (Subbaiah
and Sachs, 2003). Several low-oxygen-induced genes
are characterized by an anaerobic response element in
their promotor (Klok et al., 2002). The transcription
factor AtMYB2, induced by low oxygen, binds to this
promoter, and can activate ADH1 promotor activity
(Hoeren et al., 1998).

Oxygen-sensing systems have long been known for
prokaryotes (reviewed by Bunn and Poyton, 1996). A
well-studied example in this respect, found in various
bacteria, is the oxygen-sensing protein FixL. It con-
tains a histidine kinase domain belonging to the class
of two-component regulatory systems and a heme-
binding sensory domain that shares homology with the
PAS domain superfamily (Taylor and Zhulin, 1999).
Under well-aerated conditions FixL is oxygenated,
and kinase activity is turned off. When FixL is de-
oxygenated during falling oxygen levels it autophos-
phorylates at a histidine. The subsequent transfer of
this phosphoryl group to the transcription factor FixJ
triggers a cascade of gene expression (Gong et al.,
1998).

Hemoglobins

During recent years much progress has been made
on the role of hemoglobin proteins during hypoxia
stress. Genes encoding for non-symbiotic class 1
hemoglobins or stress-induced hemoglobins are ex-
pressed during low-oxygen conditions (Klok et al.,
2002), and upon exposure to elevated levels of nitrate
and sucrose (Dordas et al., 2003). These hemoglobin-
encoding genes, in contrast to the ADH gene, are
also induced by respiratory chain inhibitors, indicating
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that oxygen affects hemoglobin expression indirectly
(Nie and Hill, 1997). Hemoglobin proteins reversibly
bind oxygen, and are characterized by very low
dissociation constants. Consequently, hemoglobins re-
main oxygenated at oxygen levels far below those
that induce so-called anaerobic responses (Sowa et al.,
1998). This chemical property and their indirect re-
sponse to low oxygen make it very unlikely that
hemoglobins act as an oxygen carrier, store or sensor.
However, it seems that they do have an important role
in hypoxia tolerance of higher plants as illustrated be-
low. Transgenic Arabidopsis plants overexpressing a
class 1 hemoglobin (GLB1) are more tolerant towards
severe hypoxia, and plants overexpressing a mutated
glb1 gene resulting in a protein that has a strongly
reduced affinity for oxygen are as susceptible to hy-
poxia as wild-type plants (Hunt et al., 2002). Similar
results were obtained in a system with cell cultures of
maize that constitutively express barley hemoglobin
in either sense or antisense orientation (Sowa et al.,
1998). Furthermore, GLB1 overexpression in Ara-
bidopsis could phenocopy low-oxygen pretreatments
in terms of survival (Hunt et al., 2002).

Interestingly, hemoglobins also appear in rapidly
growing tissues (e.g., root tips of germinating seeds),
and they improve early growth in Arabidopsis, even
under normoxic culture conditions (Hunt et al., 2002;
Dordas et al., 2003). This occurrence probably reflects
the presence of localized low oxygen tensions often
observed in densely packed organs such as meristems.

Second messengers

Hemoglobin up-regulation is not directly controlled
by low oxygen, but presumably a consequence of re-
duced ATP levels (Nie and Hill, 1997). This stresses
the importance of second messengers in the regu-
lation of low-oxygen responses. Very recently, the
decline in cytosolic pH, probably caused by lactate
fermentation, was identified as a second messenger
controlling water permeability of Arabidopsis root
cells exposed to anoxia (Tournaire-Roux et al., 2003).
In a set of elegant experiments, Tournaire-Roux and
colleagues (2003) demonstrated that the decline in hy-
draulic conductivity in roots during anoxia was related
to a hampered water influx through plasma-membrane
intrinsic proteins (PIPs) induced by cytosolic acid-
ification. A particular histidine at position 197 of
the aquaporin molecule was responsible for cytosolic
pH sensing, and thus for gating these water-channel
proteins.

Next to Ca2+ and pH, hydrogen peroxide (H2O2)
was very recently identified as a second messenger
in responses to low oxygen (Baxter-Burrell et al.,
2002). In Arabidopsis, exposure to low oxygen in-
creases the production of H2O2 co-ordinately with a
substantial increase in ADH activity. The production
of H2O2 is fine-tuned by two proteins, Rop and Rop-
GAP4, in which RopGAP4 negatively regulates Rop
and Rop has a positive regulatory impact on Rop-
GAP4. It is of utmost importance that this Rop rheostat
controls the levels of H2O2 in plants cells precisely,
since levels that are too high may trigger formation
of reactive oxygen species that may induce cell death,
whereas levels that are too low prevent the expres-
sion of adaptive genes (e.g., ADH) that improve sur-
vival during low-oxygen stress (Baxter-Burrell et al.,
2002).

Signal transduction – hormones and further
down-stream components

Aerenchyma formation

Aerenchyma is the specialised tissue in petioles, stems
and roots consisting of longitudinal gas-filled chan-
nels, which may result from various anatomical pat-
terns of cellular configuration (Smirnoff and Craw-
ford, 1983; Justin and Armstrong, 1987; Visser et al.,
2000). A common feature of aerenchyma is that it
forms a network of gas-filled spaces between the cells
that interconnects most parts of the (partly) submerged
plant with the atmosphere, and thereby is able to de-
liver oxygen almost throughout the plant (Armstrong,
1979). Conversely, gases produced by the soil or
plant may be vented through these channels to the
atmosphere (Colmer, 2003).

Schizogenous versus lysigenous aerenchyma
In general, two types of aerenchyma can be dis-
tinguished, although intermediate forms do occur.
The first type, which is most abundant in roots and
rhizomes, is initiated by the death of cells in the
cortex, resulting in gas-filled voids between the liv-
ing cells that remain. This type is named lysigenous
aerenchyma, after the lysis of cells that precedes
gas space development (Figure 1A). The second type
is schizogenous aerenchyma, which forms through
the separation of cells from each other in an early
stage of development (Figure 1B, C). Schizogenous
aerenchyma may also be found in roots, but more
often in the stems and petioles of wetland plants.
In both aerenchyma types, there is a large variation
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Figure 1. A. Cross-section of the aerenchymatous root of a hydroponically grown Juncus effusus plant. Large lysigenous aerenchyma has
developed in the cortical parenchyma. B. Cross-section of an adventitious root of a hydroponically grown Rumex palustris plant. C. Longitudinal
section of a similar root. The aerenchyma forms in a schizogenous way by directional division and separation of the cortical cells (B) and
develops close to the root apex (C). Scale bars indicate 0.2 mm.

in the exact configuration of the cells and cell rem-
nants, as shown by Justin and Armstrong (1987) in
their extensive screening of root anatomy of wetland,
intermediate and non-wetland species.

Schizogenous aerenchyma seems a more or less
constitutive feature within a given root, and does not
change in those roots that are already present at the
onset of soil flooding. Instead, new roots may de-
velop that contain a larger amount of schizogenous
aerenchyma (Laan et al., 1989; Visser et al., 1996a). In
contrast, lysigenous aerenchyma can develop in both
mature and in newly-developing roots (although older
wheat roots were not capable to form aerenchyma
(Thomson et al., 1990)), and its presence often de-
pends on environmental stimuli. Many crop species,
such as wheat (Triticum aestivum – Huang et al., 1994;

Boru et al., 2003; Malik et al. 2003), barley (Hordeum
vulgare - Bryant, 1934; Garthwaite et al., 2003),
maize (McPherson, 1939; Drew et al., 1979; Konings
and Verschuren, 1980), sunflower (Kawase, 1979),
and rice (Jackson et al., 1985b), form lysigenous
aerenchyma. This is probably the reason why so little
research has been done on the regulation of schizoge-
nous aerenchyma formation (Jackson and Armstrong,
1999), whereas the inducible signal-transduction path-
way of lysigenous aerenchyma has gained far more
attention, particularly by using maize root aerenchyma
as a model.

Hypoxia and ethylene

The first evidence for a role of ethylene in the induc-
tion of aerenchyma in tissues of waterlogged plants
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was derived from studies on sunflower. However, soon
after the discovery that treatment of sunflower with
ethylene resulted in similar aerenchyma formation in
the hypocotyl as did soil flooding (Kawase, 1974),
Drew et al. (1979) reported that root aerenchyma could
be evoked by treating maize with ethylene. Also, in-
hibition of ethylene action by silver ions inhibited
aerenchyma formation in waterlogged maize plants
(Drew et al., 1981). The latter species proved to be
a suitable model to investigate lysigenous aerenchyma
formation, and subsequent research was done to find
the triggers that set off the lysis of cells. One would
expect that accumulation of ethylene due to the phys-
ical entrapment by the surrounding water-saturated
soil suffices to induce aerenchyma. Nevertheless, the
prevalent low oxygen concentrations further stimulate
ethylene production (Jackson et al., 1985a), thereby
adding to the build-up of ethylene concentrations.
Ethylene levels exceeding 0.5 µL L−1 are usually
sufficient to evoke the maximum response in treated
roots.

Much of the role that ethylene plays has been elu-
cidated since these early observations (Figure 2; Drew
et al., 2000). He et al. (1994) described an increase
in the root tips of maize of the enzyme that is largely
responsible for the rate of ethylene biosynthesis, i.e.
ACC-synthase, as a response to low oxygen concen-
trations. This response was not present when oxygen
was completely absent (accomplished by flushing with
nitrogen gas), possibly because strict anoxia largely
prevents protein synthesis. Application of either low
oxygen or increased ethylene concentrations resulted
in an increase of the cellulase activity in the root apex
(He et al., 1994), which therefore likely contributes
to cell-wall break-down, being the last step in lysige-
nous aerenchyma formation. Blocking the activity of
ACC-synthase with a specific inhibitor (aminoetho-
xyvinylglycine, AVG) suppressed cellulase activity
to the constitutive control levels, providing further
proof that ethylene is the plant hormone responsible
for controlling this part of aerenchyma development
(He et al., 1994).

Down-stream parts of the signal transduction
pathway
Earlier processes in the chain of events leading to
death of cells predestined to become aerenchymatous
spaces are still largely unknown. A first attempt to
elucidate these was the application of inhibitors and
elicitors of programmed cell death (PCD) that were
previously used successfully in animal systems or with

other PCD processes in plants (He et al., 1996b). K-
252a, a substance that inhibits protein kinases and
protein kinase C in particular, inhibited both cellulase
activity and aerenchyma formation under low oxygen
concentrations, suggesting a role for protein kinase C
in the induction of aerenchyma. On the other hand,
specific inhibition of protein phosphatases 1 and 2A
by applying okadaic acid (Cohen et al., 1990) is sup-
posed to enhance protein phosphorylation and proved
to promote cellulase activity and aerenchyma forma-
tion (He et al., 1996b). Similarly, GTPγ S, which is
capable of locking G-proteins in the active state, in-
creased the volume of aerenchyma under normoxic
conditions, whereas its analogue GDPβS, which in-
activates the proteins, did not have effect on the
aerenchyma content, neither under normoxic nor un-
der low-oxygen conditions. Apart from protein phos-
phorylation processes and G-proteins, also inositol
phospholipids appear to be involved, since neomycin,
which interferes with the binding of inositol phos-
pholipids with the plasma membrane, almost fully
prevented low-oxygen-induced aerenchyma formation
(He et al., 1996b).

Manipulation of cytoplasmic calcium concentra-
tions and fluxes also proved successful in changing
the capacity to form aerenchyma (He et al., 1996b).
Both thapsigargin and caffeine increase intracellu-
lar calcium concentrations, by blocking Ca2+-ATPase
activity in the ER, and opening Ca2+-channels, re-
spectively. Either substance resulted in an increase
in aerenchyma content in normoxic roots, and in
a faster progress of PCD in oxygen-deficient roots.
Lowering Ca2+ levels with EGTA (a Ca2+-chelator)
or ruthenium red (which blocks Ca2+-channels) in-
hibited cell lysis. Ruthenium red also binds to
calmodulin (CM), thereby preventing Ca-CM depen-
dent protein activity, and a similar effect could be
expected from W−7 (N−[6-aminohexyl]-5-chloro-
1-naphthalenesulfonamide), which inhibits CaCM-
mediated ion-channel function. Again, the latter sub-
stance prevented aerenchyma formation. These results
make it highly likely that an influx of Ca2+ into the
cytoplasm is a necessary step in the process leading to
cell death (see also Figure 2).

Programmed cell death
The chemical compounds mentioned above have orig-
inally been successfully applied in studies of apoptosis
in animal cells, and the similarity in responses be-
tween apoptosis in these systems and aerenchyma for-
mation suggested that the regulation of these processes
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Figure 2. Schematic view of the processes likely involved in lysigenous aerenchyma formation. Drawn according the data and schemes shown
and reviewed in Drew et al. (2000), Gunawardena et al. (2001), Woltering et al. (2002), Aschi-Smiti et al. (2003) and Bragina et al. (2003).
Most of the data originated from studies on maize (Zea mays).
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may be similar at the cellular level (Pennell and Lamb,
1997; Buckner et al., 1998). However, more detailed
studies changed this view somewhat. Campbell and
Drew (1983) already observed some early events at
the cytoplasmic level in maize root cells that under-
went programmed cell death, but only more advanced
techniques made it possible to search for the specific
changes involved in apoptosis.

TUNEL-staining of fragmented nuclear DNA
showed that already in 0.5-day-old ethylene-treated
cortical root cells endonuclease activity increased,
which was confirmed by increased laddering of ge-
nomic DNA on an agarose gel (Gunawardena et al.,
2001). Apoptotic ultrastructural changes of the cells,
such as chromatin condensation and its relocation to
the nuclear periphery, could be detected after one
day by electron microscopy. Changes in the plasma
membrane, differences in the staining of vacuoles
and cytoplasmic content (of which the meaning was
not known), and the occurrence of large numbers
of vesicles preceded the visual changes in the nu-
cleus. Plasmodesmata then became very distinct in
1.5-day-old tissues, and apoptotic body-like structures
containing entire cell organelles appeared, which were
possibly involved in the hydrolysis of cell compo-
nents. Although there are quite a few similarities,
it is evident that there are also clear differences be-
tween apoptosis in animal cells and the programmed
cell death during aerenchyma formation. For exam-
ple, macrophage digestion does not take place at the
final stages in the plant tissue, as it does in animal
cells, and also the sequence of nuclear and other cy-
tosolic events is different, as the latter do not precede
nuclear changes in animal apoptosis (Gunawardena
et al., 2001). Apparently, aerenchyma formation forms
a class of programmed cell death of its own.

Although in animals a group of proteins named
caspases form an intrinsic element of the cascade of
events in programmed cell death, until recently no di-
rect evidence was found for the presence of functional
homologues of these enzymes in plants (Woltering
et al., 2002). However, indirect evidence suggested
that caspase-like activity is needed for programmed
cell death in plants (Woltering et al., 2002), and meta-
caspases have now been identified that may serve as
such in plants (Uren et al., 2000; Hoeberichts et al.,
2003).

Cell-wall-degrading enzymes
The final step in aerenchyma formation is the break-
down of cell walls, which ultimately creates the voids

needed for gas diffusion. Conditions of low oxygen
and high ethylene concentrations may induce a steep
increase in cellulase activity within three days (He
et al., 1994). This was confirmed by Bragina et al.
(2003), who also found increased levels of pectinase
and xylanase activity. Additionally, a structural ho-
mologue of xyloglucan endo-transglycosylase (XET)
was found to be induced by hypoxia (Saab and Sachs,
1996). This combination of enzymes enables a step-
wise degradation of the cells and resorption of their
structural components.

It is interesting that quite often radial files of cells
remain unaffected by the lytical process (Justin and
Armstrong, 1987), and also the presence of a devel-
oping lateral root may inhibit cell break-down. Apart
from this, programmed cell death usually does not af-
fect the inner- and outermost parenchyma layers of
the cortex. The reason of this ‘immunity’ of cells to
the action of ethylene or to components more down-
stream of ethylene is unknown. Also it is not clear
why in many species mainly the tangential cell walls
collapse, whereas the majority of radial walls remain
intact (e.g., in Poaceae); conversely, in Juncaceae
and Cyperaceae most tangential walls remain, while
a large part of the radial walls disappear, resulting in
so called ‘spider’s web’ aerenchyma (Smirnoff and
Crawford, 1983). This directional targeting of cells
and cell-wall material requires a very specific distrib-
ution of signals, or of the sensitivities to these signals,
and much remains to be elucidated about how these
patterns develop.

Other growth regulators
Some attention has been paid to a possible role
of polyamines in aerenchyma formation in maize
roots, because spermine and spermidine are biosyn-
thesised from the same precursor as ethylene
(S-adenosylmethionine), and a decline of these
polyamines may be involved in the rise of ethylene
production during hypoxia (Jackson and Hall, 1993).
However, no proof could be found for such an involve-
ment, since these polyamine levels did not decrease
in hypoxic maize roots, and addition of putrescine, a
precursor of spermine and spermidine, inhibited rather
than increased aerenchyma formation (Jackson and
Hall, 1993).

Auxin has been studied as a potential regula-
tor of aerenchyma content as well (Konings and De
Wolf, 1984; Justin and Armstrong, 1991a). The first
study indicated an inhibition of aerenchyma formation
in maize roots by the synthetic auxin 1-naphthalene
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acetic acid (1-NAA), but, after adjustment of the data
for the profound effects of auxin on the root growth
rate, Justin and Armstrong (1991a) found a small
stimulation, which they attributed to auxin-induced
ethylene production. Gibberellin (GA3) and kinetin (a
cytokinin) also promoted the formation of aerenchyma
in maize (Konings and De Wolf, 1984), which may
again, in the case of GA3, be caused by ethylene
action, since the effect was counteracted by the si-
multaneous application of ethylene inhibitors. In the
same study, abscisic acid (ABA) had a negative effect
on aerenchyma, but none of these effects have been
followed up in further research.

Other plant species
The hormonal regulation of aerenchyma formation in
maize has at least partially been validated for sev-
eral other plant species. Aerenchyma formation in
crop species such as sunflower, bean (Phaseolus vul-
garis), tomato (Lycopersicon esculentum – Kawase,
1981) and wheat (Wiengweera et al., 1997) and in
tree species like Pinus serotina (Topa and McLeod,
1988) seems under the control of low oxygen con-
centrations and ethylene, although silver did not af-
fect aerenchyma formation in barley (Larsen et al.,
1986). In Trifolium subterraneum a change in protease
composition was shown following hypoxia, which
correlated with cell lysis during root aerenchyma de-
velopment and may point to the expression of a spe-
cific set of lysis-involved protease genes (Aschi-Smiti
et al., 2003). However, the lack of model species
that develop inducible aerenchyma and are also suit-
able for molecular-genetic studies seems to have hin-
dered further progress in the signal transduction chain
down-stream of ethylene.

Constitutive versus inducible aerenchyma
Many wetland plant species display a considerably
high porosity in their roots even under well-aerated
conditions (Justin and Armstrong, 1987). This is due
to the presence of aerenchyma whose development is
apparently not dependent on low oxygen concentra-
tions or ethylene accumulation. It is as yet unclear
how the onset of programmed cell death is initiated
in these examples of constitutive aerenchyma, as until
now only two studies dealt with this question, and their
conclusions are contradictory. Jackson et al. (1985b)
used inhibitors of ethylene in two cultivars of rice,
of which one formed partly constitutive and partly
inducible aerenchyma, whereas the other only devel-
oped constitutive aerenchyma. In the latter cultivar

aerenchyma formation was not affected by ethylene
inhibition, which led the authors to conclude that eth-
ylene does not play a role in constitutive aerenchyma
development. In response to this paper, Justin and
Armstrong (1991b) partly repeated the experiments,
but corrected the data for the negative effect of the
treatments on the elongation rate of the aerenchyma-
tous roots. With this correction, they concluded that
ethylene did play a role. Most likely the root cortical
cells had a much higher sensitivity to ethylene than
in plant species with inducible aerenchyma, making
them responsive to the low internal ethylene concen-
trations that prevail in a non-flooded root system. It
would be interesting to conduct similar experiments
with plant species whose root elongation is less sen-
sitive to ethylene. This would prevent confounding
of the results by side effects of ethylene. Until then,
it remains to be seen whether these conclusions are
broadly valid for other wetland plants with constitutive
aerenchyma.

Factors other than flooding that induce aerenchyma
Next to oxygen shortage, also nutrient deficiency may
lead to programmed cell death in the root cortex. Kon-
ings and Verschuren (1980) observed the development
of aerenchyma in maize roots when these were grown
in aerated but nitrogen-deficient nutrient solution, and
Smirnoff and Crawford (1983) found that treatment of
Nardus stricta plants in sand culture with low concen-
trations of nutrient solution increased root porosity to
equally high levels as in waterlogged plants. Studies
with maize later confirmed that both low concentra-
tions of nitrate and low levels of phosphorous nutrition
induced aerenchyma in the roots, and that this was
accompanied by lower activities of ACC-synthase and
ACC-oxidase, lower ACC levels and, therefore, lower
ethylene-production rates (Drew et al., 1989). This
apparent contrast to the response of the roots to hy-
poxia, where ethylene production increases and can
be causally linked to programmed cell death (Jackson
et al., 1985a; Atwell et al., 1988), could be ex-
plained by subsequent work by Drew and co-workers.
Although ethylene biosynthesis slowed down upon nu-
trient deficiency, this was counteracted by a strong
increase in the sensitivity of the cortical tissues to
ethylene, so that the threshold leading to aerenchyma
development was exceeded (He et al., 1992).

Recently, the promoting effect of low mineral ni-
trogen on ethylene sensitivity has been confirmed in
a study where ethylene interacted with the release
of herbivore-induced volatiles, such as indole and
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sesquiterpenes (Schmelz et al., 2003). Analogously,
low phosphorus increased the sensitivity of root elon-
gation in Arabidopsis thaliana to ethylene (Ma et al.,
2003). Aerenchyma formation does not appear to be
exclusively induced by low phosphorus and nitrogen,
since Bouranis et al. (2003) found similar responses in
sulphate-starved maize plants.

The aerenchyma in nutrient-starved plants seems
to have an identical structure as that in roots of water-
logged plants, and the acting signal-transduction path-
way is probably the same, except for the part upstream
of ethylene perception. However, it is conceivable that
the increased ethylene sensitivity of phosphorus- and
nitrogen-depleted plants serves a different goal than
aerenchyma formation per se, e.g., a change in root
topology (Borch et al., 1999) or the formation of root
hairs (although the latter is unlikely given the evidence
provided by Schmidt and Schikora (2001) that low
iron but not low phosphorus induces root hairs via the
ethylene-perception pathway). On the other hand, Fan
et al. (2003) measured respiration rates of phosphorus-
starved roots, which were lower per volume root due to
the lower number of cells after aerenchyma developed.
Combined with the assumption that cell components
are being resorbed during cell lysis, this would imply
a lower investment of construction and maintenance
costs per unit root length, which would in turn add to
the capacity of the plant to explore the soil for sources
of phosphorous.

Finally, soil compaction can also lead to formation
of aerenchymatous tissues, which develop indepen-
dently from low oxygen concentrations (He et al.,
1996a). Again, ethylene plays a key role in the
process, possibly by increased biosynthesis rates due
to the pressure exerted on the root tip and by ethylene
accumulation resulting from the increased gas diffu-
sion resistance in the rhizosphere. It is, however, un-
likely that aerenchyma is a favourable structure under
conditions of high soil strength. Studies on Rumex and
Plantago species indicated that aerenchymatous roots
grew in a highly distorted way when encountering
compacted soil (Engelaar et al., 1993b).

Adventitious root development

Flooding often causes malfunctioning of roots formed
prior to flooding, even in wetland species (Justin
and Armstrong, 1987; Visser et al., 1996a). This
may eventually lead to the death of a considerable
part of the root system, and a fast replacement by

Figure 3. Root systems of intact Rumex palustris plants excavated
from a floodplain near Nijmegen, the Netherlands. Left: a plant from
a site with the groundwater table at 0.15 m below the soil surface.
Right: a plant from a soil-flooded site. Notice the abundant devel-
opment of thick, white adventitious roots in the soil-flooded plant,
as compared to the thinner, brownish primary root system of the
drained plant. Scale bar indicates 0.1 m.

well-adapted adventitious roots that contain more
aerenchyma than the original roots (Table 1, Figure 3).

There is some controversy about the exact defini-
tion of the term adventitious root, as many authors use
it specifically for shoot-derived roots (i.e. roots that
originate from shoot tissue), whereas others argue that
roots that develop from older parts of the root system,
where normally new root development would not take
place, should also be considered adventitious roots
(Barlow, 1994). In the current context, we will adopt
the second definition, since there seems to be no func-
tional difference between the roots that develop from
the base of the stem and those that develop just cen-
timetres lower on the upper part of the taproot (Visser
et al., 1996a).

Kramer (1951) recognised that the recovery of
tomato plants from the initial growth reduction im-
posed by soil flooding coincided with the formation of
new adventitious roots. Since then, it has been well
established that adventitious root development con-
tributes greatly to the tolerance of a plant to poorly
aerated soils, and the biomass of roots formed by a
flooded plant usually correlates well with its resistance
to waterlogging, as has been shown for closely re-
lated species of several genera (Rumex –Laan et al.,
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Table 1. Fresh mass of primary and adventitious roots from hydroponic Rumex palustris plants of different age, before
and after 1-week growth on stagnant, oxygen-deficient agar solution (for methods see Visser et al., 1996a). SE in
brackets; n = 6

Age of the plant at start of treatment Root fresh mass (g)

At the start of treatment After 1 week on stagnant agar

Primary roots Adventitious roots Primary roots Adventitious roots

2.5 weeks 0.01 (0.00) 0.00 (0.00) 0.13 (0.02) 0.08 (0.02)

3.5 weeks 0.19 (0.01) 0.00 (0.00) 0.39 (0.05) 0.77 (0.09)

4.5 weeks 2.14 (0.11) 0.04 (0.01) 1.54 (0.18) 2.26 (0.23)

5.5 weeks 5.63 (0.54) 0.07 (0.02) 4.35 (0.82) 2.82 (0.46)

1989; Visser et al., 1996a; Pinus – Topa and McLeod,
1986b; Hordeum – Garthwaite et al., 2003; various
other genera – Justin and Armstrong, 1987). Flooding-
induced adventitious roots are usually thick and have
a relatively low degree of branching, whereas much of
the cortical cell layers are occupied by schizogenous
or lysigenous aerenchyma. Certain groups of plant
species form adventitious roots in the natural course
of root development (i.e. also without soil flooding),
but even in these cases adventitious root formation is
favoured above primary root development when the
root system is flooded (McDonald et al., 2001a).

A major role for auxin
Adventitious roots are not only formed by water-
logged plants, but are also essential in the regeneration
process of shoot cuttings, a common propagation tech-
nique in horticulture. From these studies we know
since long that auxins are essential regulators in the
re-differentiation of shoot cells into root-forming
meristems, and Phillips (1964) was the first to exper-
imentally link auxin action to the onset of flooding-
induced adventitious root formation. The results of
this study indicated that auxin accumulated at the base
of the shoot of soil-flooded sunflower plants as a result
of the oxygen deficiency of the roots, like suggested
before by Kramer (1951). Since IAA is transported
in a polar fashion by carrier proteins that are ATPase-
dependent (reviewed by Palme and Gälweiler, 1999),
hypoxia-induced low levels of ATP may disturb ac-
tive auxin movement in the root, thereby causing
auxin that is transported downward from the shoot to
accumulate at the boundary of oxygen-deficient and
normoxic plant tissues. Similar to auxin application
or removal of the root system, such flooding-induced
accumulation could then lead to or enhance adventi-
tious root formation at the base of the shoot and upper

part of the tap root. More recent work on sunflower
has shown that auxin is indeed crucial to adventitious
root formation in both shoot cuttings of this species
(e.g., Fabijan et al., 1981; Liu and Reid, 1992; Oliver
et al., 1994) and in flooded plants (Wample and Reid,
1979). Auxin is also important for adventitious root-
ing in other species that were given a soil flooding
treatment, such as Rumex palustris and R. thyrsiflorus
(Visser et al., 1995), Acer negundo (Yamamoto and
Kozlowski, 1987) and tobacco (Nicotiana tabacum
– McDonald and Visser , 2003). Flooding-induced
root formation could experimentally be inhibited by
specifically blocking auxin transport in the shoot with
N-1-naphtylphtalamic acid (NPA) (Visser et al., 1995;
McDonald and Visser 2003) or by applying competi-
tors for auxin-binding sites (Visser et al., 1995). This
clearly indicates that auxin is an important component
in this acclimation process, at least in dicotyledonous
species. Whether this also applies to monocotyledo-
nous species is not clear, since experimental evidence
is scarce. Lorbiecke and Sauter (1999) did not find an
effect of applied auxin on adventitious root formation
in rice (except via ethylene, see below), whereas Zhou
et al. (2003) claimed that endogenous auxin is critical
for adventitious root development in the same species.

Involvement of ethylene
Not only auxin but also ethylene can induce adven-
titious roots, although in cuttings the response seems
to depend on the plant species. For instance, ethylene
inhibited adventitious root formation in pea (Pisum
sativum) cuttings (Nordström and Eliasson, 1984) and
Prunus avium explants (Biondi et al., 1990), whereas
it stimulated root initiation in cuttings of Picea abies
(Bollmark and Eliasson, 1990). Also, experimental
conditions seem to matter, as contrasting results were
found in various studies on mung bean (Vigna radiata
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- e.g., Robbins et al., 1983 vs. Geneve and Heuser,
1983). More recently, a study of the rooting capacity
of two ethylene-insensitive genotypes, i.e. the tomato
mutant never ripe and the transgenic petunia (Petu-
nia x hybrida) line 44568, showed that both intact
ethylene-insensitive plants and their vegetative cut-
tings produced far less adventitious roots than did their
respective wild-types (Clark et al., 1999). Since these
plants have a defective ethylene receptor, they were
not very responsive to the application of the precur-
sor of ethylene, ACC. However, more surprising was
the lack of response of ethylene-insensitive plants to
indole-butyric acid (IBA), whereas in wild-type plants
this auxin increased adventitious root formation if ap-
plied in moderately high concentrations. Apparently,
ethylene is in these species indispensable for normal
adventitious root development, even when rooting is
evoked by auxin application.

During soil-flooded conditions, ethylene concen-
trations in the root system may increase up to several
µL L−1, as shown for Rumex plants (Visser et al.,
1996b). These concentrations proved to be sufficient to
induce adventitious root formation, even when plants
were not flooded, whereas flooded plants with im-
paired ethylene production (by the use of inhibitors)
produced fewer roots than normally under flooded
conditions (Visser et al., 1996b). A similarly important
role for ethylene has been found for rice (Bleecker
et al., 1987), maize (Drew et al., 1979), and to-
bacco (McDonald and Visser, 2003). Studies with
sunflower (Wample and Reid, 1979) and Acer ne-
gundo (Yamamoto and Kozlowski, 1987), however,
attributed a less essential role to ethylene with respect
to flooding-induced adventitious root formation.

One way ethylene may promote adventitious root
development was elucidated by Mergemann and
Sauter (2000). Similar to its role in aerenchyma for-
mation, ethylene seemed involved in programmed cell
death, in this case of the epidermal layer of rice nodal
initiation sites of adventitious roots, thereby providing
unhampered outgrowth of the root primordia.

A positive effect of ethylene on adventitious root
development under soil-flooded conditions seems,
however, contradictory to its usual effect on root
growth, as many studies report a strong inhibition of
root elongation by increased ethylene (e.g., Konings
and Jackson, 1979; Etherington 1983; Visser et al.
1997). Possibly, internal ethylene concentrations can
be kept sufficiently low in extending adventitious roots
by the ventilating aerenchyma that is often present in
such flooding-induced roots.

Interactions between auxin and ethylene
Auxin and ethylene action are not entirely indepen-
dent of each other; increases in the action of one of
these hormones may cause a change in the action of
the other. The best known effect is that auxin gener-
ally increases the production of ethylene (e.g., Imaseki
et al., 1977), but the opposite is also possible. In-
creased ethylene concentrations may affect the polar
transport of auxin in a positive (Beyer and Morgan,
1969; Suttle, 1988) or negative way (Musgrave and
Walters, 1973), thereby changing the delivery rate and
concentrations at the shoot base. Perhaps more impor-
tantly, ethylene may increase the sensitivity of plant
tissues to auxin, such as demonstrated in pea coleop-
tiles (Bertell et al., 1990) and sunflower hypocotyls
(Liu and Reid, 1992). In the latter study, applied ethyl-
ene stimulated auxin-dependent root formation at the
base of hypocotyl cuttings without increasing auxin
concentrations. A very similar mechanism appeared
to induce adventitious roots in flooded Rumex palus-
tris (Figure 4; Visser et al., 1996c). Although auxin
was clearly needed for an effective rooting response,
shown by increased adventitious root formation upon
auxin supply and decreased rooting in the presence
of competitive or transport inhibitors (Visser et al.,
1995; Visser et al., 1996c), there was no change
in endogenous free IAA concentration when plants
were waterlogged. Ethylene-induced root formation in
the same species appeared auxin-dependent, whereas
auxin-induced adventitious root formation was not af-
fected if ethylene production was blocked, indicating
that in these plants ethylene accumulation probably led
to an increase in sensitivity of the root-forming tissue
to auxin, which then triggered adventitious root de-
velopment (Visser et al., 1996c). This contrasts with
the increased levels of auxin found by Phillips (1964)
and Wample and Reid (1979) in flooded sunflower
plants, which may have been the result of oxygen defi-
ciency or increased ethylene concentrations in the root
system, both capable of impairing the auxin-transport
system. In ethylene-insensitive transgenic tobacco, the
number of adventitious roots induced by flooding was
less than half that of wild-type plants, and this ef-
fect could not be fully restored by auxin application
(McDonald and Visser, 2003). On the other hand,
treatment of wild-type plants with NPA, an inhibitor
of the auxin-efflux carrier that is part of the polar
transport mechanism, decreased adventitious root for-
mation to the level of ethylene-insensitive plants (Mc-
Donald and Visser, 2003). The results of this study
suggest again interaction of auxin and ethylene in
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Figure 4. Schematic action scheme of the induction of adventitious
root development in Rumex palustris. Drawn according the data
shown in Visser et al. (1995, 1996b, c).

controlling flooding-induced adventitious root forma-
tion. Apparently, multiple signal-transduction path-
ways are possible, with varying roles for ethylene and
auxin, depending on the species, and probably also
on the exact environmental conditions, which makes
it difficult to arrive at a unifying model on auxin and
ethylene action in flooding-induced adventitious root
formation.

Other hormones
There is very little evidence for a possible role for
hormones other than auxin and ethylene in flooding-
induced adventitious root formation. Application of
cytokinin and gibberellin to deepwater rice did induce
some roots, but not nearly as many as did ethylene
(Lorbiecke and Sauter, 1999). It is conceivable that
these treatments may have evoked some extra ethylene
production. Earlier, Suge (1985) found in the same
species a synergistic effect of gibberellin, when ap-
plied together with ethylene, but this could not be
reproduced in a later study (Lorbiecke and Sauter
1999). It cannot be ruled out that other hormones do
play a role in other species, particularly when these do
not constitutively produce adventitious root primordia,
such as rice does, but there is as yet no information
available.

Genes involved in flooding-induced adventitious root
formation
Surprisingly little is known about the genes that reg-
ulate the initiation and development of adventitious
root primordia during soil flooding. In deepwater rice,

Lorbiecke and Sauter (1999) distinguish four stages of
adventitious root development: (i) an initiation phase,
followed by (ii) development into a root primordium,
and then subsequent (iii) arrest of growth until an
appropriate stimulus causes (iv) further development
and emergence of the root from the stem epidermis.
The first three stages seem part of the constitutive
development course of the rice stem nodes. The fi-
nal phase is under control of flooding and ethylene,
and emergence is apparent within 10 h after reception
of a stimulus. This emergence of adventitious roots
is preceded by the expression of a number of genes
involved in regulating the cell cycle, such as the mi-
totic cyclin cycB2;2, which is a marker for dividing
cells. Most of these genes are also expressed dur-
ing flooding-induced internode growth, and are most
likely involved in the transition of cells from one phase
of the cell cycle to the following. One gene appeared
to be expressed specifically in developing roots, and
not in the stem intercalary meristem, i.e., cdc2Os-1,
and may therefore be part of a root-specific signal-
transduction pathway that is triggered by ethylene
(Lorbiecke and Sauter, 1999).

Summary and perspectives

The responses of plants to soil flooding are diverse,
but mostly focused on surviving the deleterious effects
of oxygen deficiency imposed by the flood water. In
the short term, anaerobic metabolism may partly over-
come the low energy production under anaerobiosis.
However, if plants are subjected to long-term flooding
(i.e., weeks or months), a more structural solution is
provided by restoring the oxygen supply to the sub-
merged plant parts. Formation of aerenchyma and new
roots containing this specialised tissue are two means
of morphological acclimation that fulfil this task.

The timing of acclimation strongly depends on
what signals are involved in sensing the environmen-
tal stress. Waterlogging and submergence in higher
plants is sensed through changed concentrations of
at least two signal molecules: ethylene and oxygen.
Ethylene perception and transduction has been the
subject of intense study during the last decade, and
the molecule forms a very reliable detection system
for submerged plant organs that contain some oxygen.
It triggers important anatomical and morphological
modifications (e.g., aerenchyma formation, adventi-
tious roots, stimulated shoot elongation) that improve
the oxygen status of submerged organs.
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Virtually nothing is known about the sensing
mechanism for oxygen in higher plants, although
systems homologous to those described for various
prokaryotes are likely. Cleverly designed screens,
preferably for Arabidopsis thaliana, should be devel-
oped to identify mutants disturbed in oxygen sensing,
assuming that these mutants are not lethal. Lethal
mutations are not completely unexpected, since low-
oxygen conditions seem to be an integral part of
plant growth and development, even when this takes
place under normoxic conditions. More information
about second messengers in low-oxygen sensing has
become available during the past few years. Im-
portant signals in this respect are Ca2+, pH and
H2O2.

Interestingly, it is now recognised that responses to
low oxygen can take place even before cytochrome ox-
idase activity becomes limited (reviewed by Geigen-
berger, 2003). Respiration may be inhibited already
at oxygen concentrations of 8–12%, when fermen-
tation and the ‘Pasteur effect’ are not yet apparent.
This down-regulation of respiratory activity, followed
by decreased ATP levels, can therefore not be con-
trolled by the status of the electron transport chain,
as this is not affected by these relatively high oxygen
concentrations.

Following the perception of the flooding signal,
several signal-transduction mechanisms will be ac-
tivated that control the acclimation mechanisms. A
better understanding of the signal-transduction chains
that lead to root acclimation during soil flooding
would increase our possibilities to manipulate the ex-
tent of acclimation, and thereby obtain tools to study
the benefits and costs of acclimations. Some com-
parable examples are already known from flooding
physiology, for instance with respect to the capac-
ity of shoot elongation in rice in response to total
submergence (Setter and Laureles, 1996). Block-
ing the elongation response with paclobutrazol, an
inhibitor of gibberellin biosynthesis, increased sur-
vival under water considerably, probably since al-
location of carbohydrates to the elongating shoot
occurs at the expense of the carbohydrate reserves
needed for (partially anaerobic) respiration. In an-
other study, inhibition of ethylene perception in
transgenic tobacco led to a decrease in adventi-
tious root formation upon simulated soil flooding,
which in turn decreased the biomass gain of the
plants under these conditions (McDonald and Visser,
2003).

It is unfortunate that the most widely used ge-
netic and molecular-biological plant model, Arabidop-
sis thaliana, has such a low resistance to flooding
stress. Oxygen-sensing mechanisms may be present
in this species, possibly allowing for screens of sens-
ing mutants; however, the plant is largely unsuitable
for studying the responses of plants to soil flood-
ing, except for some acclimations that are surprisingly
well preserved even in this flood-intolerant species
(e.g., submergence-induced hyponasty of the leaves
(Cox, 2004) and hypoxia-induced fermentative en-
zymes (Dolferus et al., 1997)). Rice may turn out to be
the best alternative model species, as most acclimation
responses (i.e. fermentation, aerenchyma formation,
adventitious root development) are displayed by this
species. A great advantage is the known sequence of
the rice genome (Yu et al., 2002), which increases the
speed and possibilities of molecular genetics consider-
ably. Further development of heterologous microarray
analyses, such as recently accomplished for adventi-
tious root formation in Pinus (Brinker et al., 2004),
may also help to circumvent the lack of model species.
Another approach to pinpoint the genes or chromo-
somal regions that control flood tolerance is the use
of crosses between waterlogging-tolerant and less tol-
erant species, cultivars or ecotypes. In this way a
group of hybrids may be developed that encompass a
wide variety in root traits such as aerenchyma content,
radial oxygen loss or adventitious root formation (Mc-
Donald et al., 2001b; Colmer 2003). If genetic markers
are made available for these species, QTL analysis
may reveal the area on the genome where genes cru-
cial for the expression of these traits are located. In
conclusion, many advances are to be expected from
the genetic and genomics field of research, which will
increase our in-depth knowledge on regulatory and de-
velopmental processes in plants, including acclimation
to flooding.
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