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Abstract
Key message  Compatible interaction between rhizobial Nod factors and host receptors enables initial recognition 
and signaling events during legume-rhizobia symbiosis.
Abstract  Molecular communication is a new paradigm of information relay, which uses chemical signals or molecules as 
dialogues for communication and has been witnessed in prokaryotes, plants as well as in animal kingdom. Understanding this 
fascinating relay of signals between plants and rhizobia during the establishment of a synergistic relationship for biological 
nitrogen fixation represents one of the hotspots in plant biology research. Predominantly, their interaction is initiated by 
flavonoids exuding from plant roots, which provokes changes in the expression profile of rhizobial genes. Compatible interac-
tions promote the secretion of Nod factors (NFs) from rhizobia, which are recognised by cognate host receptors. Perception 
of NFs by host receptors initiates the symbiosis and ultimately leads to the accommodation of rhizobia within root nodules 
via a series of mutual exchange of signals. This review elucidates the bacterial and plant perspectives during the early stages 
of symbiosis, explicitly emphasizing the significance of NFs and their cognate NF receptors.
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Introduction

Nitrogen, being one of the essential elements of life, exists 
abundantly in an unavailable form in the atmosphere. Chem-
ical as well as biological processes overcome the energy 
barrier required to reduce nitrogen and facilitate the for-
mation of assimilable forms, such as nitrates and nitrites. 
Predominantly, leguminous plants have developed a mecha-
nism to attract and accommodate a group of gram-negative 
bacteria called rhizobia within their roots to form a mutually 
beneficial relationship for biological nitrogen fixation. The 
flavonoids exuded by the roots of legumes are sensed by the 
cognate rhizobia in the rhizosphere. Flavonoid perception 
initiates host-specific chemotaxis and induces the expression 
of rhizobial nod genes essential for establishing a symbiotic 

relationship with its host plant (Cooper 2007). Upregula-
tion of a repertoire of nod genes leads to the expression of 
enzymes that catalyse the synthesis of lipo-chito-oligosac-
charides (LCOs), called nodulation factors or Nod factors 
(NFs). These are low molecular weight, diffusible com-
pounds, semi-hydrophobic, thermostable and found to be 
protease-resistant (Tikhonovich and Provorov 2007; Oldroyd 
2013). Once secreted, NFs are recognised by cognate host 
receptors like Nod Factor Receptor (NFRs) or lysin motif 
receptor-like kinases (LYKs/LYRs) (Broghammer et al. 
2012). Recognition of a compatible interaction permits the 
commencement of infection.

Rhizobia may ingress the host intracellularly or inter-
cellularly. During intracellular invasion, rhizobia usually 
attach to the root hairs and colonize the plant via infec-
tion thread (IT) formation. The root hairs curl to trap the 
bacteria and enable bacterial entry via plasma membrane 
invaginations, known as infection threads (Oldroyd 2013). 
In case of intercellular invasion, initiation of infection may 
occur between two intact epidermal cells, at the base of the 
root hair, wounds or fissures at the point where lateral roots 
emerge (crack entry) or the middle lamella between two root 
hair cells (Ibáñez et al. 2017). Apart from crack entry, other 
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modes of invasion into host require solubilisation of cell 
wall material, which is achieved by the secretion of cellulo-
lytic enzymes like cellulase, polygalacturonase and pecti-
nase by rhizobia (Mateos et al. 1992; Menéndez et al. 2019). 
In addition, it is also observed that the model plants Lotus 
japonicus and Medicago truncatula encode pectate lyase 
upon the perception of NFs, which is essential for host cell-
wall degradation and infection thread initiation for bacterial 
entry (Xie et al. 2012; Liu et al. 2019a). Thus, it is likely that 
involvement of cell-wall degrading enzymes from both the 
symbionts is crucial for bacterial invasion.

Upon entry into the host, several host and rhizobial genes 
are induced, which eventually lead to the development of 
nodules to confine the bacteria from spreading further and 
provide a conducive environment for nitrogen fixation (Jin 
et al. 2016; Wong et al. 2019). Rhizobial transcriptomic 
changes occur in genes essential for nitrogen fixation, res-
piration and endoreduplication (Kondorosi et  al. 2013; 
Jiménez-Guerrero et  al. 2017), while host activates the 
expression of phytohormone biosynthesis genes for nodule 
organogenesis (Ding et al. 2008; Jin et al. 2016; Reid et al. 
2018; Buhian and Bensmihen 2018; Dolgikh et al. 2020; 
Jarzyniak et al. 2021) as well as bacterial release from infec-
tion threads (Tsyganova et al. 2021), nodule-cysteine rich 
peptides (in IRLC and Dalbergioid clade of legumes) for 
imposing a typical terminal differentiation of bacteroids 
(Czernic et al. 2015; Wang et al. 2017, 2018b; Lamouche 
et al. 2019; Nicoud et al. 2021).

In indeterminate nodule forming temperate legumes 
(Medicago truncatula, Pisum sativum), inner cortical cells 
form the primordium and the infection thread penetrates 
at the base of the primordium, while the apex retains its 
meristematic activity for an indefinite time. In the case of 
determinate nodule forming legumes (Arachis hypogaea, 
Glycine max), the outer cortical cells form the primordia, 
and their meristematic activity is lost within 10 days post-
infection (Heidstra and Bisseling 1996; Kohlen et al. 2018). 
Within the nodule, rhizobia transform into non-mobile, 
non-dividing, nitrogen-fixing bacteroids, which reduce 
atmospheric dinitrogen to ammonia and exchange it with 
the host plant for dicarboxylic acids (Watson et al. 1988; 

Mueller and González 2011). The balance between nitrogen 
influx and carbon efflux is maintained by the autoregulation 
of nodulation (AON) system in legumes, which involves 
a long-distance communication between the roots and the 
shoot (Okamoto et al. 2009; Soyano et al. 2014; Tsikou et al. 
2018b; Suzaki and Nishida 2019). This review provides 
insights into the bacterial and plant perspectives during the 
early events of rhizobium-legume symbiosis, highlighting 
the significance of NF mediated signaling.

Early events in the rhizosphere

During nitrogen limiting conditions, host roots produce 
(iso) flavonoids in nanomolar range and secrete them into 
the rhizosphere, which are perceived by compatible rhizobia 
(Lea et al. 2007; Liu and Murray 2016) (Fig. 1A-B). In addi-
tion to activating the biosynthesis of NFs, flavonoids also 
induce nitrogen fixation genes, synthesizers and modifiers of 
exopolysaccharides, and transcriptional regulators involved 
in Type III secretion system (T3SS) (Kobayashi et al. 2004; 
Jiménez-Guerrero et al. 2017). Plants secrete a mixture of 
(iso) flavonoids and only a few of them (like genistein, nar-
ingenin, hesperitin, eriodictyol, luteolin, and daidzein) are 
essential for rhizobial recognition, while the others (like ace-
tovanillin, acetosyringone, sinapic acid) act as phytoalexins 
and inhibit non-compatible bacteria. Interestingly, flavonoids 
that induce nod gene expression in Bradyrhizobium sp. (like 
genistein and daidzein) act as antagonists against Rhizobium 
leguminosarum (Firmin et al. 1986), thus, reinforcing strin-
gency in specificity.

Then, how do compatible rhizobia endure the toxicity of 
its host’s flavonoids? Rhizobia prevent intracellular accu-
mulation and subsequent toxicity of flavonoids through 
the activation of efflux pumps. In the absence of flavonoid 
inducers, TetR type of regulators, like EmrR, FrrA and BdtR 
in Sinorhizobium meliloti and Bradyrhizobium diazoeffi-
ciens, repress an adjacent multidrug efflux pump essential 
for conferring resistance to rhizobia against various toxins 
(Wenzel et al. 2012; Han et al. 2020). Compatible flavonoids 
derepress the efflux system by interfering with BdtR-DNA 
(genistein), FrrA-DNA (genistein and daidzein) and EmrR-
DNA (luteolin) interactions (Wenzel et al. 2012; Rossbach 
et al. 2014; Han et al. 2020). Derepression of the multi-
drug efflux pump alleviates the toxicity of flavonoids and 
prevents its accumulation in rhizobia (Wenzel et al. 2012; 
Rossbach et al. 2014; Han et al. 2020). In addition to luteo-
lin, related flavonoids like apigenin, naringenin, galangenin 
and quercetin (a non-inducer of S. meliloti) can also inter-
rupt EmrR-DNA interactions (Rossbach et al. 2014). This 
raises the question whether multi-host colonizing rhizobia 
possess multiple repressors for the efflux pumps or a single 
repressor that can be targeted by multiple flavonoids.

Fig. 1   The Bacterial Perspective: General outline of nod factor induc-
tion, biosynthesis, and transport during legume-rhizobia symbio-
sis. (A) Plant roots exude flavonoids in nitrogen-deficient soils, (B) 
Appropriate flavonoids are perceived by patrollers [P] in the rhizo-
bial cytoplasm, followed by binding to the nod box in their symbiotic 
plasmid, (C) Activation of the expression of constructors, decorators 
and dispatchers, (D) Construction of the NF backbone, (E) Ornamen-
tation of the core structure with appropriate substituent groups, (F) 
Ferry of the assembled NF across the bacterial cell wall, (G) Down-
stream signaling events leading to the formation of nodules in the 
roots of the host plant. P patroller, pSYM symbiotic plasmid, NOD 
nod operon, IM inner membrane, PG peptidoglycan, OM outer mem-
brane

◂
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Why focus on NFs?

NFs are the prime signaling molecules secreted by rhizobia 
in response to the host’s substandard nutrient availability. 
They are the key factors that intimate the presence of com-
patible microsymbionts in the vicinity of the beneficiary. 
NFs are continuously perceived by their cognate host recep-
tors that modulate appropriate signaling circuits. For exam-
ple, epidermal perception of NFs is essential for the entry 
of rhizobia into plant cell (Smit et al. 2007), while nodular 
perception facilitates the release of rhizobia from infection 
thread into the host cytoplasm (Moling et al. 2014). Percep-
tion of NF in the infection thread is required for the synchro-
nization of bacterial invasion with nodule organogenesis and 
also for the expression of proteins required for elongation 
and progression of the infection thread, like flotillins and 
rhizobium directed polar growth (RPG) (Den Herder et al. 
2007; Haney et al. 2011). In addition, nod factors also pro-
voke early responses of symbiosis, like calcium spiking and 
cortical cell activation (Wais et al. 2002; Ibáñez and Fabra 
2011). As the plant genetic reprogramming commences after 
NF perception, they can be considered as the crucial pio-
neers to establish symbiosis in most legumes.

Nonetheless, it is also important to acknowledge the role 
of other polymeric substances produced by the rhizobia, 
which also assist in the establishment of symbiosis. For 
instance, surface polysaccharides like lipopolysaccharides 
(LPS), capsular polysaccharides (CPS), exopolysaccharides 
(EPS), neutral polysaccharides (NPS), gel-forming polysac-
charides (GPS), cyclic β-glucans and cellulose fibrils aid in 
symbiotic efficiency by contributing at different stages of 
interaction like attachment to host roots, biofilm formation, 
suppression of defence response and during infection thread 
initiation (Fraysse et al. 2003; Marczak et al. 2017; Castel-
lani et al. 2021). However, they are accessory molecules that 
improve the efficiency of symbiosis in most of the rhizo-
bia investigated till date and are absolutely crucial only for 
those rhizobia that exhibit narrow host range, like S. meliloti, 
M. loti, R. leguminosarum (Kelly et al. 2013; Rodríguez-
Navarro et al. 2014; Wang et al. 2018a; Maillet et al. 2020; 
Acosta-Jurado et al. 2021), emphasizing that NFs are the 
major impetus behind the success of root nodule symbiosis. 
Thus, our review focusses on NFs for their pivotal role in 
mediating the inter-kingdom communication.

Structure of Nod factors

The backbone of NF constitutes an oligomer of N-acetyl 
d-glucosamine units (Fig. 1D). Since their monomer units 
resemble that of chitin monomers, these compounds are 

also commonly called lipo-chitooligosaccharides (LCOs) 
(Mergaert et al. 1997; Liang et al. 2014). Mesorhizobium 
loti NZP2213 and Rhizobium sp. GRH2 are the only 
strains reported to produce dimeric and hexameric NFs, 
respectively, while all other rhizobia predominantly pro-
duce tetramers or pentamers (Spaink 2000; D'Haeze and 
Holsters 2002). The N-acetyl group in the non-reducing 
end of the oligomer is replaced by an acyl chain of length 
ranging from C15-C22 and variable number of double 
bonds, wherein the most widely documented are vaccenic 
acid and stearic acid (Spaink 2000; D'Haeze and Holsters 
2002).

Apart from these differences, there are nine crucial 
regions in the oligomer (R1–R9), which are substituted by 
variable groups (Fig. 1E). Predominantly, the R groups in 
the non-reducing end (R1–R4) are hydrogen, N-methyl, 
O-carbamoyl or O-acetyl, while such a generalization can-
not be traced in the reducing end (R5-R7) (Spaink 2000; 
D'Haeze and Holsters 2002). The R9 region, which is prox-
imal to the non-reducing end, also has similar groups as 
that of R1–R4. Sugars such as mannose and the triglyceride 
glycerol have been detected in the R6 position of R. tropici 
and B. elkanii, respectively. These groups are unique to the 
position as well as the organism. Similarly, the hydroxym-
ethyl (CH2OH) group is present only at the R7 position of 
M. huakuii (Spaink, 2000; D'Haeze and Holsters, 2002). Per-
haps, the structural differences among LCOs are the major 
determinants of host specificity. It is also well known that 
the NFs produced by the same strain of bacteria may con-
tain a mixture of NFs that vary in the number of monomers, 
acyl chain length, double-bonds and unique R groups (Wang 
et al. 2018a). Thus, secretion of a mixture of diverse LCOs 
can enable rhizobia to be recognised by more than one host.

The nod operon

In general, the rhizobial genome consists of one or two chro-
mosomes and multiple plasmids. The genes essential for 
nodulation (nod, nol, noe) and nitrogen fixation (nif and fix) 
are organised into symbiotic genome compartments (SGCs), 
which includes episomes like symbiotic plasmids (pSym) 
and symbiotic islands on the chromosome (González et al. 
2003). All the nodulation genes and most of the nitrogen 
fixation genes are localised on pSym and often flanked by 
transposases or insertion elements, and can be considered as 
candidates amenable for horizontal transfer. These genetic 
drive aid rhizobia to establish symbiosis with legumes that 
were non-hosts previously (Mergaert et al. 1997).

Most of the nod genes exist as operons, but apparently, 
there is a lack of synteny even among closely related species 
of rhizobia, suggesting independent genetic rearrangements 
and transposition (González et al. 2003). Upstream of each 
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of these operons is a 47-bp consensus motif, termed as nod-
box, which is the binding site for regulatory proteins that 
modulate the expression of the corresponding genes in the 
operon (Rostas et al. 1986; Kobayashi et al. 2004). In addi-
tion, a putative nod-box has been reported upstream of nifA 
gene, which encodes the major regulator of nif-fix operons 
(González et al. 2003). Here, the ensemble of nodulation 
genes has been classified into the patrollers, constructors, 
decorators and dispatchers (Fig. 1B-F).

Patrollers

Patrollers are the transcriptional regulators that respond to 
plant inducers and modulate the nodulation genes, both posi-
tively as well as negatively, by binding to nod box (Fisher 
and Long 1993; Loh and Stacey 2003; Peck et al. 2006; 
del Cerro et al. 2015, 2017). NodD is the central regulator, 
belonging to the LysR-type family of transcription factors 
and is auto-regulated as well as constitutively expressed, 
except in B. diazoefficiens (Zsófia et al. 1988; Nouwen et al. 
2016). The GroESL chaperonin system is crucial for the 
accurate folding of NodD, essential for binding and bend-
ing DNA at the nod box (Yeh et al. 2002). Complementa-
tion of S. meliloti nodD mutants with functional NodD from 
diverse rhizobia upregulated the expression of nodulation 
genes in S. meliloti only in the presence of the flavonoids 
recognized by the recombinant NodD (Peck et al. 2006), 
suggesting that NodD plays a crucial role in conferring host 
specificity to rhizobia. Rhizobia possess one to five allelic 
variants of the regulatory protein; single copy in R. legu-
minosarum, two in R. galegae, three in S. meliloti, four in 
Rhizobium sp. strain BR816 and five copies in R. tropici 
and these isoforms show less conservedness in the putative 
flavonoid binding cleft and thus, interact with distinct plant 
inducers (Honma et al. 1990; van Rhijn et al. 1993, 1994; 
Lindstrom et al. 1995; del Cerro et al. 2015; Kelly et al. 
2018). For example, NodD1 of S. meliloti perceives luteolin 
and methoxychalcone, while NodD2 responds to betaines 
(Hartwig et al. 1990). Recent research in M. loti has revealed 
the spatio-temporal regulation of nodulation genes by NodD, 
in which NodD1 is crucial for induction of nod genes in the 
infection threads and NodD2 in the rhizosphere and nodules 
(Kelly et al. 2018), thus, emphasizing that isoforms of NodD 
are not mere redundant copies, but might be essential for 
enhancing compatibility between symbionts by responding 
to distinct flavonoids at different stages of infection.

Intriguingly, nodD1 mutants of B. japonicum were found 
to be still capable of nodulating their host, suggesting the 
existence of other regulatory proteins. NodVW two-compo-
nent regulator perform the alternate pathway for nod gene 
transcription (Göttfert et al. 1990). NodV is a sensor kinase 
that undergoes autophosphorylation upon perceiving appro-
priate flavonoids and phosphorylates its response regulator 

NodW, which in turn, induces the expression of nod genes 
(Loh and Stacey 2003). There are yet other regulators like 
nolA (MerR type), which activates NodD2 and inhibits sub-
sequent nod gene expression in B. japonicum (Garcia et al. 
1996), and SyrM (LysR type) which promotes the expres-
sion of NodD3 as well as SyrA in S. meliloti to modulate the 
nod regulon (Barnett and Long 2015). NolR is a transcrip-
tional repressor documented in R. tropici, S. meliloti and 
S. fredii, which interferes with the binding of NodD to the 
nod-box. Their expression is high when the rhizobia are in 
the free-living or bacteroid stage but is reduced in the pres-
ence of flavonoid inducers (Chen et al. 2005; López-Baena 
et al. 2008; Ormeño-Orrillo et al. 2012; Lee et al. 2014). 
Another regulator NrcR (ArsR type), with homologous 
DNA-binding domain of NolR was identified in Rhizobium 
tropici. Mutation of nrcR led to the reduction in number and 
decoration of NFs, enhanced motility, delayed nodulation, 
reduced nodule number and had reduced capacity to induce 
nodC, in comparison to the wild type rhizobia (Del Cerro 
et al. 2016). Therefore, these results reinforce that there is 
stringency and alternative routes in patrolling the expression 
of nodulation genes.

Apart from flavonoid inducers, changes in pH, salt and 
non-ionic osmolyte concentrations have also been reported 
to initiate NF biosynthesis and nitrogen fixation genes in 
R. tropici CIAT899, in a flavonoid-independent but NodD2 
dependent manner (Morón et al. 2005; Estévez et al. 2009; 
Guasch-Vidal et al. 2013; del Cerro et al. 2017, 2019). In 
addition to the regulation of nodulation genes, NodD2 also 
controls the expression of genes involved in protein fold-
ing and secretion, chemotaxis, synthesis of polysaccharides 
and nitrogen fixation, under salt and osmolyte stress (Pérez-
Montaño et al. 2016; Del Cerro et al. 2019) probably to 
improve the efficiency of symbiosis during abiotic stress.

Constructors

Constructors are the core enzymes involved in the construc-
tion of the general backbone of NFs (Fig. 1D). These genes 
are present in all genera of rhizobia, except the photosyn-
thetic Bradyrhizobia of the Aeschynomene plant (Gully 
et al. 2018). nodC codes for N-acetyl-glucosaminyl (NAG) 
transferase that catenates the monomeric NAG units synthe-
sised by glucosamine synthase, the product of nodM. The 
NAG transferase catalyses the β-1→4 linkage between the 
monomers and decides the degree of polymerisation of the 
chitin oligosaccharide (CO) (Ormeño-Orrillo et al. 2012). 
The nodB gene is a deacetylase, which removes the acetyl 
moiety from the nitrogen attached to the monomer at the 
non-reducing end and the framework of the fatty acyl chain 
to be added in this region is designed by nodF (acyl carrier 
protein) and nodE (ketoacetyl synthase) in most rhizobia 
(Peters 1997; Gomes et al. 2019). Isoforms of these proteins 
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make acyl chain with variable length, number and position 
of unsaturation(s), which is coupled to the NF by an acyl 
transferase, encoded by nodA (Yang et al. 1999; Igolkina 
et al. 2019). In some rhizobia (R. leguminosarum, S. meliloti, 
Mesorhizobium sp.), nodG, which encodes for 3-oxoacyl-
acyl carrier protein reductase is required for elongation of 
the fatty acyl chain (López-Lara and Geiger 2001; Mao et al. 
2016). As discussed in the previous section, the patrollers 
confer the first line of specificity to the rhizobia, which is 
followed by the backbone constructors. For instance, there 
are two additional nodA genes in R. tropici CIAT899, apart 
from the one adjacent to nodBC. These are not redundant 
copies of the first, but instead add an alternative acyl chain 
and have been speculated to expand the host range of the 
rhizobium (Ormeño-Orrillo et al. 2012). In addition, when 
comparing the nucleotide sequence of constructors amongst 
different Sinorhizobium and Bradyrhizobium strains that 
nodulate soybean, nodA from all the soybean nodulating 
strains of the two genera were more closely related, while 
the phylogeny of nodB and nodC was specific to the genus 

of rhizobia (Wang et al. 2018a), emphasizing that nodA 
might be responsible for conferring host specificity towards 
soybean.

Decorators

Decorators are species-specific genes that ornament the 
backbone of NF and assign additional host-specificity. The 
diversity in substituent groups at R1 to R9 regions of NF 
owes to these modifiers (Fig. 1E). Among them, few genes 
are required to synthesise the side group, while the others 
are necessary to incorporate it into the core structure of NF 
(Table 1). Thus, the genetic composition of decorators is 
highly dissimilar amongst rhizobia. For example, A. caulin-
odans encompasses the nodSUIJ operon, in which the nodS 
encodes a methyl transferase required for the methylation of 
R1 and R7, while R. tropici, harbours the genes nodH, nodP 
and nodQ, essential for sulphation at R5 region, in addition 
to the nodS that monitors methylation (Geelen et al. 1993; 
Folch-Mallol et al. 1996). The role of decorators in different 

Table 1   Role of decorators in rhizobia

Gene Protein encoded Function(s) Rhizobia References

nodS Methyltransferase Addition of methyl group A. caulinodans
R. tropici
R. etli

Geelen et al. (1993), Waelkens 
et al. (1995), and González 
et al. (2003)

noeI Methyltransferase Fucose methylation Rhizobium sp., NGR234
Sinorhizobium fredii

Jabbouri et al. (1998) and 
Vinardell et al. (2015)

nodL, Acetyltransferase Acetylation of C6 in non-
reducing end

R. leguminosarum López-Lara et al. (2001)

nolL Acetyltransferase Fucose acetylation Rhizobium sp., NGR234 Berck et al. (1999)
nodX Acetyltransferase Double acetylation (at R2, R4) R. leguminosarum Tikhonovich and Provorov 

(2007)
noeT Acetyltransferase Unusual acetylation at R9 R. galegae Österman et al. (2014)
noeL, GDP-mannose dehydratase Synthesis of GDP-L-fucose S. fredii Lamrabet et al. (1999) and 

Vinardell et al. (2015)
nodU, nolO, Carbamoyl transferase Carbamoylation R. tropici Jabbouri et al. (1998) and 

D'Haeze et al. (1999)
nodP, nodQ Subunits of ATP sulfurylase 

and kinase
Produces PAPS (3’-phospho-

adenosine-5’-phosphosul-
phate), an activated sulphate 
compound

R. tropici Folch-Mallol et al. (1996)

nodH Sulphotransferase Transfers PAPS to reducing 
end of NF

R. tropici Folch-Mallol et al. (1996)

noeE Sulphotransferase Sulphation of methylfucose Sinorhizobium NGR234 Hanin et al. (1997)
nolK Sugar epimerase Synthesis of GDP-L-fucose S. fredii Lamrabet et al. (1999) and 

Vinardell et al. (2015)
nodZ Fucosyltransferase Fucose transfer A. caulinodans

S. fredii
Mergaert et al. (1996) and 

Vinardell et al. (2015)
noeJ Mannose-6-phosphate 

isomerase
Synthesis of GDP-D-mannose S. fredii Wang et al. (2018a)

noeK Phosphomannomutase Synthesis of GDP-D-mannose S. fredii Wang et al. (2018a)
noeC,, noeH, noeO NoeC, NoeH, NoeO Synthesis of arabinosyl group A. caulinodans Poinsot et al. (2016)
noeP Arabinosyl transferase Arabinosylation of R8 A. caulinodans Poinsot et al. (2016)
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rhizobia are listed in Table 1. Genetic manipulation of deco-
rators has pronounced effects on symbiotic specificity. For 
instance, nodZ and nolL deletion mutants of Mesorhizo-
bium loti R7A lead to variable nodulation efficiencies on 
four different species of L. japonicus. Both mutants exhib-
ited drastic impairment of nodulation on L. filicaulis, while 
nodZ mutant had a higher impact on L. corniculatus than 
nolL mutant. The mutants did not affect the nodulation of 
L. japonicus and L. burttii, except for a delay in the appear-
ance of the first nodule (Rodpothong et al. 2009). Also, het-
erologous expression of nodZ into R. leguminosarum bv. 
viciae RBL5560 enables it to infect L. japonicus, a non-host 
(Pacios Bras et al. 2000). Thus, diverse decorations on NF 
confer host-range specificity to rhizobia.

It is noteworthy that the actual order of nod genes that 
perform their roles in NF synthesis is not always the con-
structors followed by the decorators. This general assump-
tion is due to the existence of nodABC genes as a single 
entity (Vinardell et al. 2015; Paudel et al. 2020). But mass 
spectrometric analyses of NFs in Rhizobium sp. IRBG74 
has revealed that nodZ can act prior to nodB, while products 
of nodS and nodU may precede the action of that of nodA. 
This is corroborated by the fact that nodB mutants were able 
to produce fucosylated COs, but not deacetylated COs nor 
LCOs. Similarly, nodA mutants could produce substituted 
dCOs, which included methyl, fucosyl and carbamoyl groups 
at the non-reducing end (Poinsot et al. 2016). In addition, 
there are many more decorators to be annotated; for instance, 
noeA, noeB have been identified in the same operon as nodL 
in S. meliloti. Although noeA has been reported to share 32% 
homology with the methyltransferase of Mesorhizobium, 
there has not been any experimental evidence to determine 
its function, since noeA mutants did not show a difference in 
the structure of NFs (Du et al. 2005). All of these suggest the 
possibility of redundancy in the nodulation genes through 
gene duplication, which might serve the purpose of support-
ing the conventional gene or substituting it in its absence.

Decorating the backbone of NF with different substituents 
also offers protection against bond cleavage by plant chi-
tinases (Ovtsyna et al. 2000; Staehelin et al. 2000). Since dif-
ferent plant chitinases have different affinities towards NFs, 
rhizobia that produce more than one type of NFs might be at 
an advantage due to the probability for at least one of them 
to be resistant against the hydrolytic activity of chitinases.

Dispatchers

Dispatchers are the proteins devoted towards the ferry of NF 
across the plasma membrane. The most commonly encoun-
tered dispatchers are the products of nodI and nodJ, which 
encode for the subunits of ATP-Binding Cassette (ABC) 
transporters (Fig. 1F). nodJ encodes for a hydrophobic trans-
membrane domain, while nodI encodes for the cytoplasmic 

ATP-binding domain, required for the active transport of 
the synthesised NFs across the PM of the gram-negative 
bacterium (López-Lara et al. 1996; Aoki et al. 2013). nodT 
encodes for an outer membrane protein that forms a trans-
port complex by interacting with inner membrane proteins 
like nodI and nodJ (Downie, 1994; Hernández-Mendoza 
et al. 2007) and might be secreted directly outside the cell 
in a single step. Interestingly, nodIJ mutants of R. legumi-
nosarum bv. viciae were able to secrete their NFs at usual 
levels, indicating the presence of alternative dispatchers in 
their genome (Spaink et al. 1991). Identification of genes 
like nolF, nolG, nolH and nolI that encode similar transport 
proteins and their organisation as an operon nolFGHI, has 
led to the speculation that these proteins complement for 
the ferry of NFs in nodIJ mutants of R. leguminosarum bv. 
viciae (Downie, 1994). Other proteins like nolT, nolW and 
nolE have also been identified that might act as transport-
ers, but their functionality is questionable due to lack of 
experimental evidence (Davis and Johnston 1990; Meinhardt 
et al. 1993).

How does the host determine its cognate 
micro‑symbiont?

Initial perception and interaction between the rhizobia and 
the host plant is the most critical step in symbiosis. On the 
root epidermis, NFs are perceived by LysM-RLKs, which 
form homo- or heteromeric complexes upon ligand percep-
tion (Geurts et al. 2005, 2016; Moling et al. 2014; Gao et al. 
2021). They consist of an extracellular ligand-binding recep-
tor domain containing three LysM modules, a transmem-
brane domain and an intracellular kinase domain connected 
to the transmembrane domain via a juxtamembrane domain 
(Mesnage et al. 2014; Bozsoki et al. 2020; Jose et al. 2020) 
(Fig. 2). The three LysM modules acquire a compact clover 
leaf arrangement with three βααβ folds, which are bridged 
by conserved disulphide bonds (Lefebvre et al. 2012). The 
intracellular domain may comprise of a typical kinase or 
a pseudokinase and is crucial for the signal transduction 
(Arrighi et al. 2006; Lefebvre et al. 2012; Bozsoki et al. 
2020). The ligand-binding ectodomains of the NF receptors 
are always under a selective pressure due to the higher fre-
quency of evolution encountered in the prokaryotic kingdom 
(Sulima et al. 2017). Therefore, the NF perceiving receptors 
from various legumes exhibit explicit diversity in their ecto-
domains while the intracellular domains are much identi-
cal (Radutoiu et al. 2007; Zhukov et al. 2008; Nakagawa 
et al. 2011; Sulima et al. 2017, 2019; Bozsoki et al. 2020). 
Receptors with typical kinase domain (LYK class) undergo 
autophosphorylation upon binding to NFs and activate 
downstream signaling components via transphosphorylation. 
On the other hand, receptors with atypical kinases (LYR 
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class) lack conserved residues required for ATP position-
ing, binding as well as catalytic activity of the kinase and 
are in turn devoid of both autophosphorylation as well as 
transphosphorylation abilities, and hence, act as co-receptors 
(Madsen et al. 2011; Palaka et al. 2021).

The signal is initiated by the host receptors through phos-
phorylation of downstream target proteins, per se, receptor-
like cytoplasmic kinases, ubiquitin ligases, Rho related pro-
tein from plants (ROP) etc., (Mbengue et al. 2010; Ke et al. 
2012; Choudhury and Pandey 2015; Tsikou et al. 2018a; 
Wong et al. 2019; Gao et al. 2021), which ultimately lead to 
the spiking of nuclear calcium levels, mediated by ion chan-
nels like cyclic nucleotide gated channels (CNGC) (Sieberer 
et al. 2009; Charpentier et al. 2016; Tsikou et al. 2018a). The 

spiking pattern is decoded by CCaMK, a Calcium-Calmo-
dulin dependent kinase, whose activation is facilitated by 
autophosphorylation (Sathyanarayanan et al. 2001; Tirichine 
et al. 2006; Sinharoy and DasGupta 2009; Capoen et al. 
2009; Hayashi et al. 2010). CCaMK forms a complex with 
CYCLOPS, a transcription factor, and phosphorylates it. The 
complex formation and phosphorylation are enhanced by 
DELLA proteins (Jin et al. 2016; Fonouni-Farde et al. 2016). 
The complex induces the expression of several other down-
stream transcriptional regulators, which further enhance the 
expression of proteins essential for infection thread progres-
sion as well as nodule organogenesis (Heckmann et al. 2006; 
Yano et al. 2008; Eckardt 2009; Ovchinnikova et al. 2011; 
Singh et al. 2014; Cerri et al. 2017; Lin et al. 2018; Liu et al. 
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2019c, 2021). On the other hand, a parallel CCaMK-inde-
pendent pathway also activates proteins involved in the root 
hair responses (Madsen et al. 2010; Murray 2011) (Fig. 2).

In addition to the perception of NFs at the epidermis and 
transducing the signal to the cell layers beneath, NF recep-
tors also continue perceiving the microsymbiont’s signal 
in the infection thread as well as the nodule cells (Arrighi 
et al. 2006; Moling et al. 2014). Their transient expression 
in the IT membrane enables synchronization of bacterial 
entry with that of nodular accommodation by equipping the 

plant with the genetic machinery required for symbiosome 
formation. NF receptors have been reported to accumulate 
in a narrow zone within the nodules, pertaining to the infec-
tion zone. Subsequently, NFRs are removed from the plasma 
membrane of nodule cells soon after bacterial release from 
the IT, suggesting possible roles of NFRs in triggering bac-
terial release into the nodule cells (Arrighi et al. 2006; Mol-
ing et al. 2014). Therefore, NF-NF receptor interaction is 
crucial during the commencement as well as the later events 
during root nodule symbiosis.

Are there nuances in the NF 
perception and signaling mechanism 
amongst legumes?

LjNFR1 (LYK) and LjNFR5 (LYR) are the known LysM-
RLKs that are indispensable for nodulation of the model 
plant Lotus japonicus. It is corroborated by the lack of 
crucial physiological and molecular changes like root hair 
deformation, Ca2+ spiking and nodulin gene expression in 
nfr1 and nfr5 mutants of L. japonicus, in the presence of 
M. loti (Madsen et al. 2003; Radutoiu et al. 2003; Miwa 
et al. 2006). LjNFR1 and LjNFR5 directly bind to nanomo-
lar range of M. loti NFs and form a receptor complex in 
which LjNFR1 undergoes autophosphorylation and acti-
vates LjNFR5 by transphosphorylation, thereby initiating 
the signaling cascade for rhizobial symbiosis (Broghammer 
et al. 2012). Interestingly, overexpression of LjNFR1 and 
LjNFR5 under Ubiquitin promoter results in spontaneous 
nodule formation, even in the absence of rhizobia, suggest-
ing their importance in the plant signaling cascade during 
symbiosis (Ried et al. 2014).

Alternatively, the other model legume Medicago trun-
catula showcases the two-receptor model proposed by 
Ardourel et al. (Ardourel et al. 1994), in which one of the 
receptors acts as a signaling receptor to initiate early events 
of infection while the other acts as an entry receptor. MtNFP 
(LYR) acts as the signaling receptor and MtLYK3 is the 
entry receptor, affirmed by the respective mutant studies. 
lyk3 mutants undergo root hair deformation, calcium spik-
ing and cortical cell activation upon interaction with S. 
meliloti but can neither undergo tight root hair curling nor 
produce infection threads. On the other hand, nfp mutants 
are entirely insensitive to the NFs from S. meliloti (Amor 
et al. 2003; Haney et al. 2011). Transcriptional activation 
of GUS by the promoter of NFP (pNFP::GUS) led to the 
detection of NFP expression M. truncatula at different stages 
post rhizobial inoculation. GUS activity was observed in the 
inner cortical cells around nodule primordia, in the outer 
cortical cells beneath infected root hairs, and also in the 
infection zone of nodules, suggesting possible roles of NFP 
in the infection process as well (Arrighi et al. 2006; Rival 

Fig. 2   The Plant Perspective: General outline of plant signaling 
mechanisms involved in establishing plant-rhizobial symbiosis. (1) 
NFs are perceived by transmembrane LysM-RLK complexes com-
prising of LYK (typical kinase) and LYR (pseudokinase) (2) Trans-
membrane LRR-RLKs are also activated, either by the LysM-RLK 
complex or by unidentified ligands (3) The complex also activates 
directly/indirectly another LysM-RLK, EPR3, which recognizes 
rhizobial exopolysaccharides (4) Downstream signal activation results 
in an influx of calcium near the cell periphery as well as around the 
nuclear membrane (5) Increase in calcium ion concentration activates 
nuclear membrane-bound ion channels and CNGC, (6) which fur-
ther result in calcium spiking within the nucleus (7) Calcium signa-
ture is decoded by calcium/calmodulin-dependent kinases (CCaMK), 
leading to its autophosphorylation as well as transphosphorylation 
of CYCLOPS. The complex is stabilized by DELLA (8) CCaMK-
CYCLOPS-DELLA recruit several transcription factors that activate 
the expression of proteins involved in [9, 12] root hair deformation 
and infection thread progression as well as [10, 13] nodule organo-
genesis (11, 12) Calcium influx within the nucleus is also known to 
activate proteins involved in root hair deformation, in a CCaMK-
independent mechanism via unknown factors (14) NFs trigger ROS 
production, which increases calcium influx into the cell via calcium 
channels and the calcium ions, in turn, activate the RBOH (15) 
Transient ROS production promotes root hair deformation and nod-
ule organogenesis, while prolonged production results in the inhibi-
tion of nodule organogenesis (16) Other molecular determinants like 
MAMPs are perceived by plant recognition receptors (PRRs) and 
activates MTI (Zipfel 2014) (17) MTI prevents the process of nod-
ule organogenesis (Lopez-Gomez et  al. 2012) (18) In addition to 
MAMPs, rhizobia introduce effector molecules into the plant cyto-
plasm via T3SS/T4SS (Okazaki et al. 2013) (19) Some of these effec-
tors activate ETI, which blocks nodule organogenesis (Yang et  al. 
2010), while other effectors inhibit MTI and promote nodule organo-
genesis (Kambara et al. 2009) (20) MTI is also negatively regulated 
by EPR3 signaling cascade, which is initially activated by the per-
ception of compatible exopolysaccharides (EPS) from rhizobia (21) 
Rhizobial cytokinins (Podlešáková et  al. 2013) and probably purine 
derivatives (Giraud et  al. 2007) are known to contribute towards 
nodule organogenesis by activating the host cytokinin receptor (22) 
The symbiotic signaling within the host results in accumulation of 
CK, which also activates the host CK receptor to regulate the nod-
ule organogenesis, thus forming a positive feedback loop (van Zeijl 
et  al. 2015). NF Nod factor, LRR-RLK Leucine-rich repeat contain-
ing receptor like kinases; RBOH: respiratory burst oxidase homolog, 
MAMP microbe-associated molecular pattern, PRR pattern recogni-
tion receptor, EPS exopolysaccharide, EPR EPS receptor, T3SS/T4SS 
type III/IV secretion system, CK cytokinin, MTI MAMP-triggered 
immunity, ETI effector-triggered immunity, ROS reactive oxygen spe-
cies, CNGC cyclic nucleotide gated channel, TFs transcription fac-
tors, NIN nodule inception, NSP nodulation signaling pathway, ERN 
ERF required for nodulation

◂
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et al. 2012). Corroboratingly, rare Nod+ RNAi lines of NFP, 
which showed weak expression of NFP, had multiple abor-
tive infection threads that ended up in sac-like structures 
and failed to reach the nodule primordia, suggesting the 
requirement of optimal level of NFP for infection thread 
morphology as well as proliferation (Arrighi et al. 2006). 
Interestingly, epidermal specific expression of NFP in Mtnfp 
mutants led to the restoration of symbiotic events in the cor-
tex, i.e., the cortical cell divisions. Though NFP expression 
was detected in both the epidermis and the cortex, epidermal 
expression alone is sufficient to restore the nodule organo-
genesis signaling (Rival et al. 2012).

Studies of P. sativum NF receptor, PsSYM37 (LYK), are 
also in line with that of the two-receptor model. Inactivation 
of PsSym37 does not affect the root hair deformation nor 
cortical cell activation but drastically lowers the number of 
primordia formed 15 days post inoculation and ultimately, 
the plant fails to produce nodules. The defect in nodulation is 
due to the impairment in initiation of infection thread forma-
tion (Zhukov et al. 2008). Although MtNFP and PsSYM10 
are inactive kinases (LYRs) and require an active kinase for 
relaying the signal downstream after NF perception, their 
counterparts in the heteromeric complex cannot be MtLYK3 
or PsSYM37, because mtlyk3 and pssym37 mutants do not 
inhibit the early responses of symbiosis (Smit et al. 2007; 
Zhukov et al. 2008; Bensmihen et al. 2011). Irrespective 
of the type of nodules formed (indeterminate in M. trun-
catula and P. sativum; determinate in L. japonicus and G. 
max), the NF mediated signal transduction is non-linear 
and involves two parallel pathways; one for the early cell 
division response and the other for the rhizobial invasion 
response (Esseling et al. 2004; Zhukov et al. 2008; Madsen 
et al. 2010). Though the existence of an entry receptor in 
L. japonicus has not yet been identified, the demarcation 
between the two aforementioned processes has been dem-
onstrated (Madsen et al. 2010).

MtLYK3 is essential for initiation of infection threads as 
well as for its polar growth, the latter requiring stringency in 
the NF structure and complex signaling than the former. To 
elaborate, M. truncatula hcl-4 mutant, a weak allele mutant 
that encodes for reduced levels of LYK3, when infected with 
a nodFnodL double mutant exhibits root hair curling, but the 
rhizobial microcolonies end up in a sac-like structure due to 
the absence of an infection thread to guide them towards the 
developing nodule. In contrast, wild type S. meliloti succeed 
in nodulating the hcl-4 mutant, corroborating with the NF 
structure dependence of LYK3 for efficient nodulation. Per-
ception of wild type NFs by LYK3 downregulates prolonged 
root-hair branching, which is evident with the production of 
multitude of branches on a single root hair in the absence of 
LYK3 (Smit et al. 2007). A similar NF structure-stringency 
has also been observed in P. sativum Afghanistan accession 
containing a putative LysM encoding SYM2 locus (Firmin 

et al. 1993). The allelic state of the PsSym2 gene determines 
the selectivity towards rhizobium and Sym2A (Afghanistan 
cv.) being more selective than Sym2E/Sym2C (European/ Cul-
tivated). The two proteins differ in their amino acid composi-
tion at three sites in the LysM1 module (Sulima et al. 2019). 
Sym2A in the Afghan cultivar recognizes the nodX mediated 
acetylation at the reducing end of NFs from R. legumino-
sarum bv. viciae strains isolated from the middle east soils. 
Plants infected with European strains of R. leguminosarum 
bv. viciae that do not encode for nodX, resist nodulation 
and end up inducing defective infection threads that stall 
in the epidermis (Geurts et al. 1997; Hogg et al. 2002). On 
the other hand, European pea cultivars possessing Sym2E 
receptor have broad specificity and can recognize as well as 
permit the entry of both nodX+ and nodX− rhizobial types. 
Recently, another allelic state of PsLykX proposed to be the 
candidate for the elusive PsSym2 gene has been discovered 
and termed Sym2T, named after its origin from a Tajikistan 
cv., which differs from Sym2E protein in one amino acid 
residue (Sulima et al. 2019). However, further genetic stud-
ies are required to confirm the nomenclature and to delineate 
its function.

Structural stringency is also observed in the semi-aquatic 
Sesbania rostrata, which switches between intracellular and 
intercellular modes for rhizobial entry during non-flooded 
and flooded conditions, respectively. The host is more com-
promised on the NF structure during intercellular entry 
while exhibits stringency during intracellular entry (Goor-
machtig et al. 2004). Identification and functional charac-
terization of the respective NF receptors are necessary to 
determine the molecular mechanism behind such transitions. 
In Glycine max, which is a palaeoalloploid, there are two 
copies of NFR1 and NFR5, namely GmNFR1α, GmNFR1β, 
GmNFR5α and GmNFR5β. Overexpression studies specify 
that GmNFR1α, GmNFR5α and GmNFR5β rescue the Nod— 
phenotype. However, the transcript level of GmNFR5α and 
GmNFR5β do not limit nodulation, while the transcript 
abundance of GmNFR1α dictates the nodule number in 
soybean (Indrasumunar et al. 2010, 2011; Gao et al. 2021).

What contributes to the ligand specificity 
within the ectodomain of NFRs?

Ectopic expression of LjNFR1 + LjNFR5 in M. truncatula 
resulted in extension of its symbiont range to that of L. 
japonicus, which includes M. loti as well as R. legumino-
sarum DZL strain. The transgenic M. truncatula facilitates 
rhizobial recognition and nodule organogenesis, but fails to 
establish symbiosomes (Radutoiu et al. 2007). Lotus filicau-
lis is a close relative of L. japonicus and is nodulated by M. 
loti but not the DZL strain of R. leguminosarum. Ectopic 
expression of LjNFR1 + LjNFR5 in L. filicaulis facilitated 
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its nodulation by the DZL strain. When chimeric recep-
tors containing LfNFR1_ED + LjNFR1_KD and LfNFR5_
ED + LjNFR5_KD were transformed into nfr1 and nfr5 
mutants of L. japonicus respectively, there was a reduction 
in the nodulation efficiency of plants complemented with 
LfNFR5 but not with LfNFR1 (Radutoiu et al. 2007). Thus, 
it is obvious that NF specificity and recognition are con-
tributed by the LysM domains of NFR5 in L. japonicus. 
LjNFR5 and LfNFR5 differ in three amino acid residues. 
Hybrid receptors were created via site-directed mutagenesis, 
in which amino acid residues of LfNFR5 were individu-
ally substituted with corresponding residues from that of 
LjNFR5 (Q30K, K118L, K230E). Such hybrid receptors 
were functionally characterized for their ability to comple-
ment ljnfr5 mutants. It was determined that the substitution 
from a basic hydrophilic Lys residue at position 118 with 
a hydrophobic Leu residue successfully complemented the 
ljnfr5 mutants, suggesting that the difference in the Leu/
Lys at 118th amino-acid residue of the protein in LysM2 
modules of L. japonicus and L. filicaulis respectively, con-
tributed to their difference in specificity towards the NFs 
of R. leguminosarum DZL strain (Radutoiu et al. 2007). A 
similar observation was detected through interaction studies 
between NFs and the individual LysM domains that were 
chemically synthesized (Sørensen et al. 2014). Also, homol-
ogy modelling and molecular dynamics simulation study 
on the NFRs of chickpea reveals the significance of LysM2 
domain in NF recognition (Palaka et al. 2021).

Homology models of the ectodomains of LjNFR5 and 
MtNFP had been designed more than a decade ago using 
prokaryotic LysM domains as reference (Arrighi et al. 2006; 
Radutoiu et al. 2007) and a putative hydrophobic cleft had 
been predicted to act as the NF binding groove (Radutoiu 
et al. 2007). However, the functional relevance of the cleft 
had not been determined until the recent breakthroughs of 
two independent experiments, in which the ectodomains of 
LjNFR1 and MtNFP were crystallized and their structures 
elucidated using AtCERK1 as reference (Bozsoki et al. 
2020; Gysel et al. 2021). Electrostatic surface potential of 
the NFP crystals unveiled a hydrophobic patch in the LysM2 
module in which the fatty acyl moiety of NF could be super 
positioned without steric hindrance. Homology modelling 
of the ectodomains of NFR5 class of receptors from other 
plants, like LjNFR5, PsSYM10 and GmNFR5α validated the 
presence of a hydrophobic patch at a corresponding location 
in LysM2 (Gysel et al. 2021). The functional significance 
of the hydrophobic patch was ingeniously unravelled by 
studying the ability of signal transduction of NFP variants 
whose residues from the hydrophobic patch were substi-
tuted. Corroboratingly, when site directed mutants of NFP 
whose residues outside the hydrophobic patch were substi-
tuted, the construct successfully complemented nfp mutants 
and exhibited similar nodulation phenotype as the wildtype 

plant, when inoculated with S. meliloti 1021. However, Leu 
to Asp substitution of two surface exposed leucine residues 
from the hydrophobic patch (L147 and L154) had a contrast-
ing effect (Gysel et al. 2021). The double mutant (L147D/
L154D) failed to complement nfp mutants and the plants 
were devoid of nodules when infected with S. meliloti 1021 
and showed a drastic decline in the number of nodules when 
inoculated with S. medicae, a higher efficiency nodulating 
symbiont of M. truncatula (Terpolilli et al. 2008; Gysel 
et al. 2021). The significance of L154 in MtNFP had also 
been emphasized previously, in which Leu to Pro substitu-
tion (L154P) in the LysM2 module failed to complement 
nfp mutants of M. truncatula (Bensmihen et al. 2011). Bio-
chemical experiments strengthen the functional relevance of 
the hydrophobic patch in the symbiotic signaling pathway. 
Biolayer Interferometry (BLI) results revealed a 13-fold 
lower affinity of mutant NFP (L147D/L154D) towards S. 
meliloti NFs, in comparison to the wildtype NFP. Also, the 
kinetics of association and more drastically, the dissocia-
tion were altered in the double mutant, emphasizing that the 
hydrophobic patch in LysM2 is essential for the stability of 
NF-NFR interaction (Gysel et al. 2021).

In contrast, recent investigations in the ectodomains of 
LjNFR1 from L. japonicus and PsLykX from P. sativum 
have attributed the LysM1 module as the major determi-
nant of ligand recognition (Sulima et al. 2019; Bozsoki et al. 
2020). Chimeric receptors containing different combinations 
of LysM modules from LjCERK6 and LjNFR1 were fused 
with LjNFR1 kinase domain and used for the complemen-
tation of ljnfr1 mutants. Chimeras with LysM1 from NFR1 
successfully rescued the non-nodulating phenotype of ljnfr1 
mutants, irrespective of the origin of the other two LysM 
modules, suggesting the significance of LysM1 in NF per-
ception. However, as the results were disparate from the ear-
lier prediction that LysM2 bears the LCO binding pocket, 
one amino acid residue from LysM1 and one residue from 
LysM2 of LjNFR1 was substituted individually with a bulky 
residue to study which of them perturbed the nodulation of 
nfr mutants. Corroborating with the chimeric receptor data, 
I78W substitution in LysM1 did not complement the nfr 
mutants whereas I140W substitution in LysM2 successfully 
complemented the non-nodulating phenotype and the plants 
produced similar number of nodules as that of the wildtype 
NFR1 transformed plants, reinforcing that LysM1 is the 
major determinant of NF specificity in LjNFR1(Bozsoki 
et al. 2020). Previous reports of non-nodulating pea mutant 
harbouring L77F substitution in LysM1 of PsSYM37 are in 
line with Bozsoki et al. 2020 (Zhukov et al. 2008; Bozsoki 
et al. 2020). These experiments highlight the significance 
of hydrophobic residues within the NF binding pocket 
of LysM1 modules. Also, P87S substitution in LysM1 of 
MtLYK3 led to defective root hair curling in M. trunca-
tula. Although Pro lies outside the predicted binding pocket 
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of NF, it might be essential for the ectodomain to attain 
the appropriate 3D conformation (Smit et al. 2007). There-
fore, it is likely that LysM1 of LYK class of NF receptors 
and LysM2 of LYR class are the major determinants of NF 
specificity.

Do the kinase domains also contribute 
towards ligand affinity of the NF receptors?

Binding experiments using biolayer interferometry (BLI) 
revealed that purified ectodomain of MtNFP binds to immo-
bilized LCO-V from S. meliloti in the micromolar range 
(Gysel et al. 2021). However, under physiological condi-
tions, NFs are perceived by the plants even in nanomolar 
range (Broghammer et al. 2012). Does it imply that the cyto-
plasmic domain also contributes to ligand affinity? Such an 
enigma was resolved by performing binding experiments 
with full-length receptors using BLI (Gysel et al. 2021). 
Convincingly, full-length NFP exhibited a higher affinity 
for the LCO-IV in comparison to that of the isolated ecto-
domains. A similar pattern was observed when binding of 
LjNFR1 and LjNFR5 with M. loti LCOs was measured using 
surface plasmon resonance (SPR) and microscale thermo-
phoresis (MST) (Broghammer et al. 2012). These results 
support the hypothesis that the presence of intracellular 
domain increases the receptor-ligand affinity, probably by 
receptor oligomerization. It subsequently results in more 
ligand binding pockets in the receptor complex, a phenom-
enon known as avidity (Gysel et al. 2021).

Are NF receptors required even 
for intercellular entry of rhizobia?

Aeschynomene spp. are (semi-) aquatic legumes that form 
nitrogen-fixing nodules on roots and stem by interact-
ing with photosynthetic Bradyrhizobia (Alazard 1985; 
Giraud and Fleischman 2004; Zhang et al. 2019), with a 
few exceptions like A. americana which associates with 
non-photosynthetic Bradyrhizobium and A. patula, which 
is compatible with both photosynthetic as well as non-
photosynthetic Bradyrhizobium (Brottier et al. 2018). The 
compatible rhizobia of Aeschynomene follow intercellular 
mode of entry (Ibáñez et al. 2017; Sprent et al. 2017) and 
may exhibit NF-dependent or NF-independent mode of 
nodulation (Giraud et al. 2007; Bonaldi et al. 2011; Brot-
tier et al. 2018). As mentioned earlier in the review, strains 
of Bradyrhizobia like ORS278 and BTAi1 are devoid of 
nodABC genes and efficiently nodulate A. indica (Giraud 
et al. 2007), whereas Bradyrhizobium ORS285, which pos-
sesses nodABC infects A. afraspera in a NF-dependent and 
A. indica in a NF-independent manner (Chaintreuil et al. 

2001; Renier et al. 2011; Nouwen et al. 2016). Root exu-
dates of A. afraspera induced NodA expression in ORS285, 
while that of A. indica did not (Chaintreuil et al. 2001; 
Renier et al. 2011; Nouwen et al. 2016), affirming that the 
choice of NF-dependency is determined by the host. The 
transcriptome of Aeschynomene evenia, a representative of 
the NF-independent symbiosis, poorly expresses orthologue 
of LYK3, and no other Aeschynomene-specific LysM-RLK 
was identified. On the other hand, ten other NF-independ-
ent Aeschynomene spp. completely lack the expression of 
LYK3 and NFP (Quilbé et al. 2021). As the rhizobia enter 
via intercellular matrix, these plants probably do not require 
NF recognition. Then, how do they recognize the presence 
of compatible microsymbiont?

In L. japonicus, EPR3 (a LysM-RLK induced after NF 
perception) was involved in the recognition of exopolysac-
charides (EPS) and permitted bacterial invasion during intra-
cellular as well as intercellular entry, hinting that exopoly-
saccharide could have been the signals for communication 
(Fig. 2). However, even EPR3 orthologues were not identi-
fied in the transcriptome of A. evenia (Kawaharada et al. 
2015; Wong et al. 2020); (Quilbé et al. 2021). Interestingly, 
determinants like EXO70H4, LUMPY INFECTIONS (LIN), 
VAPYRIN (VPY), which are essential for infection thread 
growth and intracellular accommodation of rhizobia in M. 
truncatula (Liu et al. 2019b) were symbiotically upregu-
lated in A. evenia (Quilbé et al. 2021). In addition, many 
other components of nod-signaling pathway like AeSYMRK, 
AeLHK1, AePOLLUX, AeCCaMK, AeCYCLOPS, AeNSP2, 
and AeNIN were symbiotically expressed during the root and 
stem nodulation of A. evenia (Fabre et al. 2015; Quilbé et al. 
2021). Taken together, these results suggest the conserved-
ness of the core Nod-signaling pathway and the intracellular 
accommodation machinery for rhizobial symbiosis, but does 
not provide clarity about the initial rhizobial recognition. 
Quilbe and group wanted to establish the link between the 
core Nod-signaling pathway and rhizobial perception, and 
identified AeCRK (cysteine-rich RLK) as an indispensable 
receptor for establishing nodulation in A. evenia (Quilbé 
et al. 2021). However, it is unclear how AeCRK mediates 
rhizobial perception. Further characterization via generation 
of AeCRK loss-of-function mutants and study of their sym-
biotic phenotypic is essential to determine their involvement 
as well as significance in the symbiosis signaling.

Arachis hypogaea, which paves way for Bradyrhizobia 
via intercellular cracks, never forms infection threads at 
any point during its symbiosis with rhizobia. Bradyrhizobia 
directly activate the cortical cells that they are in contact 
with and form nodules which are devoid of uninfected cells 
(Boogerd and van Rossum 1997; Fabre et al. 2015). Iden-
tification of CCaMK’s significance in nodulation reveals 
the involvement of NF perception (Sinharoy and DasGupta 
2009), which is further supported by the inability of NF 
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mutants of Bradyrhizobia to activate cortical cell division 
despite being able to colonize the inner root tissues of the 
host (Ibáñez and Fabra 2011). These results imply that rhizo-
bia entry into A. hypogaea is NF-mediated. The orthologues 
of LjNFR1 and LjNFR5 were identified in A. hypogaea, 
namely AhNFR1 and AhNFP. Tridimensional analysis of 
the LysM2 module of the putative AhNFP receptor revealed 
similarity with that of GmNFR5, and that both the recep-
tors recognize similar NFs (Ibáñez et al. 2015). Later, using 
GmNFRs as the query sequences, four copies of AhNFR1 
and two copies of AhNFR5 were identified in A. hypogaea, 
which had the structural similarities in the ectodomains like 
that of the canonical NFRs from the model legumes (Shu 
et al. 2020). Transcriptomic analysis and genetic screen-
ing of Nod— and Nod+ hosts of peanut have indicated the 
possibility of AhNFR5 over AhNFR1 in recognizing NFs 
(Peng et al. 2017). In line with this, CRISPR/Cas9 knock-
out of AhNFR1A2 and AhNFR1B2 produced nodules on A. 
hypogaea, while that of AhNFR5A and AhNFR5B did not 
(Shu et al. 2020), indicating the requirement of AhNFR5 
during rhizobial symbiosis. However, presence of nodules 
in AhNFR1A2 and AhNFR1B2 knock-out plants could have 
also been due to the functional complementation by its two 
other paralogues. In addition, about 35 NFR1 like genes 
had been identified from the PeanutBase database when the 
BLAST search was performed with much relaxed E value 
(Shu et al. 2020), all of which suggests that there is high 
divergence of NFR1s in A. hypogaea and identifying the 
one that’s crucial for NF recognition would be challenging. 
Therefore, RNAi knockdown of all the AhNFR1s would be 
necessary to eliminate misinterpretations due to functional 
redundancy and characterization of the A. hypogaea recep-
tors is essential to determine whether they have any signifi-
cant role in rhizobial perception during intercellular mode 
of entry.

Are NF receptors indispensable 
only for rhizobial symbiosis?

LysM-RLKs are not restricted to rhizobial symbiosis and 
are well known to mediate other micro and macro symbiotic 
interactions as well as pathogens (Rasmussen et al. 2016; 
Jose et al. 2020). The downstream signaling of rhizobial and 
arbuscular mycorrhizal (AM) fungal perception adopt the 
common symbiotic signaling pathway (CSSP), constituting 
signaling components like the LRR-RLK, cation channels, 
nucleoporins, and the calcium/calmodulin dependent kinase 
CCaMK (Walker et al. 2000; Stracke et al. 2002; Lévy et al. 
2004; Kanamori et al. 2006; Banba et al. 2008; Groth et al. 
2010) (Fig. 2), and further bifurcate in their downstream 
responses due to altered signatures in their calcium spiking 
patterns (Kosuta et al. 2008). NFR5 homologues in plants 

other than the nitrogen-fixing legumes are involved in AM 
symbiosis. Majorly, the legumes have undergone tandem or 
segmental duplications, which led to the neofunctionalization 
of NFR5 towards rhizobial perception, while some of its other 
paralogues are devoted towards AM symbiosis (Arrighi et al. 
2006; Lohmann et al. 2010; Rasmussen et al. 2016; Thiergart 
et al. 2019). For instance, SlLYK10, a homologue of MtNFP 
in tomato, is essential for AM fungal colonization (Buendia 
et al. 2016), while the nfp mutants of M. truncatula remain 
unaffected in AM symbiosis (Feng et al. 2019). However, there 
was a drastic reduction in the fungal colonization in the nfp/
cerk1 double mutants. The extent of reduction in fungal colo-
nization was higher than that observed in the single mutants 
of cerk1 (lyk9) (Feng et al. 2019), implicating the possible 
role of NFP in enhancing the signal transduction of CERK1 
during AM symbiosis. Likewise, in Parasponia andersonii, 
PanNFP1 and PanNFP2 are essential for AM symbiosis, while 
the PanNFP2 alone is required for nodulation (Op den Camp 
et al. 2011; Rutten et al. 2020).

Therefore, NFR5 class of receptors seem to have an addi-
tional role in transducing the AM symbiosis signaling in some 
legumes, although they are not indispensable. The probable 
reason for NFR5 being dispensable in AM symbiosis could 
be due to the functional redundancy of the other paralogues, 
which requires further study with combinations of different 
receptor mutants. In rice, Osnfr5 mutants show no conspicu-
ous phenotypic differences from the wild-type rice plants and 
exhibit normal colonization by the AM fungi, suggesting the 
involvement of functionally redundant receptors (Miyata et al. 
2016). However, there is also a possibility of the existence 
of NFR5-independent perception and signaling mechanism, 
which might be mediated by novel non-LCO type ligands.

In addition to their dispensable role during AM symbio-
sis in legumes, the NFR5 class of receptors are also involved 
in the defence signaling during biotic stress. MtNFP seems 
crucial for conferring resistance to M. truncatula against an 
oomycete and a fungus, evidenced by the significantly high 
expression (tenfold) of fungal tubulin in nfr5 mutants com-
pared to wild-type plants (Rey et al. 2013). The nature of the 
ligand perceived by the receptor might alter the heteromeric 
partner and the ultimate signaling output relayed. A similar 
role of altered response is observed in OsCERK1, orthologue 
of NFR1 in rice, which binds with Chitin Elicitor Binding 
Protein (CEBiP) to elicit an immune signal, while binding with 
Myc-factor receptor OsMYR1 initiates AM symbiosis signal-
ing (Miyata et al. 2016; He et al. 2019).
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How does the plant avoid eliciting 
an immune response despite the structural 
similarity between NFs and other 
chitinaceous signals?

Both NFs and chitin induce defence signaling in the host 
plants. The NF-induced defence signaling is mediated 
by NF receptors and not due to the perception by chitin 
receptors (Nakagawa et al. 2011). The perception of NFs 
and pathogen associated molecular patterns (PAMPs) 
occurs via distinct receptors per se, LjNFR1/MtLYK3 
and LjNFR5/MtNFP for NF and LjLYS6/MtLYK9 and 
MtLYR4 for PAMPs, in L. japonicus and M. truncatula 
respectively. Insertional mutants of Ljlys6, Mtlyk9 and 
Mtlyr4 were highly susceptible to bacterial and fungal 
pathogens but were efficient in rhizobial colonization 
(Bozsoki et al. 2020), indicating independent signal acti-
vation by NF and PAMPs. Interestingly, a chimeric recep-
tor encompassing LjNFR1_ED (ectodomain) + LjLYS6_
KD (kinase domain) (RLK involved in chitin perception 
during immune-signaling) could partially restore the nod-
ulation defect of L. japonicus nfr1 mutants (Nakagawa 
et al. 2011). Similarly, chimeric receptors with LjNFR1_
ED + LjCERK6_KD complemented the nfr1 mutants of L. 
japonicus after M. loti infection, but couldn’t trigger the 
production of ROS in cerk6 mutants of L. japonicus, upon 
chitin octamer perception (Bozsoki et al. 2020). Also, a 
swap in the ectodomain of OsNFR5 with that of LjNFR5, 
i.e., LjNFR5_ED + OsNFR5_KD restored the nodula-
tion phenotype of ljnfr5 mutant (Miyata et al. 2016). At 
the molecular level, the LysM modules of NF receptors 
exhibit a hydrophobic patch, which is lacking in the chi-
tin receptors. In addition, the kinetics of chitin binding 
and dissociation to its receptor is very fast in comparison 
to the kinetics of binding and dissociation during NF-NF 
receptor interaction. A longer time of interaction between 
NF-NF receptor rather than very high affinity of the recep-
tor towards the ligand is essential to initiate symbiotic sig-
nal (Gysel et al. 2021). Cumulatively, these studies also 
show higher conservedness in the intracellular domains of 
LysM-RLKs in comparison to their ectodomains, implying 
that the distinction between NFs and various chitinaceous 
molecules originates majorly from the ectodomains of the 
plant LysM-RLKs.

Interestingly, MtLYR3, an inactive kinase with dual 
phosphorylation sites, shows high affinity for NFs and 
its interaction with MtLYK3 is negatively regulated by 
NFs either by disrupting the stability of the complex or 
by causing a conformational change in the protein (Flieg-
mann et  al. 2016). MtLYR3 has unique phosphosites, 
which are not conserved in either MtNFP or the homo-
logues of MtLYR3 like MtLYR2, MtLYR4, which is the 

probable reason for higher specificity of transphosphoryla-
tion of MtLYR3 by MtLYK3. In addition, co-expression 
of MtLYR3 with MtLYK3 and MtNFP in the leaves of 
Nicotiana benthamiana, resulted in a reduction in the cell 
death response. It is most likely that MtLYR3 prevents 
interaction of MtLYK3 and MtNFP in the absence of NFs 
to prevent activation of defense-signaling. Also, legumes 
avoid the activation of defense signaling by accumulat-
ing the NFRs transiently in the infection threads and the 
nodules. NFRs are frequently engulfed by membrane vesi-
cles and directed to the vacuoles for degradation (Smit 
et al. 2007), which is essential to increase the sustenance 
of nodules. Nodule cells that ectopically express NFP and 
LYK3 under Arabidopsis ubiquitin promoter had small 
size, fewer infected cells in the infection zone and seem 
to accumulate defense/senescence activated polyphenols 
(Moling et al. 2014).

Compatible NFs trigger plant NADPH oxidase/respira-
tory burst oxidase homolog (RBOHs), which generate a tran-
sient oxidative burst and increase the calcium influx (Cárde-
nas et al. 2008; Morieri et al. 2013). ROS acts as a signaling 
molecule and its transient outburst is essential for infection 
thread progression, nodule organogenesis and senescence 
(Lohar et al. 2007; Montiel et al. 2016; Fonseca-García et al. 
2021; Tsyganova et al. 2021) (Fig. 2). Rhizobial or puri-
fied NF perception by GmNFR5 elicits a calcium-depend-
ent redox signal within 30 min and later reduces, which is 
opposed to the prolonged sustenance of ROS levels upon 
the perception of a pathogen or an elicitor (Muñoz et al. 
2012; Mu Oz et al. 2013; Gilroy et al. 2014; Fernandez-
Göbel et al. 2019; Rey et al. 2019). In addition, pretreat-
ment of soybean and Arabidopsis leaves with Nod factors 
(100 nM) from B. japonicum diminished the flg22-triggered 
ROS production by reducing MAP kinase phosphorylation 
(Liang et al. 2013). Cumulatively, these results suggest that 
cell-death response promoted by sustained ROS production 
is overcome during NF signaling by fine-tuning the ROS 
accumulation spatio-temporally as well as quantitatively.

In summary, defence-like reactions are induced in the host 
plant even during rhizobial perception, but the sustenance 
of the defence signaling is inhibited by involving additional 
proteins that enable the host to favour the symbiotic pathway 
over the defence pathway. As we are still unaware of many 
of the signaling networks governing the symbiosis process, 
we cannot assertively conclude that the host avoids elicit-
ing the defence response via a particular pathway. However, 
we can affirm that the distinction between symbiosis and 
defence emanates from the ectodomains of the NF recep-
tors. Further investigation on how ligand perception by the 
ectodomain induces a conformational change in the kinase 
domain to relay an alternative signaling output during sym-
biosis and defence would help us understand how the plant 
distinguishes between the two mechanisms.
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What are the consequences of excess 
production of NFs?

Bradyrhizobium strain ORS285, which possesses nodABC 
genes nodulates A. indica in a NF-independent manner and 
the root exudates of A. indica do not induce the expression 
of nod genes. However, when nod genes were ectopically 
induced in Bradyrhizobium strain ORS285 using narin-
genin, it delayed the production of nodules in A. indica, 
implying that NF production negatively regulates symbio-
sis in NF-independent processes (Nouwen et al. 2016), 
and the mechanism behind is yet to be unravelled. Even 
in NF-dependent processes, maintenance of optimal con-
centration of NFs is crucial for establishing efficient sym-
biosis. For instance, excess of NFs delays infection thread 
formation due to uncontrolled curling or swelling of root 
hairs, thereby impairing the formation of a conventional 
infection chamber; promotes clustering of nodule primor-
dia, nodule hypertrophy and nodule branching in M. trun-
catula (Cai et al. 2018), while it arrests the transforma-
tion of infected primordia into nitrogen-fixing organs in L. 
japonicus (Malolepszy et al. 2018). Overexpression of NFs 
in R. leguminosarum strain TOM supresses nodulation by 
inhibiting initiation of infection threads in pea roots, by 
a phenomenon called “competitive nodulation blocking” 
(Hogg et al. 2002). On the other hand, sub-optimal lev-
els of NFs are insufficient to establish effective symbiosis 
(Baev et al. 1991; Krishnan et al. 1999; Cai et al. 2018) 
and thus, maintenance of optimal levels of NFs is essential 
for the plant.

Due to their structural conformation, NFs can be hydro-
lysed by plant chitinases, which cleave the β-1→4 link-
age between monomers and consequently inactivate the 
NF (Staehelin et al. 1994, 1995; Goormachtig et al. 1998; 
Ovtsyna et al. 2000, 2005). Recent studies have identi-
fied the recruitment of NF-specific chitinases such as Nod 
Factor Hydrolase1 (MtNFH1) and Chitinase5 (LjCHIT5) 
that hydrolyse NFs in a dosage-dependent manner, acti-
vated by Nod-signaling pathway (Tian et al. 2013; Cai 
et al. 2018; Malolepszy et al. 2018). Therefore, low levels 
of NFs would stimulate only less expression of the hydro-
lases and there will be lower hydrolysis of NFs (Ovtsyna 
et al. 2000; Cai et al. 2018). Pre-treatment of M. trun-
catula seedlings with NFs for 2 h was adequate enough 
to stimulate MtNFH1 production and NF hydrolysis (Cai 
et al. 2018), implicating the role of MtNFH1 during the 
early stages of symbiosis. However, the morphology of 
ITs and nodule primordia seem unaltered in chit5 mutants 
in L. japonicus, and there might be additional CHIT5-
independent enzymes governing these early processes. The 
authors propose that higher production of NFs within the 
primordial ITs (due to the swap from NodD1 to NodD2) 

might cause an imbalance in the defence vs symbiosis 
signaling pathways, and LjCHIT5 curtails the impact by 
hydrolysing excess NFs (Kelly et al. 2018; Malolepszy 
et al. 2018). Thus, maintenance of NF optima seems to be 
mediated by host chitinases and the involvement of more 
host factors has to be examined.

Conclusions

Communication during root nodule symbiosis constitutes a 
series of interactions, involving plant and rhizobial signal 
molecules, receptors from both of the symbionts, transcrip-
tional regulators, biosynthetic enzymes, defence proteins/
peptides, and hormones, which cooperatively pave way for 
bacterial entry and accommodation into the host system. 
Each step is governed stringently and is patrolled by alterna-
tive pathways as well to promote only favourable and syn-
ergistic interactions. NF-NFR interaction plays a pivotal 
role in initiating this complex process and also in ensuring 
specificity between the symbionts. The manoeuvre of patrol-
lers, constructors, decorators and dispatchers is the impetus 
behind the establishment of such compatible interactions and 
have been studied since many years. Recent breakthroughs 
have been achieved in the structural and functional charac-
terization of host receptors as well as the identification of its 
signaling intermediates. It has led us to uncouple rhizobial 
entry and nodule organogenesis and discover signaling inter-
mediates that are specialized in one of the processes as well 
as identify intermediates that mediate both processes. The 
discovery of a hydrophobic signature in the LysM modules 
of NF receptors can be utilized to computationally iden-
tify probable LCO receptors of the LYR class from other 
host plants. It can also be applied for the identification of 
the functional receptors from polyploid plants which may 
have multiple paralogues of the receptor. With the current 
knowledge about the structural attributes of both the NF 
and the NFRs that contribute to symbiotic stringency, rhizo-
bia may be engineered to produce NFs that bind to the NF 
receptor with higher stringency. As higher stringency might 
not always result in improved symbiotic efficiency, it must 
be ensured experimentally that there is enhanced symbiosis 
between the partners. This way, the nodulation efficiency 
of legumes can be improved by introducing the engineered 
rhizobia into soil containing underperformed rhizobia. Due 
to the stringency of the receptor and its higher specificity 
towards the NFs of the engineered rhizobia, the legumes 
might abolish symbiosis with the under-performed rhizobia.

Though much progress has been achieved towards 
understanding the inter-kingdom signaling, it is leading 
to more questions regarding several aspects involving both 
the bacterial and host perspectives. Specifically, the mech-
anism of choice of symbiosis over defence has remained 
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a puzzle. In essence with the discovery of host chitinases 
that hydrolyze NFs in excess, ‘whether the hydrolysed 
NFs act as secondary signals to activate autoregulation of 
nodulation in the host’ would be an interesting question 
to be explored. Additionally, due to enormous investment 
of energy in the synthesis of NFs, excess production of 
NFs will be detrimental to the rhizobia. Thus, how the 
rhizobial system regulates the optimal quantity of NF bio-
synthesis, will be another interesting field to venture upon. 
Given the diversity in the number of NFs and the rhizobial 
modes of entry, our knowledge regarding their recognition 
and downstream signaling mechanisms in the host is still 
incomplete.

Previously, more attention was given towards the infec-
tion thread mode of entry. Recently, much research on the 
Dalbergioid clade of legumes, within which rhizobia fol-
low intercellular entry has expanded our knowledge on the 
symbiosis signaling. Involvement of NF receptors even dur-
ing crack entry makes one wonder the role of the receptors 
during such a signaling event. In addition, upregulation of 
various genes whose orthologues in the model plants were 
previously considered to be involved in infection thread pro-
gression, suggests specialized and/or additional roles for the 
genes in a crack-entry legume. Further functional characteri-
zation of the proteins would give us more insights into the 
signaling mechanism involved. Detailed structural, molecu-
lar and genetic studies will not just unravel the ligand-recep-
tor interaction mechanisms but also help us comprehend the 
contribution of recognition specificity towards symbiosis 
signaling and plant immunity.
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