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Abstract
Key message   We makes three kinds of important features from Arabidopsis thaliana: protein secondary structure 
based on the Chou-Fasman parameter, amino acids hydrophobicity and polarity information, and analyze their 
properties.
Abstract  Ubiquitination modification is an important post-translational modification of proteins, which participates in the 
regulation of many important life activities in cells. At present, ubiquitination proteomics research is mostly concentrated 
in animals and yeasts, while relatively few studies have been carried out in plants. It can be said that the calculation and 
prediction of Arabidopsis thaliana ubiquitination sites is still in its infancy. Based on this, we describe a calculation method, 
PseAraUbi (Prediction of Arabidopsis thaliana ubiquitination sites using pseudo amino acid composition), that can effec-
tively detect ubiquitination sites on Arabidopsis thaliana using support vector machine learning classifiers. Based on protein 
sequence information, extract features from the Chou-Fasman parameter, amino acids hydrophobicity features, polarity 
information and selected for classification with the Boruta algorithm. PseAraUbi achieves promising performances with 
an AUC score of 0.953 with fivefold cross-validation on the training dataset, which are significantly better than that of the 
pioneer Arabidopsis thaliana ubiquitination sites method. We also proved the ability of our proposed method on independ-
ent test sets, thus gaining a competitive advantage. In addition, we also in-depth analyzed the physicochemical properties of 
amino acids in the region adjacent to the ubiquitination site. To facilitate the community, the source code, optimal feature 
subset, ubiquitination sites dataset in the Arbidopsis proteome are available at GitHub (https://​github.​com/​HNUBi​oinfo​rmati​
cs/​PseAr​aUbi.​git) for interest users.

Keywords  Ubiquitination sites · Arabidopsis thaliana · Sequence information · Support vector machine

Introduction

Ubiquitin (UB), a highly conserved small molecule protein 
composed of 76 amino acids, is used for post-translational 
modification of substrate proteins (Nobuhiro 2018; Mattern 
et al. 2019; Mulder et al. 2019). Modifying the proteins by 
the addition UB into the substrate proteins, can regulate 
almost all biochemistry within eukaryotic cells. Ubiquitina-
tion requires the synergistic activity of three different ubiq-
uitin enzymes: ATP-dependent ubiquitin activating enzyme 
(E1), ubiquitin-conjugation enzyme (E2) and ubiquitin-pro-
tein ligase (E3). The process of transferring ubiquitin to the 
lysine residues of the target protein molecule involves three 
important steps. Firstly, a thioester bond formed between 
the glycine residue at the carboxyl terminal of ubiquitin 
and the cysteine sulfhydryl group of the active center of 
E1 enzyme. And then the activated ubiquitin molecule was 
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transferred to the cysteine sulfhydryl group of E2 enzyme. 
Finally, the ubiquitin was transferred to the lysine residue 
of the target protein molecule with help of E3 enzyme. As 
a post-translational modification, ubiquitination is strongly 
related to various complex biological processes and diseases 
in plants and animals. It participates widely in physiologi-
cal processes, such as immune response regulation, DNA 
damage repair, cell cycle regulation, cell apoptosis and pro-
tein degradation, et al., through regulating protein stability, 
subcellular localization, activity and interaction (Herrmann 
et al. 2007; Wagner et al.2011; Huizen and Kikkert 2019; 
Yau et al. 2017).

Protein ubiquitination plays a key role in many stages 
of plant development. And many experimental studies 
have already proved that ubiquitination was involved in 
the growth and development, biotic and abiotic stress and 
metabolism et al. of plant. Such as, PUB4, as an E3 ubiquitin 
ligase, which is proved to be a key regulatory component of 
root meristem maintenance and plays an important role in 
the downstream of an exogenous CLV3 peptide synthesis 
(Kinoshita et al. 2015). In addition, SPL2 is one of the only 
three types of E3 ligases found in the outer membrane of 
plant chloroplasts, which can bind lanthanide ions (Tracz 
et al. 2021). Protein ubiquitination mediating Jasmonates 
and ethylene signaling pathways is very important for regu-
lating plant responses to low-temperature stress (Gong et al. 
2020). Posttranslational modifications (PTMs) can effec-
tively break through the limitation of the number of genes. 
By modifying proteins, the functional diversity of proteins 
can be significantly expanded, so that cells can better adapt 
to various environmental stimuli. The interaction between 
different PTMs further increases the complexity of PTMs, 
allowing cells to respond more quickly and accurately to 
various physiological responses, including biotic stresses. 
PTM interactions in plants have also been shown to exist in 
various physiological responses of plants (Zhang and Zeng. 
2020). Xie summarized the regulatory mechanism of ubiqui-
tination in different plant responses to low phosphorus. For 
example, plants can regulate primary root growth and lateral 
root development by relieving endoplasmic reticulum stress 
at the root tip through the induction of autophagy pathway 
(Pan et al. 2019).

Finding the accurate location of ubiquitination sites is 
the basis for studying protein ubiquitination, and provides 
an effective way to further elucidate the molecular mecha-
nism of ubiquitination modified proteins. Therefore, differ-
ent experimental methods, such as Mass Spectrometry (MS) 
techniques (Wang et al. 2019; Xu et al. 2010), ubiquitin anti-
bodies (Brogi et al. 2020), etc., were adopted to identify the 
ubiquitination sites in ubiquitinated proteins. Unfortunately, 
identifying the ubiquitination sites with laboratory tests 
not only is susceptible to the timeliness and reversibility 
of the ubiquitination processes, but also is expensive and 

time-consuming. To solve these problems, machine learn-
ing methods was used to predict the ubiquitination sites of 
because it was cheaper and more time-efficient than labora-
tory tests.

In fact, there have been some methods to predict ubiq-
uitination sites (Yu et al. 2020; Wang and Zhang 2019; He 
et al. 2018; Chen et al. 2013; Wang et al. 2017). Yu et al. 
(Yu et al. 2020) used the deep migration learning method 
to predict the ubiquitination sites of Homo sapiens, Toxo-
plasma gondii, rice and other species, and achieved bet-
ter performance on a small sample of Rattus norvegicus 
datasets. Chen et al. (Chen et al. 2013). respectively used 
CKSAAP coding, binary amino acid coding, AAindex phys-
icochemical property coding and protein aggregation ten-
dency coding to predict human ubiquitination sites; And, 
by comparing with previous studies, the yeast ubiquitination 
site predictor is often unable to accurately predict human 
ubiquitination sites because of the significant difference 
in amino acid preference between the sequence neighbors 
of human ubiquitination sites and yeast counterparts. And, 
the ubiquitination sites of different species have their own 
characteristics (Kumar and Vellaichamy 2019; Chen et al. 
2014). So specific prediction tools need to be established for 
different species. At the present, a variety of ubiquitination 
site prediction models for humans, mice and yeast have been 
developed. But as for Arabidopsis thaliana species, there 
are only some predictors have been developed (Chen et al. 
2019; Mosharaf et al. 2020; Wang et al. 2021). One of the 
three prediction methods in common is that they use binary 
coding or CKSAAP coding schemes for feature extraction. 
We can draw such a conclusion: existing researches have 
adopted a single method for extracting features of Arabi-
dopsis protein sequences. In response to the challenge, this 
study attempted to establish a novel feature computational 
method for identifying ubiquitination sites based on Arabi-
dopsis protein sequences.

To solve this problem, we used an Arabidopsis dataset 
containing 1607 protein sequences. In addition, we proposed 
a novel method, PseAraUbi, for predicting ubiquitin sites in 
Arabidopsis. To further improve the prediction accuracy, we 
computed an optimal set of features from 30 features selected 
by the Boruta algorithm from various Chou-Fasman param-
eters, hydrophobicity and polarity of amino acids. Then, the 
SVM classifier based on this feature representation was used 
to predict ubiquitination sites. Furthermore, it demonstrated 
that the PseAraUbi could significantly improve the overall 
performance of the cross-validation dataset and independent 
dataset, and compared with other state-of-the-art predictors, 
it could predict ubiquitination sites more accurately. The 
flowchart of PseAraUbi is shown in Fig. 1. In addition, we 
also analyzed the physical and chemical properties of the 
amino acids near the ubiquitination site in the Arabidopsis 
protein sequence, and found that the amino acid properties 
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of the ubiquitinated sequence and the non-ubiquitinated 
sequence are different.

Materials and method

Data preparation

In this study, the protein data we used is derived from a previ-
ously published paper, in which the ubiquitination site (lysine 
residues) was verified by the ubiquitin binding diagonal chro-
matography experiment (Walton et al. 2016). The ubiquitina-
tion sites annotations were extracted from the UniProtKB/
Swiss-Prot and NCBI protein sequence database (https://​www.​
ncbi.​nlm.​nih.​gov/​gene/) regarding the model plant Arabidopsis 
thaliana. In this study, we refer to the experimentally verified 
lysine ubiquitination sites as positive samples (i.e., ubiquit-
ination sites), and the remaining lysine residues as negative 
samples (i.e., non-ubiquitination sites). We collected a total 
of 1,607 Arabidopsis proteins, from which 500 proteins were 
randomly selected without duplication for model training, 
and a total of 1,120 ubiquitination sites were obtained from 
these 500 Arabidopsis proteins. In order to overcome the 
problem of model overfitting in prediction, CD-HIT server 
is used to reduce sequence homology, and a 40% sequence 
identity threshold is used to solve homology redundancy (Li 
2006; Fu et al. 2012). In the end, we obtained 472 Arabidop-
sis protein including 1054 ubiquitination sites. Subsequently, 
randomly selected non-ubiquitination sites equivalent to the 
number of ubiquitination sites from the negative samples. In 
order to verify the performance of the model, cross-validation 

experiments and independent test data sets were used. The 
independent dataset is consisted of 300 ubiquitinated protein 
having 612 ubiquitination sites, which also used CD-HIT for 
eliminating homologous protein redundancy. Similarly, the 
independent dataset also contained 1:1 ratio of positive and 
negative samples.

Performance evaluation

To assess the performance, we adopt several widely used 
measures, including accuracy (ACC), sensitivity (SEN/
Recall), specificity (SPE), precision (PRE), the Matthew’s 
correlation coefficient (MCC) and the area under the ROC 
curve (AUC). These measurements are defined as:

(1)ACC =
TP + TN

TP + TN + FP + FN

(2)SEN =
TP

TP + FN

(3)SPE =
TN

TN + FN

(4)PRE =
TP

TP + FP

Fig. 1   Flowchart of PseAraUbi. (a) represents the length of the amino 
acid sequence selected with the sliding window size of 27, which rep-
resent the ubiquitinated or non-ubiquitinated sites in green and yel-
low. (b) represents feature extraction. Yellow represents amino acid 
sequence, and pink represents encoding amino acid into binary vec-
tor, and gray represents grouping according to consecutive 2, 3 and 
4 amino acids respectively. The feature extraction part in the figure 
is an example of the tendency of amino acids to form an alpha helix 

(Pα), Pα > 100 represented by 1, otherwise represented by 0; blue is 
the probability of the occurrence of 2, 3 and 4 consecutive amino 
acids. (c) is feature extraction. Green indicates positive sample fea-
tures, and amaranth indicates negative sample features, where L is the 
characteristic dimension, and Boruta algorithm is used to screen the 
optimal feature of the 30-dimension from the 140-dimension feature. 
(d) represents the final prediction model constructed by the support 
vector machine model

https://www.ncbi.nlm.nih.gov/gene/
https://www.ncbi.nlm.nih.gov/gene/
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Among them, true positive (TP) represents the number 
of true ubiquitination sites that are predicted correctly; true 
negative (TN) represents the number of true non-ubiquit-
ination sites that are correctly predicted; false negative (FN) 
represents the true ubiquitination sites number of points, and 
these sites are designated as non-ubiquitination; false posi-
tive (FP) represents the number of true non-ubiquitination 
sites, and these sites are designated as ubiquitination sites.

Features extraction

We initially used a comprehensive set of 140-dimensional 
features to make further selections. The feature set is com-
posed of the Chou-Fasman parameter (Zhou 1998), hydro-
phobicity (Xiao and Chou 2007; Matsui et al. 2017) of 
amino acid and polarity (Maheshwari and Dhathathreyan 
2004) of amino acids. Here, in order to encode the Arabi-
dopsis protein into a suitable sequence fragment, and then 
convert the sequence into a computer-recognizable binary 
vector. We consider using the optimal protein sequence frag-
ment size of 27, also known as the window size. The win-
dow size of both training set and independent test dataset 
is 27-long sliding window from whole protein sequences. 
The middle position of each sequence fragment contains a 
ubiquitination site (lysine) or a non-ubiquitination site. If 
the ubiquitination site is located at the beginning or end of 
the protein sequence, resulting in the sequence length being 
shorter than 27, the missing position is filled with the char-
acter X.

(5)MCC =
TP × TN − FP × FN√(

TP + FP

)(
TP + FN

)(
TN + FP

)(
TN + FN

)
The pseudo amino acid composition (PseAAC) (Ju and 

Wang 2018; Naseer et al. 2021) that can truly reflect the 
intrinsic correlation between the protein sample and the 
attribute to be predicted, the general form of Chou’s PseAAC 
(Chou 2001) can be calculated as:

where W is weight factor,τk is the sequential information 
of the sequence, fu is the number of occurrences of amino 
acid u.

Chou and Fasman (Chou and Fasman 1978) provided a 
statistical method for the prediction protein second struc-
ture prediction, named as Chou-Fasman methods. The basic 
idea is to assign three numbers for every amino acid, which 
describes the propensity of the amino acid to being part of 
α-helices, β-sheets and turns, Pα, Pβ and Pτ, respectively. 
The Pα, Pβ and Pτ parameters of the 20 amino acids are 
showed in Fig. 2.

Chou and Fasman considered four consecutive amino 
acids as the core, so this study also gave priority to their 
proposition to study the information of four consecutive 
amino acids. Let's take the Pα feature as an example. For 
i-th amino acid in a protein sequence S, if it's Pα > 100, we 
set Pi = 1. If Pα < 100, we set Pi = 0, in this way, protein 
sequences can be translated into binary sequences. For 
example, sequence "S = TSPESDYARSNQPK(Ubi)EIES-
RVSDKETAS" can be translated to "S = 0,001,010,100,010, 
111,100,101 11,010". For a total of 16 different situations 

(6)P =
[
P1,P2,P3,… ,P20,P20+1,…P20+�

]T

(7)P =

⎧
⎪⎨⎪⎩

fu∑20

u=1
fu+

∑�

k=1
τk

1 ≤ u ≤ 20

wτu−20∑20

u=1
fu+w

∑�

k=1
τk

20 + 1 ≤ u ≤ 20 + �

Fig. 2   The Pα, Pβ and Pτ 
parameters of the 20 Amino 
Acids. the amino acid to being 
part of α-helices (Pα) is indi-
cated by blue, the amino acid 
to being part of β-sheets (Pβ) is 
indicated by red and the amino 
acid to being part of turns is 
indicated by green
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for four consecutive amino acids, they are "0000", "0001", 
"0010"… "1111", and then calculate the probability of each 
of these sixteen situations in the sequence. Therefore, we 
can get the 16-dimensional digital features of each protein 
sequence. By the same way, we can get 32-dimensional fea-
tures for protein sequence based on the Pβ and Pτ.

The hydrophobicity of amino acids is useful information 
for many researches relating to proteins. When we consider 
the hydrophobicity index, if the hydrophobicity index of 
amino acid Y is greater than 0, we set Y = 1, else we set 
Y = 0. By repeating the method of 4 consecutive amino acids 
in the previous paragraph, we can obtain 16-dimensional 
features for a sequence. The polarity of the amino acid side 
chains is important for protein stability from a biochemi-
cal perspective. So, we also take account of the polarity of 
amino acids. If the amino acid is polarity, we set 1, other-
wise set to 0. Repeating the method in the previous para-
graph, we can get 16-dimensional features for one sequence. 
Furthermore, the character X is replaced by 0.

Protein is formed by a large number of amino acid resi-
dues connected to each other. So, it is simply considering the 
characteristics of a single amino acid without considering 
the interaction between amino acid molecules may result 
in insufficient amount of information extracted. Therefore, 
when extracting the numerical features of amino acids, this 
paper considers three consecutive amino acid combina-
tions, namely, two consecutive amino acid combinations, 
three consecutive amino acid combinations, and four con-
secutive amino acid combinations. Regardless of the case 
of continuous increase, only the three most basic cases are 
considered, and the control of computational complexity is 
also considered. For the combination of two consecutive 
amino acids, there are four cases of “00, 01, 10, 11”, simi-
larly, there are eight situations for three consecutive amino 
acid combinations: "000, 001, 010, 011…111", and four 
consecutive combinations, there are sixteen cases: “0000, 
0001, 0010 … 1111”. In this study, we obtained a total of 
five types of features, and each type of feature can obtain 
28-dimensional feature vectors, so 140-dimensional feature 
vectors can be obtained.

Features selection

Feature selection can easily remove redundant and irrelevant 
features, which helps to further improve the performance of 
the classifier (Veredas et al. 2018). Based on the 140-dimen-
sional candidate features obtained above, we use Boruta 
algorithm (Kursa and Rudnicki 2010; Chen et al. 2021) to 
further select the optimal feature subset. The Boruta algo-
rithm is a wrapper-base feature selection method, which is 
constructed based on random forest (RF). Its goal is to find 
all relevant features useful for prediction, not to find the 
minimal-optimal feature.

The evaluation criterion Rc represents the prediction per-
formance of the classifier with different ranking features. 
The formula is defined as follows:

where n is the number of repetitions of fivefold cross-valida-
tion; ACCi, SENi, SPEi and AUCi represent the values of the 
accuracy, sensitivity, specificity and AUC score of the i-th 
fivefold cross-validation, respectively. We select the top-k 
ranked features with the highest Rc score.

Support vector machines

Based on the above characteristics, we constructed an SVM 
classification model. SVM is a machine learning method 
based on statistical learning theory (Chang and Lin 2011). 
The SVM is performed by the Support Vector Machine 
scikit-learn package for python to evaluate the performance 
of the model. In this study, we use the linear kernel function 
of SVM and evaluated the model through 5 cross-validation 
experiments. Finally, the overall performance is calculated 
by averaging the performance of the 5 subsets (at the fold 
level).

Radom Forest

The Random Forest (RF) algorithm (Statistics and Breiman 
2001) builds large number of Decision Tree (Breiman et al. 
1984) during training, and finally outputs the classification 
results. A Decision Tree is an attribute classifier that makes 
decisions based on the structure of the tree. Although the 
decision tree algorithm is easy to understand, its prediction 
performance is usually low. The random forest algorithm 
has the advantages of fast learning speed, high classification 
accuracy and the ability to evaluate the importance of vari-
ables, and is widely used in the fields of image processing 
and bioinformatics.

Fully connected neural Layer

Fully connected neural network (FCNN) (Zhang et al. 1998; 
Hsu et al. 1990) is a widely used artificial neural network, 
in which the neurons in the fully connected layer are com-
pletely connected with the neurons in the two layers before 
and after, but there is no connection between the neurons in 
the same fully connected layer. The input layer is mainly the 
encoding matrix; the hidden layer is to effectively integrate 
the local features; the output layer is mainly to output the 
prediction score.

(8)RC =
1

n

∑n

i=1

(
ACCi + SENi+SPEi + AUCi

)
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Results and analysis

Optimal selection of features

The 140 candidate characteristics can be grouped into: 
the propensity of amino acids to become alpha heli-
ces (Pα), the propensity of amino acids to become beta 
sheets (Pβ), The tendency of amino acids to become turns 
(Pτ), hydrophobicity, polarity. We combine the Pα, Pβ 
and Pτ features as Combined1 (Pα + Pβ + Pτ), and com-
bine hydrophobicity and polarity features as Combined2 
(hydrophobicity + polarity). We compare the predictive 
performance of different feature categories. As listed in 
Table 1, the hydrophobicity features obtain the best per-
formance among the five basic feature categories, with 
the highest ACC, MCC and AUC values of 0.800, 0.602 
and 0.832, respectively. We also find that the novel feature 
combination (Combined2) performs much better than the 
combination of Chou-Fasman parameter features (Com-
bined1). As expected, the combination of all the features 
(Pα + Pβ + Pτ + hydrophobicity + polarity) shows the 
highest performance. The results suggest that the three 
categories of features may be complementary, and their 
combination can help predict Arabidopsis thaliana ubiq-
uitination sites.

Screening valuable information is an important step 
in constructing a classifier for predicting ubiquitination 
sites. In this study, we use the RF-based Bortua algorithm 
for feature selection. The Rc value is the highest when 
using the top 30 features, as shown in Fig. 3. The rela-
tive importance and rankings of the 30 best features are 
displayed on GiuHub. We found that the hydrophobicity 
of amino acid, the amino acid to being part of α-helices 
and β-sheets features dominate the top-10 list. By carrying 
out experiments, we found out, that if the features contain 
the hydrophobicity of “100” “101”, the Pα of “100” “101” 
and the Pβ of “1101” “1011”, thus the better prediction 
results can be got. By digging deeper and mapping back 
to the amino acids fragments, we found that the highest 
proportion of sequence fragments "100" and "101" based 

on hydrophobicity parameters are AKR and AEL in pro-
tein sequences; The highest proportion of sequence frag-
ments of "100" and "101" based on Pɑ parameter are KRR 
and KRK. The highest proportion of sequence fragment 
"1101" and "1011" based on Pβ parameter is QFPV and 
TELL. These motifs may be involved in ubiquitination.

In addition, we also compare the predictive performance 
of different feature categories in the optimal feature set. We 
evaluate the performance based on SVM with fivefold cross-
validation on the dataset. As listed in Table 2, the hydropho-
bicity features obtain the best performance among the five 
basic feature categories, with the highest SEN and AUC val-
ues of 0.824 and 0.832, respectively. The following is Pα and 
Pβ. At the same time, it is found from Table 2 that the top 
30-dimensional features we obtained based on the Boruta 
feature selection algorithm achieved the highest ACC and 
AUC values, which were 0.904 and 0.936, respectively. As a 
result, we select the top 30 features as the optimal feature set.

We also calculated the numbers of features of each fea-
ture type in the candidate full feature set and the selected 
optimal feature set, respectively, and redrawn the pie chart. 
The candidate complete feature set contains a total of 
140-dimensional feature vectors, and the five categories of 
features contain 28-dimensional feature vectors respectively, 
which are allocated to the fan chart with a proportion of 

Table 1   Performance 
comparison of different feature 
combinations of all features

Feature ACC​ PRE SEN SPE MCC AUC​

Pα 0.650 0.660 0.647 0.653 0.300 0.682
Pβ 0.770 0.760 0.775 0.764 0.540 0.802
Pτ 0.680 0.640 0.695 0.667 0.361 0.715
Hydrophobicity 0.800 0.760 0.826 0.778 0.602 0.832
Polarity 0.670 0.612 0.697 0.648 0.344 0.697
Combined1 0.784 0.645 0.801 0.775 0.552 0.813
Combined2 0.792 0.780 0.796 0.788 0.584 0.826
All features 0.860 0.840 0.875 0.846 0.720 0.902

Fig. 3   The Rc values of top-k feature sets obtained by using Boruta 
and SVM. The abscissa indicates the number of feature dimensions, 
and the ordinate indicates the Rc value
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20%. The optimal feature collection consists of 30 dimen-
sional feature vectors, and the Pα, Pβ, Pτ, hydrophilic and 
hydrophobic feature consist of 3-dimensional feature vec-
tors, 13-dimensional feature vectors, 4-dimensional feature 
vectors, 8-dimensional feature vectors and 1-dimensional 
feature vectors respectively, accounting for 10%, 43%, 17%, 
27% and 1%, respectively. As shown in Fig. 4, the Pα fea-
tures with the highest proportion, and increased significantly 
in the optimal feature set (from 20 to 43%). the second is 
hydrophobicity features in the optimal feature set. All the 
results suggest that Pα and hydrophobicity features are more 
predictive than other features in determining Arabidopsis 
thaliana ubiquitination sites.

Model prediction performance

By predicting performance results on the optimal feature set, 
we found that support vector machines (SVM) can achieve 
better performance than random forest (RF) classifiers and 
deep-learning fully connected neural network (FCNN). So, 
PseAraUbi uses SVM to build the final model that con-
tains the 30-dimensional optimal features. At the same 

time, five-fold cross-validation and independent testing are 
used to evaluate different models. In addition, AraUbiSite 
(Chen et al. 2019), ArabidopsisUb (Mosharaf et al. 2020) 
and CNN_Binary (Wang et al. 2021) are prediction tools for 
Arabidopsis ubiquitination sites. AraUbiSite uses two amino 
acid coding schemes based on protein sequence fragments, 
namely CKSAAP coding and binary coding methods, and 
uses machine learning methods to build models. Through 
comparative research, the predictor based on random forest 
is selected as the best predictor under the CKSAAP coding 
scheme. ArabidopsisUb also chose the predictor based on 
random forest as the best predictor under the CKSAAP cod-
ing scheme. Wang used the convolutional neural network to 
train the model, and used the binary code and the physical 
and chemical properties of the amino acid to code the amino 
acid in the sequence, and CNN_Binary model achieved bet-
ter results. The above three tools for predicting Arabidopsis 
ubiquitination sites have a common trait that uses binary 
coding and K-spaced amino acid pair composition as input 
features to build models. while, in this work, we obtained 
new characteristics based on the Chou-Fasman parameter, 
combined with the amino acid hydrophobicity characteris-
tics and polarity information. And, our model achieves better 
performance. The detail results are as follows.

Since AraUbiSite, ArabidopsisUb and CNN_Binary pro-
vide five-fold cross-validation and independent test predic-
tion scores on the web server, and our method is test by using 
the same data set, which is feasible to directly compare with 
other methods. The other metrics for performance of the 
five methods in five-fold cross-validation and independent 
dataset are listed in Table 3 and 4, respectively. The “N/A” 
in the table indicates that the algorithm does not provide this 
performance value. We can see that SVM_PseAraUbi per-
form much better than others both in train dataset and inde-
pendent dataset. The sensitivity values of SVM_PseAraUbi, 
RF_PseAraUbi and FCNN_PseAraUbi are larger than that 
of AraUbiSite and ArabidopsisUb, but their specificity val-
ues are smaller than that of AraUbiSite and ArabidopsisUb. 
The possible reason is that SVM_PseAraUbi, RF_PseAr-
aUbi and FCNN_PseAraUbi predict more ubiquitination 
sites, which also increases the number of true positives and 
false positives. By comparing AUC values, we find that our 
method exhibits a competitive advantage.

Table 2   Performance 
comparison of different feature 
combinations of top 30

Feature ACC​ PRE SEN SPE MCC AUC​

Pα 0.640 0.667 0.632 0.647 0.280 0.654
Pβ 0.713 0.733 0.705 0.722 0.427 0.726
Pτ 0.613 0.620 0.612 0.614 0.227 0.642
Hydrophobicity 0.820 0.813 0.824 0.815 0.640 0.832
Polarity 0.516 0.526 0.516 0.517 0.033 0.554
Top 30 0.908 0.885 0.927 0.891 0.795 0.953

Fig. 4   The proportion of each feature in the feature set. the amino 
acid to being part of α-helices feature (Pα) is shown in Navy blue, 
and the amino acid to being part of β-sheets feature (Pβ) is shown 
in orange, and the amino acid to being part of turns (Pτ) feature is 
shown in gray, and hydrophilicity feature is shown in yellow and 
polarity feature is shown in light blue. The picture on the left shows 
the proportion of each feature in the full feature set, and the picture 
on the right shows the proportion of each feature in the optimal fea-
ture set
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Amino acid properties analysis

In this paper, the position-specific residue composition sur-
rounding the ubiquitination sites was analyzed using the 
two-sample logo. The height of the residues in the X-axis 
was in proportion to the percentage of corresponding residue 
in the positive and negative samples. Form the Fig. 5 we 
can see Arg and Lys are enriched near ubiquitination sites, 
while Ser, Leu and Phe are depleted. Form the Fig. 5 we 
can see Arg and Lys are enriched near ubiquitination sites, 
while Ser, Leu and Phe are depleted. In the above sequence 
fragment analysis, we found that Lys and Arg also appeared 
more frequently than other amino acids. Mand studies have 
shown that although the replacement of positively charged 
amino acids with negatively charged or neutral amino acids 
maintains the binding and synergistic interaction of mutant 
proteins, these proteins will also have defects in other 

aspects (Kang et al. 2007; Hiller et al. 2020). And, posi-
tively charged amino acids are commonly used excipients 
for stabilizing therapeutic proteins in biopharmaceutical 
formulations. The positively charged side chains of amino 
acids play an important role in the mechanism of controlling 
their influence on protein stability (Platts et al. 2016). The 
activity of p53 as an inducible transcription factor depends 
on its rapid nuclear stabilization after stress and is regulated 
by ubiquitination. The author also found that direct binding 
of p53 to importin-alpha3 depends on the positive charge 
contributed by lysine residues 319–321 within nuclear local-
ization signals I (Marchenko et al. 2010). Based on this, we 
hypothesized that positive charge enrichment at ubiquitin 
sites plays an important role in the physiological and bio-
chemical processes of ubiquitin proteins in eukaryotic cells.

As a supplement, we analyzed the Chou-Fasman param-
eter, hydrophobicity and polar properties of residues around 
the Arabidopsis ubiquitination site, and compared the aver-
age values of ubiquitinated and non-ubiquitinated peptides, 
and Pα denotes alpha helix propensities, and Pβ denotes 
beta-strand propensities in Fig. 6. In general, residues in 
the ubiquitination peptides tend to form alpha helices, while 
residues in the non-ubiquitination peptides tend to form beta 
strands. And these ubiquitination peptides are less hydro-
phobic than non-ubiquitination peptides. Polarity represents 
amino acid polarity while non-ubiquitination peptides are 
less polarity than Ubiquitination peptides.

Table 3   Prediction performance 
in five-fold cross-validation

In the Method column, the words in bold represent the experimental method we used. In addition, the other 
data in bold represent the best predicted performance values

Method ACC​ SEN SPE PRE MCC AUC​

AraUbiSite 0.818 0.533 0.913 N/A 0.485 0.877
ArabidopsisUb 0.838 0.772 0.915 0.763 0.680 0.910
CNN_Binary 0.854 0.881 0.827 N/A N/A 0.924
RF_ PseAraUbi 0.874 0.882 0.867 0.898 0.704 0.931
FCNN_PseAraUbi 0.883 0.891 0.877 0.915 0.710 0.940
SVM_PseAraUbi 0.908 0.927 0.891 0.922 0.725 0.953

Table 4   Prediction performance 
in independent test

In the Method column, the words in bold represent the experimental method we used. In addition, the other 
data in bold represent the best predicted performance values

Method ACC​ SEN SPE PRE MCC AUC​

AraUbiSite 0.814 0.513 0.914 N/A 0.468 0.868
ArabidopsisUb 0.802 0.801 0.782 N/A 0.580 0.861
CNN_Binary 0.854 0.892 0.817 N/A N/A 0.921
RF_ PseAraUbi 0.857 0.861 0.853 0.872 0.693 0.923
FCNN_PseAraUbi 0.872 0.881 0.863 0.895 0.706 0.930
SVM_PseAraUbi 0.887 0.894 0.879 0.913 0.722 0.942

Fig. 5   The engagement of amino acids residues around the ubiquit-
ination sites compared to non-ubiquitination sites is represented by 
Two-Sample Logos software (statistical t-test, p-value < 0.05)
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Fig. 6   Comparison of a) alpha 
helix, b) beta-strand propensi-
ties, c) hydrophobicity and d) 
polarity between ubiquitination 
and non-ubiquitination peptides. 
Red lines represent non-ubiq-
uitination peptides, while blue 
lines denote ubiquitination pep-
tides. Positions from 1 to 13 are 
the left positions of the ubiquit-
ination site, and positions from 
15 to 26 are the right positions 
of the ubiquitination sites
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Case study

To further illustrate the effectiveness of our feature informa-
tion for predicting ubiquitination site, we present one exam-
ple that is analyzed by physic-chemical and structural fea-
tures. As shown in the Fig. 7, the ubiquitination site residue 
K is located in the center and is indicated in red. It can be 
seen from the figure that the amino acids around the ubiqui-
tination site residues have more positively charged residues 
than negatively charged residues. There are more residues 
with α-helix tendency, less residues with β-sheet tendency, 
less hydrophobic amino acids, and more polar amino acids. 
This is consistent with our previous analysis.

Conclusion

Accurate prediction of Arabidopsis ubiquitination sites is 
of great significance for understanding the mechanism of 
ubiquitination-related biological processes. In this work, we 
described a computational identification method, the PseA-
raUbi method, to predict ubiquitination sites. We integrate 
a variety of features, including the features based on the 
Chou-Fasman parameters, amino acid's hydrophobicity and 
polarity information. We also utilized the Boruta algorithm 

to select an optimal feature set, which is proved to be able 
to improve the prediction accuracy and reduce the risk of 
overfitting. At the same time, combined with support vector 
machine method to build the mode. The experiments results 
showed that our method significantly outperformed the other 
state-of-the-art approach on both benchmark and independ-
ent test dataset. Through the analysis of the physicochemical 
properties of residues surrounding the ubiquitination site, 
we found that compared with residues near non-ubiquit-
ination sites, and the residues near ubiquitination sites are 
less hydrophobic, and prefer to form alpha helices and more 
polarity. We believe that PseAraUbi can be a useful tool for 
accurately identifying ubiquitination sites with the increas-
ing of experimentally determined ubiquitination sites.
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