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Abstract
Key message  We developed two CNNs for predicting ubiquitination sites in Arabidopsis thaliana, demonstrated their 
competitive performance, analyzed amino acid physicochemical properties and the CNN structures, and predicted 
ubiquitination sites in Arabidopsis.
Abstract  As an important posttranslational protein modification, ubiquitination plays critical roles in plant physiology, includ-
ing plant growth and development, biotic and abiotic stress, metabolism, and so on. A lot of ubiquitination site prediction 
models have been developed for human, mouse and yeast. However, there are few models to predict ubiquitination sites for 
the plant Arabidopsis thaliana. Based on this context, we proposed two convolutional neural network (CNN) based models 
for predicting ubiquitination sites in A. thaliana. The two models reach AUC (area under the ROC curve) values of 0.924 and 
0.913 respectively in five-fold cross-validation, and 0.921 and 0.914 respectively in independent test, which outperform other 
models and demonstrate the competitive edge of them. We in-depth analyze the amino acid physicochemical properties in 
the neighboring sequence regions of the ubiquitination sites, and study the influence of the CNN structure to the prediction 
performance. Potential ubiquitination sites in the global Arbidopsis proteome are predicted using the two CNN models. To 
facilitate the community, the source code, training and test dataset, predicted ubiquitination sites in the Arbidopsis proteome 
are available at GitHub (http://githu​b.com/nongd​axiao​feng/CNNAt​hUbi) for interest users.
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Introduction

Ubiquitin is a small 76-residue protein found in all eukary-
otic cells. Ubiquitination is the addition of ubiquitin to 
lysine residues of substrate proteins. The whole process 
involves ubiquitin molecules, substrate proteins, enzyme 
systems (such as ubiquitin-activating enzymes E1s, 
ubiquitin-binding enzymes E2s, ubiquitin ligases E3s 
and deubiquitinating enzymes DUBs), and proteasomes. 
They together constitute the ubiquitin-proteasome system. 
Ubiquitination consists of three main steps. Firstly, the E1 
enzyme adheres to the cysteine residue in the tail of ubiq-
uitin to activate ubiquitin. Then the E1 enzyme transfers 
the activated ubiquitin molecule to the E2 enzyme. Finally, 
the E2 enzyme and some different E3 enzymes jointly rec-
ognize the target protein and bind ubiquitin to it. DUBs 
oppose the role of ubiquination, which remove ubiquitin 
from substrate proteins. Ubiquitination affects proteins 
by marking them for degradation, coordinating their cel-
lular location, regulating their activity, and modulating 
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protein-protein interactions (Glickman and Ciechanover 
2002; Schnell and Hicke 2003). Therefore, ubiquitination 
is highly interconnected with a wide variety of cellular 
processes, including signal transduction, endocytic traf-
ficking, DNA transcription and repair, cell division, dif-
ferentiation, apoptosis, viral infection, immune response, 
and so on (Herrmann et al. 2007; Wagner et al. 2011).

Protein ubiquitination plays critical roles in multiple 
plant developmental stages. Many experimental studies 
have already proved that ubiquitination is involved in plant 
growth and development, biotic and abiotic stress, metabo-
lism and so on. It was found that E3 ubiquitin ligase complex 
(SCF(FBL17)) participates in the regulation of plant ger-
mline proliferation by degrading cell cycle inhibitors (Kim 
et al. 2008). Direct ubiquitination of pattern recognition 
receptor FLS2 attenuates plant innate immunity (Lu et al. 
2011). Light and E3 ubiquitin ligase COP1/SPA can regulate 
the protein stability of MYB transcription factors PAP1 and 
PAP2 through ubiquitin-proteasome pathway, and further 
control anthocyanin levels in A. thaliana (Maier et al. 2013).

In the study of ubiquitination, the identification of sub-
strates and their corresponding modified sites is an impor-
tant issue. At present, there are two main experimental 
methods for the identification of ubiquitination sites, site 
mutation and mass spectrometry. Although ubiquitination 
sites can be correctly determined by experimental methods, 
it is a time-consuming and laborious process, and is often 
restricted by the difficulty in obtaining affinity reagents such 
as specific antibodies and appropriate catalytic conditions. 
Fortunately, bioinformatics methods provide a more cost- 
and time-efficient approach which can be used for proteome-
wide annotation and hypothesis-driven experimental design.

In fact, there have been some effective tools to predict 
ubiquitination sites (Cai and Jiang 2016; Chen et al. 2011; 
Feng et al. 2013; Fu et al. 2019). However, these existing 
tools vary in the selection of machine learning methods and 
training features. This also suggests further improvements 
are still possible. According to a previous research (Chen 
et al. 2015), ubiquitination sites of different species have 
their own characteristics, so specific prediction tools should 
be established for different species. Most existing ubiqui-
tination site prediction methods focus on human, mouse 
and yeast. As one of the model organisms for plant biol-
ogy, A. thaliana is the first plant to have its entire genome 
sequenced, but there are few models to predict ubiquitination 
sites for it. In 2016, ubiquitin combined fractional diago-
nal chromatography was implemented for proteome-wide 
ubiquitination site mapping on A. thaliana cell cultures, and 
3009 sites on 1607 proteins were identified (Walton et al. 
2016). Based on the data, the first A. thaliana ubiquitination 
site prediction model AraUbiSite was established, which 
used the amino acid type, amino acid composition, and 
k-spaced amino acid pair frequency in the protein sequences 

as features, and a support-vector machine (SVM) as training 
method.(Chen et al. 2019).

In order to improve the prediction performance, here 
we propose two convolutional neural network (CNN) 
based models to identify ubiquitination sites in A. thaliana 
proteins. In five-fold cross-validation, the proposed mod-
els reach AUC values of 0.924 and 0.913 respectively. In 
independent test, the models obtain AUC values of 0.921 
and 0.914 respectively. It is demonstrated that the predic-
tion performance of the two models outperforms those of 
AraUbiSite and some other machine learning models. We 
analyzed the physicochemical properties of amino acids near 
ubiquitination sites in A. thaliana protein sequences, and 
found the difference of amino acid properties between ubiq-
uitinated and non-ubiquitinated sequences. We apply the two 
CNN models to an Arabidopsis proteome-wide prediction 
of ubiquitination sites. The obtained information, knowledge 
and data should be useful to the biological community. The 
predicted ubiquitination sites in the Arabidopsis proteome 
and the source code are publicly available at http://githu​
b.com/nongd​axiao​feng/CNNAt​hUbi for interest researchers.

Method

Benchmark dataset

Previously, a model called AraUbiSite was built to predict 
ubiquitination sites in A. thaliana (Chen et al. 2019). To 
make a fair and direct comparison, the AraUbiSite data-
sets are used to train and test our methods in this work. 
The ubiquitination sites in the datasets are experimentally 
determined using ubiquitin combined fractional diagonal 
chromatography, and the non-ubiquitination sites are in 
fact non-validated lysine residues (Walton et al. 2016). The 
datasets contain a training dataset and a test dataset. The 
training dataset includes 2043 ubiquitination sites and 6130 
non-ubiquitination sites. The test dataset is consisted of 
511 ubiquitination sites and 1533 non-ubiquitination sites. 
The ubiquitination sites and non-ubiquitination sites in the 
datasets are called positive samples and negative samples, 
respectively. The prediction procedure was a binary classi-
fication problem (i.e., classify a residue into ubiquitination 
or non-ubiquitination site). To build the prediction model, 
peptides of 41 amino acids centering the potential sites in 
the datasets were extracted. If the site is positioned at the 
very beginning or end of a protein sequence, which results 
the peptide shorter than 41, the character X is used to fill 
the termini of the peptide. In such a way, all peptides are of 
the same sizes. In addition, the identity of any two peptides 
in the datasets is less than 40 %. Low sequence identity can 
avoid overfitting problem and make the prediction model 
effective in the real application.

http://github.com/nongdaxiaofeng/CNNAthUbi
http://github.com/nongdaxiaofeng/CNNAthUbi
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Input features

Input features are a very critical factor to obtain accurate 
and reliable models in the machine learning methods. In 
biology, whether a lysine residue in a protein sequence is 
a ubiquitination site or not is closely related to the amino 
acids around it. Therefore, input features are constructed 
using these neighboring residues. We make use of CNN to 
train the model, which requires the input to retain the amino 
acid order in the sequence. Binary encoding and amino acid 
physicochemical properties are used to encode each amino 
acid in the sequence, which are briefly described as below.

Binary encoding

For the binary encoding, ‘X’ is also considered as an amino 
acid. So there are 21 types of amino acids together. Each 
amino acid is encoded as a 0–1 vector of length 21. For the 
ith type of amino acid, the ith position of the vector is 1, 
and the rest is 0. Because there are 40 neighboring amino 
acids centering the site, the encoding for each sample is a 
40 × 21 matrix.

Amino acid properties

A previous study (Tung and Ho 2008) selected a set of 31 
informative physicochemical properties (supplementary file 
1) from a large set of 531 amino acid physicochemical prop-
erties in the AAindex database for predicting ubiquitination 
sites. Most selected properties represent the hydrophobic-
ity of amino acids. There are also properties representing 
the volumes, propensity to form secondary structures, and 
occurring frequencies of amino acids. We used the 31 prop-
erties to encode each amino acid in the peptide after normal-
izing the values of each property to [0, 1] using the formula 

x–xmin/(xmax-xmin), where xmin and xmax are the minimum and 
maximum respectively for the property. X in the peptide is 
encoded as a zero vector of length 31. Then each sequence 
is encoded by a 40 × 31 matrix.

Structures of CNN models

Artificial neural networks (ANNs) are computing systems 
modeling the biological neural networks of the human brain 
(Zhang et al. 1998). An ANN is composed of connected 
units called artificial neurons. The fully connected neural 
network is one of the most widely used and rapidly develop-
ing ANNs. It adopts a structure of unidirectional multilayer. 
Each neuron in one layer receives signals from neurons of 
the former layer, feeds the weighted sum of them to the acti-
vation function, and sends the result to all neurons in the 
next layer. The first layer is called input layer, the last layer 
is called output layer, and middle layers are called hidden 
layers.

Convolutional neural networks (CNNs) are regularized 
versions of fully connected neural networks with convolu-
tion calculation (Krizhevsky et al. 2017). We developed two 
CNN models, which used the binary encoding and amino 
acid properties as inputs respectively. For convenience, we 
named the two CNN models CNN_Binary and CNN_Prop-
erty respectively. The Keras package (Lee and Song 2019) 
with a tensorflow backend (Rampasek and Goldenberg 2016) 
is employed to implement the CNNs. Both of the two CNNs 
include an input layer, a convolutional layer, a max-pooling 
layer, a flatten layer, a dropout layer, a fully connected layer 
and an output layer (Fig. 1). The details of the layers are 
described as below.

In the CNN models, the convolutional layer receives 
the encoding matrix of width 40 from the input layer, and 
obtains the feature map through using n1 filters of width w 

Fig. 1   The structure of the CNN model. The encoding matrix is the 
input layer. The convolutional layer does the convolution, captures 
local features for classification, and obtains a feature map. The max-
pooling layer samples important features from the feature map and 
halves the width of it. The flatten layer transforms the feature map 

matrix to a vector. The dropout layer deleted a certain ratio of neu-
rons to avoid overfitting. The fully connected layer does effective 
integration of the local features. The output layer outputs the predic-
tion score
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to do the convolution. Each filter is like a scanner to scan the 
amino acid sequence which are represented by the encoding 
matrix from left to right, and captures local features for the 
classification. In addition, zero-padding is used before doing 
the convolution, to make the feature map have the same 
width dimension as the input. The convolutional layer sends 
the feature map with width of 40 plus depth of n1 to the max-
pooling layer. The max-pooling layer separates the feature 
map into grids of length 2 along the width dimension, picks 
the neuron with the maximum value in each grid, and dis-
cards the rest. Such an operation keeps only the neurons that 
contribute the most in each grid and halves the width of the 
feature map to 20. The flatten layer flattens the 2D feature 
map to 1D. The dropout layer drops half of the neurons and 
their connections, which speeds up the training and prevents 
over-fitting. A fully connected layer of n2 neurons follows 
the flatten layer. It assembles the local features created by the 
convolutional layer, and produces global features covering 
the entire sequence. The fully connected layer sends signals 
to the output layer, which has one neuron representing the 
probability for a sample to be ubiquitination site.

Rectified linear unit (ReLU) activation function is used in 
the convolutional layer and fully connected hidden layer for 
nonlinear transformation. The function is defined as: ReLU 
(x) = max (0, x). ReLU function can avoid the vanishing 
gradient problem and reduce the training time. The logistic 
function is used as the activation function of the output layer. 
The function is defined as 1/(1 + exp(−x)). It generates the 
predicted value in the range of 0 to 1, which is able to denote 
the probability of the sample to be ubiquitination site (Chu 
2020).

Training of the models

In the benchmark datasets, the number of positive samples is 
approximately one third of the number of negative samples. 
In order to tackle the imbalance problem, we repeat each 
positive sample three times when training. In general, a bal-
anced training dataset can make a trained neural network 
robust.

We use the binary cross-entropy (Ramos et al. 2018) as 
a loss function to train the two CNNs. L1 regularization 
(Tibshirani 1996) is used to prevent overfitting, which adds a 
cost to the loss function. The cost is the sum of the absolute 
values of the connection weights plus a regularization coef-
ficient λ. L1 regularization makes the weights of redundant 
neurons to be zero, which performs feature selection as well 
as regularization. We adopt RMSProp optimizer (Nhu et al. 
2020) to optimize the two CNNs, which has shown excellent 
adaption of learning rate in various applications.

There are several hyper parameters in the two CNNs 
which should be carefully tuned. We use a simple grid 
search scheme (Dowsing 1970) to optimize hyper 

parameters that make the cross-validation perform best. 
The determined hyper parameter values are displayed in 
Table 1.

Performance evaluation

Both five-fold cross-validation and independent test are 
used to assess the performance of the model. In five-fold 
cross-validation, the training dataset is randomly divided 
into five subsets with nearly equal sizes. Of the five sub-
sets, one single subset is retained as the validation set and 
the other four subsets are integrated as one set to train 
the model. This process is repeated five times with every 
subset used once as the validation set. In independent test, 
the training dataset is used to train the model, and the pre-
diction result of the test dataset is used to test the model.

We use sensitivity, specificity, accuracy and area under 
the receiver operating characteristic (ROC) curve (Fawcett 
2006) as metrics to evaluate the prediction performance 
of different models. As in most studies, we use 0.5 as the 
threshold to calculate the sensitivity, specificity, accuracy 
values. The formulas for sensitivity and specificity are 
defined as follows:

 where TP, FP, TN and FN represent the numbers of true 
positives, false positives, true negatives and false negatives 
respectively.

Because the number of negative samples is about three 
times the number of positive samples, the usually used 
accuracy metric does not reflect the prediction perfor-
mance well (Song et al. 2014). For example, if all samples 
are predicted as negative samples, the accuracy will be 
75 %. For this reason, we define the accuracy as follows 
(Brodersen et al. 2010):

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

Table 1   Hyper parameters of the two CNN models

a n1 is the number of filters in the convolutional layer
b n2 is the number of neurons in the fully connected layer
c η is the learning rate of the optimizer
d λ is the coefficient of the L1 regularization
e w is the width of the filter

Model n1
a n2

b ηc λd we

CNN_Binary 16 64 0.001 0.0001 3
CNN_Property 32 512 0.001 0.0001 3
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 The ROC curve is a graphical plot showing the trade-off 
between the true positive rate and the false positive rate at 
every possible threshold. The true positive rate is equal to 
sensitivity, and the false positive rate is 1-specificity. In gen-
eral, the closer the ROC curve is to the upper left corner, 
the better the prediction result is. Therefore, the area under 
ROC curve (AUC) is often used to measure the prediction 
performance of the model. At the same time, AUC also indi-
cates the probability that the prediction score of a randomly 
selected positive sample is greater than that of a randomly 
selected negative sample.

Results

In order to efficiently and conveniently identify potential 
ubiquitination sites in A. thaliana, we develop two CNN 
based models. In this section, we first analyze the physico-
chemical properties of amino acids near ubiquitination sites 
in A. thaliana. Then we show the prediction performance of 
the models and study the effect of the CNN structure on the 
prediction performance. Finally, we make prediction of A. 
thaliana proteome-wide ubiquitination sites.

Analysis of amino acid properties

In the paper of AraUbiSite, the position-specific residue 
composition surrounding the ubiquitination sites was ana-
lyzed using the two-sample logo, where Arg, Lys and Glu 
are enriched near ubiquitination sites, while Ser and Leu are 
depleted. As a complement to it, we analyze physicochemi-
cal properties of residues surrounding ubiquitination sites 
in A. thaliana.

A previous study categorized the amino acid indices of 
AAindex database into eight clusters, and eight high-qual-
ity amino acid indices in each cluster were extracted (Saha 
et al. 2012). We denoted the eight indices as HQI1 to HQI8 
(Supplementary File 1), and compared the mean values of 
them between the ubiquitination and non-ubiquitination pep-
tides, which are displayed as Fig. 2. HQI1 denotes electric 
properties. It is observed that the residues near ubiquitina-
tion sites carry more electric charge than those near non-
ubiquitination sites. HQI2 represents amino acid hydropho-
bicity. Ubiquitination peptides are less hydrophobic than 
non-ubiquitination peptides. HQI3 denotes alpha helix and 
turn propensities, and HQI7 denotes beta-strand propensi-
ties. In general, residues in the ubiquitination peptides tend 
to form alpha helices and turns, while residues in the non-
ubiquitination peptides tend to form beta strands. HQI4 rep-
resents the amino acid volumes. The volumes of residues 

Accuracy =
3 ∗ TP + TN

3 ∗ (TP + FN) + TN + FP

in some positions that are closest to the ubiquitination sites 
are smaller than those of the non-ubiquitination sites. The 
volumes of residues in other positions are larger than those 
of the non-ubiquitination sites. HQI5 represents transmem-
brane residue propensities. Residues in the ubiquitination 
peptides are disfavored to be localized in the transmembrane 
regions. HQI6 represents the amino acid compositions of 
intracellular proteins. Positions closest to the ubiquitination 
sites prefer more frequently occurring residues (such as Ala, 
Gly and Glu). HQI8 represents the relative partition energies 
of residues. Residues in the ubiquitination peptides have a 
stronger tendency to contact with other residues than those 
in the non-ubiquitination peptides.

Prediction performance

Prediction performance of CNN models in five‐fold cross‐
validation and independent test

We use five-fold cross-validation and independent test to 
assess different models. AraUbiSite is the first ubiquitina-
tion site prediction tool specifically for A. thaliana (Chen 
et al. 2019). It uses binary encoding, amino acid compo-
sition (AAC) and composition of k-spaced amino acid 
pairs (CKSAAP) as input features, and an SVM as training 
method to build the model. Because AraUbiSite provides 
the prediction scores in five-fold cross-validation and inde-
pendent test in its webserver, and uses the same dataset as 
our methods, it is feasible to directly compare our methods 
with it. Figure 3 shows the ROC curves of CNN_binary, 
CNNProperty and AraUbiSite in five-fold cross-validation 
(left panel) and independent test (right panel). From the 
ROC curves, we can see that CNN_Binary and CNN_Prop-
erty perform much better than AraUbiSite, and CNN_Binary 
performs a little better than CNN_Property. This may sug-
gest that binary encoding can better represent the original 
information of the sequence, and is more conducive to the 
convolution layer extracting local features for prediction.

The other metrics for performance of the three meth-
ods in five-fold cross-validation and independent test are 
listed in Tables 2 and 3 respectively. The sensitivity val-
ues of CNN_Binary and CNN_Property are larger than that 
of AraUbiSite, but their specificity values are smaller than 
that of AraUbiSite. This is because CNN_Binary and CNN_
Property predict more ubiquitination sites, which simulta-
neously increases the numbers of true positives and false 
positives. The accuracy of CNN_Binary and CNN_Prop-
erty is much larger than that of AraUbiSite. This demon-
strates that CNN_Binary and CNN_Property perform better 
than AraUbiSite. AUC can better reflect the performance 
of different methods. Both in five-fold cross-validation 
and independent test, the AUC values of CNN_Binary and 
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CNN_Property are larger than that of AraUbiSite, further 
demonstrating the competitive edge of the two CNN models.

Sensitivity values at high specificity

In A. thaliana proteome, the amount of ubiquitination sites 
is much less than that of non-ubiquitination sites. Therefore, 

experimental scientists will pay more attention to predicted 
ubiquitination sites with high scores to avoid the experimen-
tal trial-and-error cost. Table 4 displays the sensitivity val-
ues of the three models at specificity of 95 % (false positive 
rate of 5 %) in five-fold cross-validation. The sensitivity of 
CNN_Binary, CNN_Property and AraUbiSite are 48.83 %, 
46.54 % and 7.7 % respectively. This suggests that when 5 % 

Fig. 2   Comparison of eight high-quality amino acid indices (HQI) 
between ubiquitination and non-ubiquitination peptides. The eight 
indices from HIQ1 to HIQ8 represent electric charge properties, 
hydrophobicity, alpha helix and turn propensities, volume, trans-
membrane residue propensities, amino acid composition, beta strand 

propensities, and relative partition energies, respectively. Red dots 
represent ubiquitination peptides, while blue dots denote non-ubiqui-
tination peptides. Positions from 1 to 20 are the left positions of the 
ubiquitination site, and positions from 21 to 40 are the right positions 
of the ubiquitination sites
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non-ubiquitination sites are wrongly predicted as ubiquit-
ination sites, the correctly predicted ubiquitination sites by 
CNN_Binary, CNN_Property and AraUbiSite account for 
48.83 %, 46.54 % and 7.7 % of the true ubiquitination sites 
respectively.

Comparison of predicted ubiquitination sites by CNN_
Binary, CNN_Property and AraUbiSite

Because biologists are mainly concerned with high-confi-
dence predicted ubiquitination sites, to analyze the over-
lap of the predictions of CNN_Binary, CNN_Property and 
AraUbiSite, we plot the Venn diagrams based on the top 100, 

300, 500 and 1000 predicted ubiquitination sites in five-fold 
cross-validation for the three methods, which are displayed 
in Fig. 4. From the figure, we can see that CNN_Binary and 
CNN_Property have more overlap predictions. The overlap 
predictions between AraUbiSite and the other two meth-
ods are less. This may be because both CNN_Binary and 
CNN_Property are CNN models, while AraUbisite is an 
SVM model. From the figure, we can also see that with the 
increase of the predicted ubiquitination site, the ratio of the 
overlap predictions for each model increases, too.

Comparison with non‐convolutional neural network 
and random forest models

We use binary encoding, physicochemical properties, AAC, 
and CKSAAP as inputs of non-convolutional neural network 
(NCNN) and random forest (RF) models, to test their pre-
diction performance. Unlike the input of the CNN model, 
these features are fed to the models in the form of vectors. 
The details of the features and models are described in Sup-
plementary File 2. Table 5 shows their AUC values in 5-fold 
cross-validation, which are lower than those of the two CNN 
models. This proves that CNN is more competitive for pre-
dicting ubiquitination sites based on sequence information.

The effect of the CNN structure on the prediction 
performance

In the two CNN models, the convolutional layer and max-
pooling layer are responsible for capturing important local 
properties, while the fully connected hidden layer is respon-
sible for effectively combining the local properties.

We remove the convolutional layer and the maximum 
pooling layer from the two CNNs to study their impor-
tance. After adjusting the hyper parameters, the maximum 

Fig. 3   ROC curves of different methods. a ROC curves in five-fold cross-validation. b ROC curves in independent test (right panel). AUC is 
area under the ROC curve

Table 2   Prediction performance in five-fold cross-validation

Method Sensitivity Specificity Accuracy AUC​

CNN_Binary 88.05 82.71 85.38 0.924
CNN_Property 84.92 83.60 84.26 0.913
AraUbiSite 53.33 91.32 69.19 0.855

Table 3   Prediction performance in independent test

Method Sensitivity Specificity Accuracy AUC​

CNN_Binary 89.24 81.67 85.36 0.921
CNN_Property 88.65 82.06 85.45 0.914
AraUbiSite 51.27 91.38 71.33 0.868

Table 4   Sensitivity values at specificity of 95 % for different methods

Method CNN_Binary (%) CNN_Property (%) AraUbiSite (%)

sensitivity 48.83 46.54 7.70
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AUC values in five-fold cross-validation are 0.862 and 
0.789 for the binary and property encodings respectively, 
which are lower than those of the two original CNN 
models.

We also remove the fully connected hidden layers from 
the two CNN models to study their importance. Under the 
optimal hyper parameter combinations, the AUC values 
in five-fold cross-validation are 0.859 and 0.847 for the 
binary and property encodings, respectively. Compared 
with the original models, the performance also declines.

The above results indicate that the fully connected hid-
den layer, convolutional layer and maximum pooling layer 
in the CNN models are very important for the prediction 
performance.

Fig. 4   Venn diagrams of the top predicted ubiquitination sites. Panels a, b, c, d respectively plot Venn diagrams of the top 100, 300, 500 and 
1000 predicted ubiquitination sites between CNN_Binary, CNN_Property and AraUbiSite in five-fold cross-validation

Table 5   AUC values of NCNN and RF in 5-fold cross-validation

Feature/
Method

Binary encoding Physicochemi-
cal property

AAC​ CKSAAP

NCNN 0.862 0.789 0.814 0.822
RF 0.818 0.811 0.809 0.827
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Prediction of ubiquitination sites in A. thaliana 
proteome

In view of the excellent prediction performance of the two 
CNN models, we use them to predict the potential ubiqui-
tination sites in A. thaliana proteome to help experimental 
scientists. Finally, CNN_Binary and CNN_Property respec-
tively predict 224,195 and 329,678 potential ubiquitination 
sites in A. thaliana proteome. We save the predicted ubiqui-
tination sites by CNN_Binary and CNN_Property into two 
tables with protein IDs, site positions, 40-residue peptides 
and prediction scores as columns, which are available at 
GitHub (http://githu​b.com/nongd​axiao​feng/CNNAt​hUbi). 
Two lists of prediction thresholds, true positive rates (sensi-
tivity), and false positive rates in five-fold cross-validation 
for the two CNN models are also available at GitHub for 
users to better make use of the predicted ubiquitination sites.

Discussion

CNN_Binary and CNN_Property use binary encoding 
and amino acid physicochemical properties respectively to 
achieve better prediction performance than other models. 
This is mainly because the convolutional kernel of CNN 
can scan the sequences represented by binary encodings 
or amino acid properties to find useful local patterns for 
prediction. At the same time, the fully connected layer in 
the network can learn the global pattern. According to the 
theory of deep learning (LeCun et al. 2015), more useful 
features can be learned by increasing the number of layers 
of neural network, so as to improve the accuracy of predic-
tion. But when we increased the layer numbers, the perfor-
mance of the two CNN models was not improved, which 
may be because the task of ubiquitination site prediction 
is not complex, and only through one or two layers can we 
extract effective features. We also tried to average the pre-
diction scores of CNN_Binary and CNN_Property, but can’t 
obtain better results.

Sequence and structure analysis of human and yeast pro-
teins with ubiquitination sites were performed by a previous 
study (Kumar and Vellaichamy 2019). In the study, the ubiq-
uitination site positions at 0. Negative and positive integers 
represented left and right positions of the ubiquitination 
site in the sequence. In their analysis, R is most preferred 
from position − 13 to − 7 and from position 7 to 14, but is 
least preferred in close proximity to the ubiquitination site 
in human. In the sequence analysis of AraUbiSite, R is the 
most frequently occurring amino acid in almost all the posi-
tions from − 20 to 20, which is different from that of human. 
At the same time, eight models which are trained using ubiq-
uitination sites from human, mouse and yeast, were used 
to predict ubiquitination sites of A. thaliana, resulting poor 

performance equivalent to random prediction (Chen et al. 
2015). These results suggest that the ubiquitination sites of 
different species have their own characteristics, and it’s nec-
essary to establish species-specific prediction model.

In this paper, we adopt CNNs to establish two ubiquitina-
tion site prediction models for A. thaliana, and prove that 
they are significantly better than other models. There are 
other types of neural networks that are also very suitable 
for processing sequences, such as recurrent neural networks 
(Vaferi et al. 2015). Perhaps they can be used to build pre-
diction models with good performance. Integrating differ-
ent types of neural networks to construct a complex neural 
network may also improve the prediction performance. This 
probably is a direction to build good or better models in 
the future. The performance of the model is also related to 
the quantity and quality of training data. Generally, a larger 
training set will learn a more accurate prediction model. The 
negative samples in the data set are lysine residues which 
are not experimentally confirmed to be ubiquitination sites, 
but some of them may be true ubiquitination sites. This can 
reduce the prediction performance of the model. With the 
development of experimental technologies, more and more 
ubiquitination sites in A. thaliana will be identified, and 
models with better performance can be established.

Conclusions

In this paper, we present two CNN models which use binary 
encoding and amino acid physicochemical properties as 
inputs respectively for predicting ubiquitination sites in A. 
thaliana. It is demonstrated that the two models perform 
much better than the previously reported SVM-based model 
AraUbiSite, and some other machine learning models. 
Through the analysis of the physicochemical properties of 
residues surrounding the ubiquitination site, we found that 
compared with residues near non-ubiquitination sites, resi-
dues near ubiquitination sites carry more electric charge, are 
less hydrophobic, prefer to form alpha helices and turns, and 
tend to contact with other residues. We study the structure of 
the two CNN models, and prove that both the convolutional 
layer and the fully connected hidden layer are indispensable 
in the models for improving the prediction performance. The 
source code of CNN_Binary and CNN_Property, training 
and test datasets, and predicted ubiquitination sites in Arabi-
dopsis are freely available at GitHub (http://githu​b.com/
nongd​axiao​feng/CNNAt​hUbi) for interest researchers. It is 
believed that with more and more ubiquitination sites in A. 
thaliana identified experimentally, so as to expand the size 
of the training set, and the development of machine learning 
technologies, more excellent prediction tools will emerge in 
the future.

http://github.com/nongdaxiaofeng/CNNAthUbi
http://github.com/nongdaxiaofeng/CNNAthUbi
http://github.com/nongdaxiaofeng/CNNAthUbi
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