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Abstract
DNA N6-methyladenine (6 mA) is one of the most vital epigenetic modifications and involved in controlling the various gene 
expression levels. With the avalanche of DNA sequences generated in numerous databases, the accurate identification of 6 mA 
plays an essential role for understanding molecular mechanisms. Because the experimental approaches are time-consuming 
and costly, it is desirable to develop a computation model for rapidly and accurately identifying 6 mA. To the best of our 
knowledge, we first proposed a computational model named i6mA-Fuse to predict 6 mA sites from the Rosaceae genomes, 
especially in Rosa chinensis and Fragaria vesca. We implemented the five encoding schemes, i.e., mononucleotide binary, 
dinucleotide binary, k-space spectral nucleotide, k-mer, and electron–ion interaction pseudo potential compositions, to build 
the five, single-encoding random forest (RF) models. The i6mA-Fuse uses a linear regression model to combine the predicted 
probability scores of the five, single encoding-based RF models. The resultant species-specific i6mA-Fuse achieved remark-
ably high performances with AUCs of 0.982 and 0.978 and with MCCs of 0.869 and 0.858 on the independent datasets of 
Rosa chinensis and Fragaria vesca, respectively. In the F. vesca-specific i6mA-Fuse, the MBE and EIIP contributed to 75% 
and 25% of the total prediction; in the R. chinensis-specific i6mA-Fuse, Kmer, MBE, and EIIP contribute to 15%, 65%, and 
20% of the total prediction. To assist high-throughput prediction for DNA 6 mA identification, the i6mA-Fuse is publicly 
accessible at https​://kurat​a14.bio.kyute​ch.ac.jp/i6mA-Fuse/.

Key message 
The existing prediction models are not suitable to identify 6mA in the Rosaceae genome because the existing algorithms are 
species-specific. Thus, a novel predictor is desired to be established to identify 6mA sites in the Rosaceae genome. To the 
best of our knowledge, we first propose a computation model named i6mA-Fuse (Identification of N6-MethylAdenine sites 
by Fusing multiple feature representation) to predict 6mA sites from the Rosaceae genomes, especially in Rosa chinensis 
and Fragaria vesca.
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Introduction

DNA N6 methyladenine (6 mA) regulates various biological 
functions including genomic imprinting, cell developmental, 
and chromosome solidity and magnifies genomic diversity in 
both prokaryotes and eukaryotes (Xiong et al. 2019; Zhang 
et al. 2018). The 6 mA plays an important role to examine 
the host DNA and defenses the host genome via the several 
modification systems (Du et al. 2019), which is evenly cir-
culated across the genome (Liu et al. 2018b; O’Brown and 
Greer 2016). However, the biological functions and epige-
netic modifications of 6 mA still remain unclear. Genomic 
6 mA distributions are essential for revealing potential bio-
logical functions of DNA. Recently different experimental 
methods have been accomplished to identify 6 mA, includ-
ing liquid chromatography coupled with real-time sequenc-
ing for single-molecule, and methyladenine—precise PCR 
(McIntyre et al. 2019; Zhang et al. 2015), but these methods 
were time-consuming, laborious, and expensive. The rapid 
development in machine learning (ML)-based algorithms 
have driven computational chemistry to an unprecedented 
revolution with the explosive growth of biological sequences 
in the next generation sequencing era (Chen et al. 2015; 
Chou 2019; Liu et al. 2016; Sun et al. 2020). Therefore, 
ML-based methods can be used as an alternative to experi-
mental efforts.

Nowadays, several species-specific ML-based approaches 
have been established for the identification of 6 mA sites, 
including rice(Basith et al. 2019; Chen et al. 2019a; Huang 
et al. 2020; Yu and Dai 2019), and Mus musculus (Feng 
et al. 2019). Although several computational methods have 
been proposed for 6 mA prediction in some species (Qianfei 
Huang et al. 2020; Wang and Yan 2018), none of them were 
developed to specifically identify 6mAs in the Rosaceae 
genomes. Particularly, the existing prediction models are not 

suitable to identify 6 mA in the Rosaceae genome because 
the existing algorithms are species-specific. Thus, a novel 
predictor is desired to be established to identify 6 mA sites 
in the Rosaceae genome.

To the best of our knowledge, we first propose a computa-
tion model named i6mA-Fuse (Identification of N6-Methy-
lAdenine sites by Fusing multiple feature representation) to 
predict 6 mA sites from the Rosaceae genomes, especially 
in Rosa chinensis and Fragaria vesca. An overall frame-
work is depicted in Fig. 1. Firstly, the five feature vectors 
were respectively generated by the five encoding schemes 
of the k-mer composition (Kmer), k-space spectral nucleo-
tide composition (KSNC), mononucleotide binary encod-
ing (MBE), dinucleotide binary encoding (DBE), and elec-
tron–ion interaction pseudopotentials (EIIP). Subsequently, 
a random forest (RF) classifier was used to build the five, 
single encoding-employing models. Finally, the predicted 
probability scores of an appropriate encoding-based mod-
els were combined through a linear regression to make a 
final prediction. As far as we know, the i6mA-Fuse is the 
first computational predictor of 6mAs within the Rosaceae 
genomes.

Materials and methods

An outline of i6mA-Fuse is presented in Fig. 1. Four key 
phases are discussed as follows: (i) datasets construction, 
(ii) feature extraction, (iii) probability scores calculation, 
and (iv) final model construction.

Datasets construction

A high quality dataset could guarantee the reliability and 
robustness of the proposed model (Xu et al. 2019). In this 

Fig. 1   An overall framework 
of i6mA-Fuse. It involves three 
steps: (i) dataset construc-
tion based on MDR database; 
(ii) employing five different 
encoding schemes for convert-
ing nucleotides into numerical 
feature vectors; and (iii) model 
construction and evalua-
tion using cross-validation. 
Subsequently, a webserver 
was constructed based on the 
proposed model (i6mA-Fuse), 
where it predicts putative 6 mA 
sites from the submitted query 
sequences
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study, the positive samples (6mAs) were extracted from the 
reliable MDR database for F. vesca and R. chinensis (Liu 
et al. 2019). Each sample had a length of 41 base pairs with 
adenine nucleotide (“A”) at the center, whose modification 
score was ≥ 20. To avoid any similarity bias, we utilized the 
CD-HIT program (Fu et al. 2012) to exclude highly similar 
samples by setting a cutoff threshold of 0.7. After such a 
screening procedure, we obtained the positive samples of 
5733 and 1417 for R. chinensis and F. vesca, respectively. 
Meanwhile, the standard process was applied to collect neg-
ative samples as described in the previous studies (Basith 
et al. 2019; Lv et al. 2019a). Herein, we obtained strict and 
objective datasets consisting of 5733 positive and negative 
samples for R. chinensis, and 1417 positive and negative 
samples for F. vesca.

To further validate the predictive ability of the proposed 
model, the aforementioned datasets were randomly divided 
into the training and independent datasets at a 3 to 1 ratio. 
Finally, we obtained 4303/1067 positive and negative sam-
ples for F. vesca/R. chinensis as training datasets, while 
1430/350 positive and negative samples for F. vesca/ R. 
chinensis were treated as independent datasets. To confirm 
the reproducibility of models, all the curated dataset used in 
this study are available at https​://kurat​a14.bio.kyute​ch.ac.jp/
i6mA-Fuse/help.php.

Feature extraction

One of the vital procedures is to express DNA sequences 
with an operative mathematical expression that can accu-
rately reproduce the intrinsic correlation with the anticipated 
objective (Yang et al. 2019a). In this study, the five encod-
ing schemes consisting of Kmer, KSNC, MBE, DBE, and 
EIIP were used for constructing the i6mA-Fuse predictor. 
The Kmer scheme encodes the occurrence of nucleotide 
frequency in a DNA sequence (Liu et al. 2018a; Manavalan 
et al. 2018c). The DNA sequence is expressed by Kmer as: 
F = f1, f2, f3, …, fL, where L is the positive/negative dataset 
length. The Fi is a nucleotide of A, C, G, and T. Therefore, 
mono-, di-, tri-, and tetra–nucleotides were encoded and 
combined to form a 340 (41 + 42 + 43 + 44) dimensional fea-
ture vector. The KSNC scheme encodes the DNA nucleobase 
information of the curated samples using the frequency wise 
pair similarity search (Charoenkwan et al. 2013; Zhou et al. 
2016). A space of nucleobase frequency pairs is encoded 
and normalized as

where N(nfi) is the sum of nfi inside DNA samples with w 
length of sample and S is the space between two nucleo-
tides. The KSNC generates a 4 × 4 × (Smax + 1) dimensional 

(1)Frequencypair =
N
(

nfi
)

w − S − 1

vector for a sequence, where Smax was equal to 3. The MBE 
scheme exactly encodes the nucleotide at each position as 
a binary vector, where the A, G, T, and C are encoded as 
(1,0,0,0), (0,0,1,0), (0,1,0,0), and (0,0,0,1), respectively. The 
MBE encodes the sequence with length of w, a 164-dimen-
sional vector was generated. The DPE scheme encodes 
16 potential di-nucleotide as 0 or 1 as 4-dimensional vec-
tor (Manavalan et al. 2019a). For example, AA, AC, AT, 
and GG were coded to (0,0,0,0), (1,1,1,1), (0,0,0,1), and 
(0,0,1,0), respectively. Using the DPE, a DNA sample is 
transformed to a 160-dimension feature. The EIIP scheme 
expresses the electron–ion energies beside with the curated 
sequences, which is extensively used in bioinformat-
ics research (Basith et al. 2019; Jia et al. 2018). The EIIP 
indexes of {A, C, G, T} were set to {0.1260, 0.1340, 0.0806, 
0.1335} that generates a w-dimensional feature vector for a 
sequence.

Machine learning algorithms

This study utilized an ensemble method named RF model to 
develop i6mA-Fuse predictor (Liaw and Wiener 2002; Schad-
uangrat et al. 2019; Shoombuatong et al. 2019; Su et al. 2019; 
Win et al. 2017). Typically, when training data of size T with Q 
features is given, RF builds Q subsets of the data by the boot-
strap sampling, and then randomly assigns Q features to each 
node to optimize the trees based on the by Gini impurity. We 
used ‘randomForest’ implemented in R (https​://cran.r-proje​ct) 
with a default cut-off tree number of 1000 to evaluate the opti-
mum performance. This package has been successfully applied 
to many protein and peptide prediction problems (Hasan et al. 
2019b; Lv et al. 2019b; Manavalan et al. 2018b; Zhou et al. 
2016). In order to prove the effectiveness of the proposed 
methods, we compared our RF predictor with the well-known 
five ML algorithms, i.e. SVM, Adaboost (AB), Naïve Bayes 
(NB), artificial neural network (ANN), k-nearest neighbor 
(KNN). In this study, the ANN and NB models (Frank et al. 
2004) were implemented from the WEKA software, while the 
KNN model was developed by using an in-house developed 
PERL language. For the SVM model, we used the SVMlight 
package with default parameters (Hasan et al. 2019c; Khatun 
et al. 2019b).

Fusion model

To improve the prediction performance, the RF probability 
scores estimated by the Kmer, KSNC, MBE, DPE, and EIIP 
encoding schemes were linearly combined using the follow-
ing formula:

(2)

Combined = w
1
∗ Kmer + w

2
∗ KSNC + w

3
∗ MBE

+ w
4
∗ DBE + w

5
∗ EIIP

https://kurata14.bio.kyutech.ac.jp/i6mA-Fuse/help.php
https://kurata14.bio.kyutech.ac.jp/i6mA-Fuse/help.php
https://cran.r-project
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where w1, w2, w3, w4, w4, and w5 are the weight values exhib-
iting the contribution of each encoding, where the summa-
tion of w1, w2, w3, w4, w4, and w5 is 1. Herein, the linear 
fusion models of the five RF scores estimated by using the 
five encoding schemes are referred as Combined model. To 
enhance the predictive performance of the proposed model, 
each weight coefficient was adjusted in the range of 0–1 with 
an interval of 0.05 using a grid-search strategy.

Hybrid model

We investigated the effect of the hybrid feature (H) on 6 mA 
site prediction. The five encoding feature vectors (F) of Kmer, 
KSNC, MBE, DPE, and EIIP were combined as follows:

where H is the sequential combination of five different fea-
ture vectors with 1406 dimensions.

Meta‑predictor

We generated a meta-classifier to check its potential in 6 mA 
site prediction. In brief, the probability scores of 30 prediction 
models (6 encodings × 5 ML classifier) were considered as a 
new feature vector as follows:

where Pmet is the new feature vector, P(M(s), E(j)) the 
expected probability by each ML of M(s) with encoding 
scheme E(j), i the index of the ML, j the index of the encod-
ing scheme, s the total of ML classifiers, and t the total of 
encodings.

Performance assessment metrics

To assess the performances of i6mA-Fuse, we used four 
standard measurements consisting of accuracy (Ac), sen-
sitivity (Sn), specificity (Sp), and the Matthews correlation 
coefficient (MCC) (Basith et al. 2020; Ding et al. 2016; Yang 
et al. 2019b):

(3)H = (F(Kmer),F(KSNC),F(MBE),F(DPE),F(EIIP))

(4)
Pmet = (P(M(1), E(1)),…P(M(i), E(j)),… ,P(M(s),E(t)))

(5)Ac =
TP + TN

(TP + TN + FP + FN)

(6)Sn =
TP

(TP + FN)

(7)Sp =
TN

(TN + FP)

where TP and TN describe the number of positive samples 
correctly predicted and the number of negative samples 
correctly identified, respectively. Meanwhile, FN and FP 
indicate the number of positive samples falsely identified as 
negative ones and the number of negative samples falsely 
identified as positive ones, respectively. Furthermore, in 
order to assess the prediction performance of algorithms 
using threshold-independent parameters, AUC values were 
calculated by using the ROC curve.

Results and discussion

Nucleotide preference of F. vesca and R. chinensis

The position-specific preferences of nucleotide compo-
sitions were analyzed by the two-sample logo software 
(Vacic et al. 2006) as depicted in Fig. 2. Figure 2a, b 
display the nucleotide preferences on the DNA sequences 
having a length of 41 base pairs and the A base at the 
center for F. vesca and R. chinensis, respectively. We 
examined the DNA preferences of the sequences adja-
cent the A bases of F. vesca and R. chinensis, while the 
enriched nucleotides indicate a statistical significance at 
a level of p < 0.05 (two-sample t-test). In case of F. vesca. 
Figure 2a shows that the A base is enriched at positions 
12, 13, 15, 17–20, 25, 28, 29, 32, and 33, while the G 
base is more enriched at positions 13, 20, 22, 23, 26, and 
29 than other nucleotides. The T base was significantly 
depleted at position 13, 17–20, 23, 25, 26, 28, 29, and 
38. In case of R. chinensis, the G base was enriched at 
positions 1, 3, 7–11, 13,14, 16, 22–24, 26, 29, 32, 34, 
37, and 38, while the C base was more enriched at posi-
tions 2, 5–8, 10, 11, 14, 15, 19, 24, 27, 30, 35, 36, and 
38–40 than other nucleotides. As seen in Fig. 2b, the T 
base was significantly depleted at position 1–4, 9–20, 22, 
23, 25, 26, 28, 29, and 32–39. Enrichment and depletion 
of nucleotides at a specific position might be significant 
information for discriminating positives from and nega-
tives on both the F. vesca and R. chinensis samples. Thus, 
in the present study, the mentioned significant position-
specific preferences of nucleotide compositions are used 
as input features to develop the i6mA-Fuse.

Performance comparison by cross‑validation test

We carried out a series of comparative simulations using 
RF models with the five feature vectors of Kmer, KSNC, 
MBE, DBE, and EIIP encodings, and evaluated their 

(8)MCC =
TP × TN − FP × FN

√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
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performances on the training dataset by tenfold cross-val-
idation. The cross-validation results are listed in Table 1 
and Fig. 3. The previous studies suggested several ways to 
integrate multiple prediction models for improving the per-
formances, including meta-predictor (Boopathi et al. 2019; 
Manavalan et al. 2019b, c, d), ensemble approach, and lin-
ear regression(Hasan et al. 2019a, d; Khatun et al. 2019a). 
Herein, the i6mA-Fuse linearly combined the five probabil-
ity scores evaluated by the five, single encoding-employing 
RF models.

For F. vesca, MBE encoding achieved the highest pre-
diction results with Ac = 0.925, Sn = 0.891, Sp = 0.958, 
MCC = 0.971, and AUC = 0.858. Meanwhile, the second 
highest prediction result was obtained by EIIP encod-
ing, which gave Ac = 0.915, Sn = 0.879, Sp = 0.950, 
MCC = 0.839, and AUC = 0.963. These two encoding 
schemes yielded Ac values of 0.915–0.925, which were 
11.6–24.6% higher than Ac values of the other three encod-
ings. To construct the i6mA-Fuse, the optimal weight coef-
ficients of Kmer, KSNC, MBE, DBE, and EIIP were 0.00, 
0.00, 0.75, 0.00, and 0.25. While the three encodings of 

Fig. 2   Nucleotide preferences 
of the surrounding positive 
samples compared to nega-
tive samples. a F. vesca. b R. 
chinensis. The level of Y-axis is 
dissimilar due to the differ-
ent datasets. Only nucleotides 
that are significantly enriched 
or depleted (t-test, P < 0.05) 
nearby the centered positive and 
negative samples are shown

Table 1   Cross-validation results 
of the proposed predictors and 
other five encodings

a The i6mA-Fuse is constructed by the linear combination of the probability scores derived from RF models 
in conjunction with Kmer, KSNC, MBE, DBE, and EIIP encodings and their weight coefficients (F. vesca 
and R. chinensis) are (0.00 and 0.15), (0.00, 0.00), (0.75, 0.65), (0.00, 0.00) and (0.25, 0.20), respectively
b P-value was calculated with the AUC values and two-sample t-test

Genome Methoda MCC Ac Sn Sp AUC​ bP-value

F. vesca Kmer 0.529 0.703 0.542 0.864 0.846  < 0.001
KSNC 0.398 0.674 0.492 0.855 0.804  < 0.001
MBE 0.858 0.925 0.891 0.958 0.971 0.293
DBE 0.648 0.804 0.704 0.904 0.926  < 0.001
EIIP 0.839 0.915 0.879 0.950 0.963 0.068
i6mA-Fuse 0.873 0.934 0.908 0.957 0.981 –

R. chinensis Kmer 0.559 0.734 0.548 0.921 0.877  < 0.001
KSNC 0.477 0.721 0.528 0.912 0.844  < 0.001
MBE 0.839 0.912 0.872 0.952 0.956 0.244
DBE 0.608 0.793 0.684 0.902 0.902  < 0.001
EIIP 0.816 0.900 0.866 0.933 0.945 0.028
ai6mA-Fuse 0.851 0.916 0.881 0.950 0.968 –
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Kmer, KSNC, and DBE did not contribute to any prediction 
performance, the MBE and EIIP contributed to 75% and 
25% of the total prediction. The ROC curves of the i6mA-
Fuse and the single encoding-employing models, evaluated 
by10-fold cross-validation, are presented in Fig. 3a. The 
i6mA-Fuse yielded AUC = 0.981, MCC = 0.873, Ac = 0.934, 
Sn = 0.908, and Sp = 0.957, surpassing all the single-
employing models (Table 1). According to a P-value of 0.05, 
the i6mA-Fuse significantly outperformed the three models 
employing the single encoding of Kmer, KSNC, and DBE.

For R. chinensis, MBE achieved the best performance 
with an AUC value of 0.956 and Ac of 0.912 for all the 
single encoding-employing models. Meanwhile, the sec-
ond highest prediction with an AUC of 0.945 and Ac of 
0.900 was obtained by using EIIP encoding. To construct 
the i6mA-Fuse, we combined the RF scores with optimal 
weight coefficients of Kmer, KSNC, MBE, DBE, and EIIP 
of 0.15, 0.00, 0.65, 0.00, and 0.20, respectively, indicating 
that Kmer, MBE, and EIIP contribute to 15%, 65%, and 20% 
of the total prediction, respectively. The i6mA-Fuse yielded 
a peak AUC value of 0.968, while indicating MCC = 0.851, 
Ac = 0.916, Sn = 0.881, and Sp = 0.950 (Table 1). The i6mA-
Fuse significantly outperformed the four models employ-
ing the single encoding of Kmer, KSNC, DBE, and EIIP 
(P-value of 0.05 by two-sample t-test).

Performance comparison among different ML 
algorithms by cross‑validation test

To validate the effectiveness of the RF classifier in the 
i6mA-Fuse, we compared its performance with the five ML 
classifiers of SVM, AB, NB, ANN, and KNN on the train-
ing dataset. To make a fair comparison, we implemented the 

five ML classifiers in the same manners as the RF classifier. 
Figure S1 shows that the RF model provided better results 
than the other ML classifiers, while the prediction results 
of the SVM model were comparable to RF model in both 
two genomes. In F. vesca, the i6mA-Fuse achieved ~ 2–6% 
higher AUCs than any other ML-based combined models 
(Figure S1A). Meanwhile, the AUC values of the i6mA-
Fuse were ~ 3–6% higher than those of the other combined 
models in R. chinensis (Figure S1B), thus demonstrating the 
superiority of RF.

Performance comparison of i6mA‑Fuse with hybrid 
model and meta‑predictor

We compared the linear regression model, employed by the 
i6mA-Fuse, with the two different models namely a hybrid 
model and meta-predictor. First, we concatenated the five 
feature encoding vectors of Kmer, KSNC, MBE, DPE, and 
EIIP and obtained 1406-dimensional feature vector. We gen-
erated the hybrid model for both species (F. vesca and R. 
chinensis), inputted these features to six different classifiers 
(RF, SVM, AB, NB, ANN, and KNN), and evaluated their 
performances by tenfold CV on the training datasets. In case 
of F. vesca, the hybrid model of RF, SVM, AB, NB, ANN, 
and KNN achieved AUC values of 0.978, 0.963, 0.957, 
0.944, 0.919 and 0.933, respectively (Figure S2). Similarly, 
for R. chinensis, the hybrid model of RF, SVM, AB, NB, 
ANN, and KNN algorithms achieved AUCs of 0.958, 0.962, 
0.927, 0.942, 0.918 and 0.922, respectively (Figure S2). Fur-
thermore, we constructed the meta-predictor as described 
elsewhere (Manavalan et al. 2018a, 2019d; Wei et al. 2019). 
In F. vesca the i6mA-Fuse achieved higher AUCs than the 
hybrid model and meta-predictor (Figures S2 & S3). In R. 

Fig. 3   ROC curves of i6mA-Fuse and the single encoding-employing models as evaluated by10-fold cross-validation. a F. vesca. b R. chinensis 
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chinensis, the i6mA-Fuse showed ~ 1.0–8.0% higher AUCs 
than the hybrid model and meta-predictor (Figures S2 & 3).

Performance of i6mA‑Fuse by independent test

The i6mA-Fuse was evaluated by independent tests for two 
genomes. We compared the prediction performance of the 
i6mA-Fuse with that of the five, single encoding-employing 
models (Kmer, KSNC, MBE, DBE, and EIIP) by using an 
independent dataset of F. vesca. MBE encoding gave higher 
performance than any other single–encoding employing 
models for two genomes, as shown in Fig. 4a, b. Moreo-
ver, the ROC curves displayed that the i6mA-Fuse achieved 
better than all the single encoding-employing meth-
ods. The i6mA-Fuse achieved outstanding performances 
(MCC = 0.858, Ac = 0.929, Sn = 0.915, Sp = 0.943, and 
AUC = 0.978) and (MCC = 0.869, Ac = 0.937, Sn = 0.928, 
Sp = 0.948, and AUC = 0.982) for R. chinensis and F. vesca, 
respectively, on the independent sets (Table 2).

Validation of i6mA‑Fuse with other species datasets

To further examine the generalization of i6mA-Fuse, the 
proposed i6mA-Fuse was applied to identify 6 mA sites in 
other species, i.e. rice and mouse genomes. We collected 
the rice genome dataset from SDM6A (Basith et al. 2019), 
which contains 221 positive and 221 negative samples, and 
the mouse genome dataset from iDNA6mA-PseKNC (Feng 
et al. 2019), where we randomly selected 200 positive and 
200 negative samples. The prediction performances of AUC, 

MCC, Sp, Sn, and Ac were shown in Table S1. The R. chin-
ensis- and F. vesca-specific i6mA-Fuse yielded AUC val-
ues of 0.870 and 0.928 for the rice genome, respectively. 
For the mouse genome, they provided AUC values of 0.748 
and 0.769, respectively. The i6mA-Fuse can be applicable 
to the rice genome, especially the F. vesca–specific i6mA-
Fuse (Table S1). It suggests that the sequences surrounding 
6 mA sites of Rosaceae genomes have common characteris-
tic patterns to rice genomes.

Conclusions

The accurate prediction of 6 mA sites is one of the chal-
lenging tasks in bioinformatics. Because the experimental 
approaches are time-consuming and costly, it is desirable 
to develop a computational model for rapidly and accu-
rately identifying 6 mA sites. Although several computa-
tional methods have been proposed in some species (Basith 
et al. 2019; Chen et al. 2019a; Feng et al. 2019; Lv et al. 
2019a; Yu and Dai 2019), none of them were developed to 
specifically identify 6 mA sites in the Rosaceae genomes. 
In this study, we developed the first species-specific pre-
dictor named i6mA-Fuse for identifying 6 mA sites of the 
Rosaceae genomes, especially in R. chinensis and F. vesca. 
We constructed the random forest (RF) models with the 
five encoding schemes of Kmer, KSNC, MBE, DPE, and 
EIIP, and then combined the predicted probability scores 
of the five models through a linear regression. The result-
ant species-specific i6mA-Fuse achieved remarkably high 

Fig. 4   ROC curves of i6mA-Fuse and the single encoding-employing models as evaluated by independent test. a F. vesca. b R. chinensis 
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performances with AUCs of 0.982 and 0.978 and with 
MCCs of 0.869 and 0.858 on the independent datasets of 
Rosa chinensis and Fragaria vesca, respectively. In the F. 
vesca-specific i6mA-Fuse, the MBE and EIIP contributed 
to 75% and 25% of the total prediction; in the R. chinensis-
specific i6mA-Fuse, Kmer, MBE, and EIIP contribute to 
15%, 65%, and 20% of the total prediction. Interestingly, 
the i6mA-Fuse can be applicable to rice genome. To show 
the superiority of the linear regression, we compared it 
with the two combination methods of the hybrid model 
and meta-classifier. To further improve the prediction 
performance, we may use recently proposed integration 
methods (Chen et al. 2019b; Li et al. 2019; Zhang et al. 
2019) and various modes of Chou’s pseudo information 
(Chen et al. 2016; Chou 2011; Liu et al. 2015).To assist 
high-throughput identification for DNA 6 mA sites, the 
i6mA-Fuse is publicly accessible at https​://kurat​a14.bio.
kyute​ch.ac.jp/i6mA-Fuse/.
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