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Abstract
Key message  A plant-based multiepitopic protein (LTBentero) containing epitopes from ETEC, S. typhimurium, 
and V. parahaemolyticus was produced in plants cells and triggered systemic and intestinal humoral responses in 
immunized mice.
Abstract  Around 200 million people suffer gastroenteritis daily and more than 2 million people die annually in developing 
countries due to such pathologies. Vaccination is an alternative to control this global health issue, however new low-cost vac-
cines are needed to ensure proper vaccine coverage. In this context, plants are attractive hosts for the synthesis and delivery 
of subunit vaccines. Therefore, in this study a plant-made multiepitopic protein named LTBentero containing epitopes from 
antigens of enterotoxigenic E. coli, S. typhimurium, and V. parahaemolyticus was produced and found immunogenic in mice. 
The LTBentero protein was expressed in tobacco plants at up to 5.29 µg g−1 fresh leaf tissue and was deemed immunogenic 
when administered to BALB/c mice either orally or subcutaneously. The plant-made LTBentero antigen induced specific IgG 
(systemic) and IgA (mucosal) responses against LTB, ST, and LptD epitopes. In conclusion, multiepitopic LTBentero was 
functionally produced in plant cells, being capable to trigger systemic and intestinal humoral responses and thus it constitutes 
a promising oral immunogen candidate in the fight against enteric diseases.
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Introduction

Enteric diseases remain as a remarkable worldwide public 
health problem. Around 200 million people suffer gastroen-
teritis daily and more than 2 million people die annually due 
to such infections in developing countries, mainly infants 

(WHO 2010). Prominent pathogens causing enteric diseases 
include adenovirus; astro-virus; rotavirus; Campylobacteria; 
Shigella; Salmonella; E. coli; and Vibrios, particularly V. 
cholerae (Girard et al. 2006). Enteric pathogens are trans-
mitted as a consequence of inadequate sanitation in both 
water and food, conditions that will prevail in developing 
countries (WHO 2017). Enterotoxigenic E. coli (ETEC) is 
the most common bacterium-causing diarrhea (Walker et al. 
2007). Annually, ETEC affects around 400 million people 
and is responsible for 300,000–500,000 deaths (Zheng et al. 
2005). V. cholerae is responsible for 3–5 million of infec-
tions and about 100,000–130,000 deaths per year (WHO 
2010). Salmonella persists as a major public health threat 
related to the consumption of poultry in developed coun-
tries (Majowicz et al. 2010). The Center for Disease Control 
and Prevention (2008) estimates that Salmonella causes 1.4 
million of infections and about 600 deaths each year in the 
United States. In Asian countries such as Japan, V. para-
haemolyticus is associated with 30% of food-related poi-
sonings (Broberg et al. 2011) due to the high consumption 
of undercooked fish and shellfish (Datta et al. 2008); this 
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pathogen is also considered one of the biggest economic 
problems in aquaculture (Liu et al. 2011a, b).

Enteric diseases caused by bacteria are typically treated 
with antibiotics, however their inadequate use has gener-
ated resistant strains and thus prophylactic approaches are 
the ideal goal to reduce their impact (Gordon et al. 2008). 
Vaccination is a viable alternative to prevent enteric infec-
tions and thus decrease the associated morbidity and mor-
tality. To achieve this goal, developing low cost oral vac-
cines is critical in view to the budget limitations that often 
reduce vaccination coverage (Walker et al. 2007). In fact, 
oral immunization for enteric diseases is highly convenient 
since it leads to humoral responses in the gastrointestinal 
tract, which constitutes the site of entry of enteric pathogens; 
thus vaccines based in this approach are viable.

Plant-based vaccines constitute an alternative for oral 
immunization at low costs (Takeyama et al. 2015). The use 
of the plant cell for synthesis and delivery of functional 
antigens is a well-established technology; offering several 
advantages such as low cost, easy scalability, absence of 
human pathogens replication, and proper synthesis of 
complex heterologous proteins (Scotti and Rybicki 2013; 
Rosales-Mendoza et al. 2016). Thus far several antigens 
from bacterial pathogens, including toxin subunits, have 
been expressed at sufficient levels leading to promising vac-
cination models (Rosales-Mendoza et al. 2009; Koya et al. 
2005).

One of the challenges on vaccine development is the fact 
that there are infections caused by concomitant serotypes, 
strains or species (Lun et al. 2014; Wang et al. 2013), thus 
polyvalent vaccines are required (Peng et al. 2016). New 
computer and molecular technologies allow the generation 
of multiepitopic recombinant vaccines capable of trigger-
ing immunity against several pathogens using a single anti-
gen (Ruan et al. 2015). Another challenge in this field is 
the poor immunogenic activity that is often observed for 
subunit vaccines, thus requiring adjuvants to induce proper 
immune responses in terms of potency and type (Chauhan 
et al. 2017). Several proteins have been applied for this pur-
pose, including the B subunits of cholera toxin (CTB) or the 
heat labile enterotoxin (LTB) from ETEC, which are potent 
mucosal adjuvants (Adkins et al. 2012; Al-Barwani et al. 

2014). The immunogenic characteristics of LTB and CTB 
result in part from their ability to bind the GM1 receptor that 
facilitates the antigen reaching the submucosa, and favors 
uptake by dendritic cell as well as B and T cells effector 
functions (Yamamoto et al. 2001).

In this study, a plant-based immunogen against enteric 
diseases was developed, based on a chimeric protein 
(LTBentero) comprising LTB as adjuvant/carrier and 
epitopes from ETEC, S. typhimurium, and V. parahaemo-
lyticus. Tobacco plants carrying the ltbentero gene-coding 
gene were developed, and protein yields and the immuno-
genic activity in mice were determined.

Materials and methods

Design of multiepitopic genes and molecular 
cloning

The multiepitopic gene was designed based on epitopes from 
known antigenic determinants of the following enteric path-
ogens: ST (SNSSNYCCELCCNPACT​GCY​V) from ETEC, 
FliC (VQNRFNSAITNLGNT) from S. typhimurium and 
LptD (WENQAIGSTGSSPEY) from V. parahaemolyticus 
(Jacob et al. 1983, 1985; Newton et al. 1989; Bergman et al. 
2005; Kremer et al. 2011; Rosales-Mendoza et al. 2011; Zha 
et al. 2016; Table 1). In addition, the B subunit of the LT 
toxin produced by ETEC was included as an immunogenic 
carrier. To avoid undesired junctional epitopes and to pro-
vide appropriate folding/display for immune recognition, a 
proline-containing linker (GPGP) was incorporated between 
the LTB sequence and the target epitopes (Livingston et al. 
2002). The signal peptide sequence of the vegetative storage 
protein from Glycine max was incorporated at the N-termi-
nus of the fusion protein whereas an endoplasmic reticulum 
retention sequence (SEKDEL) was included at the C-ter-
minus. The gene sequence was flanked with the SacI and 
SmaI restriction sites to facilitate subcloning into the pBI121 
binary vector downstream of the CaMV 35S promoter 
(Fig. 1). The LTBentero coding gene was codon-optimized 
for plants and synthesized by GenScript® (Piscataway, NJ). 
Subcloning was performed under conventional procedures 

Table 1   Epitopes from enteric 
pathogens used in the present 
study

Pathogen Antigen Epitope References

V. parahaemolyticus LptD WENQAIGSTGSSPEY Zha et al. (2016)
S. typhimurium FliC VQNRFNSAITNLGNT Bergman 

et al. (2005), 
Kremer et al. 
(2011)

E. coli ETEC ST SNSSNYCCELCCNPACT​GCY​V Rosales-Men-
doza et al.  
(2011)
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to yield the construct named pBI121LTBentero. The recom-
binant plasmid obtained in E. coli Top 10 was identified by 
restriction analysis with the enzyme HindIII and then trans-
ferred into Agrobacterium tumefaciens (GV3101 strain) by 
electroporation. A positive A. tumefaciens clone was propa-
gated and used for tobacco transformation experiments.

Tobacco transformation

Transgenic tobacco plants (Nicotiana tabacum cv. Petite 
Havana SR1) were obtained following the method described 
by Horsch et al. (1985). Briefly, tobacco leaf sections (5 mm 
× 5 mm) from in vitro-obtained plantlets were inoculated 
with an overnight-grown culture of recombinant Agrobac-
terium (OD600nm = 0.5), co-cultured onto RMOP medium 
(MS basal medium supplemented with 3% sucrose, 1 mg 
L−1 benzyladenine, 0.1 mg L−1 naphthaleneacetic acid, 1 
mg L−1 thiamine, and solidified with 3% agar; pH 5.8) at 28 
°C for 48 h in darkness. Thereafter, explants were cultured 
under selective pressure until shoot development (RMOP 
medium supplemented with 250 mg L−1 cefotaxime and 100 
mg L−1 kanamycin). Shoots were subsequently rooted in MS 
medium lacking plant growth regulators. Regenerated plants 
were transferred to soil and grown in a greenhouse under a 
16-h photoperiod with a light intensity of 100 µmol m−2 s−1 
and 30% of relative humidity. Leaf tissues were collected 
from mature plants and freeze-dried in a LABCONCO sys-
tem (FreeZone 6 L) at − 50 °C (collector temperature) for 48 
h. Dry material was subsequently milled and stored at room 
temperature until further use.

Transgene detection by PCR

Detection of ltbentero transgene was performed by PCR 
analysis using the following primers: forward 5′CGC​ACA​

ATC​CCA​CTA​TCC​TTCGC 3′, targeting the 35S promoter; 
and reverse 5′AGG​GTT​TCG​CTC​ATG​TGT​TGAGC 3′, tar-
geting the terminator NOS. Total DNA preparations were 
obtained from putative transformants and wild-type (WT) 
plants according to the method described by Dellaporta 
et al. (1983). 25 µL-reaction PCR mixtures contained the 
following components: 100 ng of test DNA, 1 × PCR buffer, 
1.5 mM magnesium chloride, 2.5 U Taq DNA polymerase 
(Vivantis), 1 mM dNTPs, and 1 ∝ M of each forward and 
reverse specific primers, which are designed to yield a 769 
bp amplicon. Temperature cycling conditions were: 94 °C 
for 5 min (initial denaturation); 35 cycles comprising the 
following steps: 94 °C for 30 s (denaturation), 56 °C for 
60 s (annealing), and 72 °C for 60 s (elongation); and a 
final extension at 72 °C for 5 min. Thermal cycling was per-
formed in a MultiGeneTM Mini Personal Thermal Cycler 
(Labnet). The presence of ltbentero amplicons was deter-
mined by electrophoresis in 1% agarose gels.

Detection of plant‑made LTBentero

For detection and quantification of the LTBentero recom-
binant protein, hyperimmune sera (polyclonal antibodies) 
were generated in mice using pure recombinant LTB and 
synthetic ST (GenScript®, Piscataway, NJ), following a pre-
viously reported protocol (Ríos-Huerta et al. 2017). Briefly, 
10-week old male BALB/c mice were immunized on day 1 
in the rear footpad with 10 µg of the ST or LTB emulsified 
with 10 µL of complete Freund’s adjuvant. The subsequent 
doses were intraperitoneally administered on days 8, 15, 
22, 29, and 36; consisting of 50 µg of ST or LTB emulsi-
fied in one volume of incomplete Freund’s adjuvant. Mice 
were bled at day 43 to measure antibody titers. The ani-
mals were subsequently sacrificed to collect sera. Animal 
handling was conducted according to the Guide for Care 

Fig. 1   Map of the expression vector used to produce the LTBentero 
multiepitopic protein in plants. The LTBentero gene comprises the 
signal peptide from the Glycine max vegetative storage protein, the 
full-length mature sequence of the E. coli heat-labile enterotoxin 
B subunit, a four aminoacid linker, followed by the epitopes from 

antigens ST, FliC and LptD and the SEKDEL endoplasmic reticu-
lum (E.R) retention signal. The LTBentero-coding gene was cloned 
into the pBI121 vector to drive its expression under the constitutive 
35SCaMV promoter. The vector possesses the nptII as gene marker 
that confers kanamycin resistance in the transformed plants
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and Use of Laboratory Animals of the National Institute of 
Health (USA) and protocols approved by the Committee on 
Research Ethics of the Faculty of Chemistry/University of 
San Luis Potosi (Permit Number: CEID-2013-004).

To detect the presence and integrity of the recombinant 
protein produced by the transformed plants, Dot and Western 
blot analyses were performed. Fresh leaf tissue from trans-
genic or WT plants (100 mg) were milled in the presence 
of 300 µL of protein extraction buffer (750 mM Tris–HCl 
pH 8.0 15% Sucrose, 1 mM proteinase inhibitor PMSF). 
For Western blot analysis, soluble proteins were mixed with 
1 × reducing loading buffer (50 mM Tris–HCl pH 6.8, 100 
mM DTT, 2% SDS 0.1% bromophenol blue, 10% glycerol). 
The samples were denatured by boiling for 5 min at 95 °C. 
Protein extracts were resolved by SDS-PAGE using 4–12% 
acrylamide gels under denaturing conditions. The gel was 
blotted onto a BioTrace PVDF membrane (Pall Corpora-
tion, NY) using a TV100-EBK Electroblotter (AlphaMetrix 
Biotech, GER) for 1 h at 150 V in a methanol-based transfer 
buffer. After blocking (incubation in 5% fat-free dry milk 
for 5 h at 25 °C), blots were incubated overnight at 4 °C 
with the anti-LTB serum (1:500). Pure recombinant LTB 
was included in the analysis as positive control. Immunore-
activity was detected by labeling with a horseradish peroxi-
dase-conjugated goat anti-mouse antibody (1:2000; Sigma, 
St. Louis, MO) and a subsequent 2 h-incubation at room 
temperature with the SuperSignal West Dura solution fol-
lowing the instructions from the manufacturer (Thermo Sci-
entific). For Dot blot analysis protein samples were directly 
applied onto a BioTrace PVDF membrane (Pall Corporation, 
NY) and synthetic ST was used as a positive control. After 
blocking (incubation in 5% fat-free dry milk for 5 h at 25 
°C), blots were incubated overnight at 4 °C with the anti-ST 
serum (1:200). Inmunoreactivity was detected as mentioned 
above in the Western blot Analysis.

ELISA was performed to quantify LTBentero levels in 
plant leaf tissues of the six different lines (P2, P4, P5, P6, 
P8 and P9), using tissues from a WT plant as a negative 
control. Protein extracts were obtained as described above. 
Extracts were clarified by centrifugation (16,000×g at 4 
°C for 15 min), and the supernatants were diluted 1:16 
in carbonate buffer (15 mM Na2CO3, 35 mM NaHCO3) 
and used to coat ELISA plates (4 °C, overnight incuba-
tion). Three washes with PBST were conducted between 
each incubation step. The plates were blocked with 5% 
fat-free dry milk dissolved in PBS for 2 h at room tempera-
ture. Thereafter, anti-LTB serum produced as mentioned 
above (diluted 1:500) was used for primary labeling (4 
°C, overnight incubation). Secondary labeling was per-
formed with a goat anti-mouse horseradish peroxidase-
conjugated antibody diluted 1:2000 (Sigma, St. Louis, 
MO; incubation at 25 °C for 2 h). The final step comprised 

a 30 min-incubation with the substrate solution contain-
ing 0.3 mg mL−1 2,2-Azino-bis (3-ethylbenzothiazoline-
6-sulfonic acid) (ABTS; Sigma, St. Louis, MO) and 0.1 
mM H2O2. OD values were recorded at 405 nm using 
an iMark™ microplate reader (Bio-Rad, Hercules, CA). 
Pure recombinant LTB was used to construct a calibration 
curve to quantify LTBentero levels in tobacco leaf tissues 
(expressed as µg per gram of fresh leaf tissue, µg g−1 FW). 
The background signal from the negative control (extract 
from WT plant) was subtracted from the OD values from 
the test extracts.

Immunogenicity assessment

Immunogenicity of the LTBentero chimeric protein was 
evaluated in 12-week old female BALB/c mice. Test mice 
groups (n = 4) were subjected to oral (p.o.) or subcutane-
ous (s.c.) immunization with tobacco leaf material from 
transgenic line P2 (LTBentero group) or the WT line (WT 
group). For subcutaneous immunization doses were pre-
pared by milling 10 mg of fresh leaf tobacco tissues in 300 
µL of PBS, and subsequently clarified by centrifugation; 
injected supernatants contained ≈ 70 ng of LTBentero. For 
oral immunizations 50 mg of tobacco tissues (contain-
ing ≈ 300 ng of LTBentero) were milled in the presence 
of 300 µL of PBS and the crude extract was administered 
intragastrically. The immunization scheme comprised 4 
weekly immunizations (on days 1, 8, 15, and 22). At day 
29, sera and feces samples were obtained and stored at 
− 80 °C until antibody content analysis.

The levels of anti-LTBentero antibodies in serum and 
feces samples were measured by ELISA. Plates were 
coated overnight at 4 °C with LTB (250 ng per well), or 
ST, LptD, and FliC synthetic peptides (1 µg per well) and 
subsequently blocked with 5% fat free dry milk for 2 h at 
25 °C. Plates were incubated overnight at 4 °C with serial 
dilutions of sera prepared in PBS (1:20 to 1:160 dilutions 
for IgG determination and 1:20 for IgG subclasses). For 
feces analysis, samples were resuspended in PBST sup-
plemented with 1 mM PMSF and 5% non-fat milk; and 
clarified by centrifugation at 16,000×g at 4 °C for 15 min 
and loaded directly into the wells. Secondary labeling was 
carried out with mouse horseradish peroxidase-conjugated 
anti-mouse antibodies against IgG for sera or IgA for feces 
(1:2000 dilution, Sigma) at 25 °C for 1 h. Immunodetec-
tion was revealed by incubation with the substrate (ABTS) 
plus 0.1 mM of H2O2 for 60 min. OD values at 405 nm 
were measured in a microplate reader. Titers at each time 
point for each experimental group were calculated as the 
reciprocal of the highest dilution of sera having a mean 
OD value above the OD value from the WT group plus 
2 × SD.
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Results

Design of multiepitopic gene and vector 
construction

The first aim of this work was to identify epitopes reported 
in previous works with high immunoprotective efficacy 
against the target enteric pathogens. Among them, LTB and 
ST antigens from ETEC, FliC from S. typhimurium, and 
LptD from V. parahaemolyticus have been reported as effec-
tive immunoprotective antigens. Based on the literature, the 
most relevant epitopes for each antigen were chosen to be 
included in the multiepitopic antigen (Table 1). The obtained 
synthetic gene (named ltbentero) was successfully cloned 
into the pBI121 vector (Fig. 1) as evidenced by the restric-
tion profiles (data not shown).

Presence of ltbentero transgene in tobacco lines

Several transgenic lines were obtained from the kanamy-
cin resistance screening after performing A. tumefaciens-
mediated transformation. Tobacco transgenic plants were 

regenerated upon a period of 2 months after co-cultivation 
and twelve independent lines designated as P1–P12 were 
selected from individual explants for their characterization. 
Once the plants were acclimatized in soil under greenhouse 
conditions, the transgenic lines showed a normal and healthy 
development pattern (Fig. 2). DNA samples from each trans-
genic line were analyzed by PCR observing the presence 
of the ltbentero transgene (769 bp amplicon) in eight of 
twelve lines (Fig. 3a), whereas the WT sample showed no 
amplification.

Tobacco plants express the LTBentero recombinant 
protein

Dot blot analysis with anti-ST serum revealed positive reac-
tivity in seven of the eight lines, whereas WT tobacco plant 
showed no signal (Fig. 3b). Anti-LTB Western blot analysis 
allowed the detection of a 28 kDa protein in six out of seven 
lines; whereas this protein band was not observed in the 
WT tobacco line (Fig. 3c). ELISA using anti-LTB serum for 
labeling was run to determine the accumulation levels of the 
LTBentero antigen in transgenic tobacco lines, revealing that 
six lines accumulated LTBentero at detectable levels ranging 

Fig. 2   Aspect of the tobacco 
cultures during the plant 
transformation process with 
the LTBentero gene. a Calli. b 
Regenerated shoots at 6 weeks 
post-infection. c Shoots in root-
ing medium. d Growing plants 
under greenhouse conditions
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from 0.07 to 5.29 µg g−1 fresh leaves weight, with the line 
P2 having the highest expression levels (Fig. 4).

Immunogenicity assay of plant‑made LTBentero

Immunogenicity of the plant-made LTBentero protein was 
assessed in BALB/c mice, which were either subcutaneously 
or orally immunized with leaf tissue extracts from transgenic 
tobacco line P2. Significant anti-LTB (s.c. mean titer = 160 
and p.o. mean titer = 80) and anti-ST (mean titer = 80) IgG 
levels were observed in mice sera after the second immuni-
zation in both subcutaneously and orally immunized mice 
(Fig. 5). The measurement of anti-LTB (mean titer = 8) and 
anti-ST (mean titer = 4) IgA levels in feces of subcutane-
ously immunized mice showed a significant response after 
the third immunization with respect to the control group 
(Fig. 6); whereas significant anti-LTB (mean titer = 4) and 
anti-ST (mean titer = 8) IgA levels were detected in feces of 
orally immunized after the fourth and third immunization, 

respectively (Fig. 6). In addition, significant anti-LptD 
(mean titer = 20) IgG levels were also observed in sera from 
subcutaneously and orally immunized mice after the third 
immunization (Fig.  5). Similarly, significant anti-LptD 
(mean titer = 8) IgA levels were detected in feces after the 
third oral immunization (Fig. 7). In contrast, no significant 
anti-FliC IgG systemic responses were detected in nei-
ther orally nor subcutaneously immunized mice (data not 
shown). However, significant anti-FliC (mean titer = 2) IgA 
levels were observed after the fourth oral immunization in 
the feces (Fig. 7).

Discussion

In the present study the design and expression in plants 
of a multiepitopic protein targeting several enteric patho-
gens was achieved as an approach to generate an attractive 
polyvalent oral vaccine candidate. This plant-based multi-
epitopic protein was designed based on immunoprotective 
epitopes from the following enteric pathogens: ETEC, V. 
parahaemolyticus, and S. typhimurium (Jacob et al. 1983, 
1985; Newton et al. 1989; Rosales-Mendoza et al. 2011; 
Zha et al. 2016; Bergman et al. 2005; Kremer et al. 2011). 
LTB was chosen as the carrier of the multiepitopic arrange-
ment for two reasons: (1) its immune-enhancing capacity 
in mucous membranes (Yamamoto et al. 2001), and (2) it 
is known to serve as immunmoprotective antigen against 
LT and CT toxins from ETEC and V. cholerae, respectively 
(Nashar et al. 2001). Although ST causes severe diarrhea, it 
is a small peptide that lacks of immunogenic activity itself. 
However, ST can become immunogenic when is coupled 
to other antigens, such as LTB (Girard et al. 2006; Klip-
stein et al. 1986; Pereira et al. 2001). In addition, an epitope 
from the S. typhimurium fliC flagellin was selected; this 
sequence is highly conserved in the genus Salmonella (Berg-
man et al. 2005). An epitope from the V. parahaemolyticus 
outer membrane protein (OMP) LptD was also incorporated; 

Fig. 3   LTBentero transgene and protein detection. a PCR analysis 
was conducted using genomic DNA extracted from putative trans-
genic or WT tobacco plants and primers landing at the 35S pro-
moter and the NOS terminator. b Dot Blot analysis using leaf protein 

extracts from transgenic or WT plants using a mouse anti-ST serum 
to confirm LTBentero production. c Western blot analysis using a 
mouse anti-LTB serum to assess the presence of the LTBentero pro-
tein
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this protein is part of a large complex that is responsible for 
producing Lipopolysaccharide (LPS) in the cell membrane 
of these bacteria. On this regard, Zha et al. (2016) reported 
antibodies able to block LptD by binding to different sites 
and decreased LPS production with a subsequent bacterial 
clearance.

The production of the functional LTBentero multiepitopic 
protein in plants was explored in an effort to develop a low 
cost oral vaccine. The modified tobacco plants carrying the 
ltbentero gene were obtained and confirmed by PCR. Dot 

blot analysis allowed the detection of the protein whereas 
its expected molecular weight (28 kDa) was confirmed by 
Western blot analysis. According to ELISA data, LTBentero 
expression levels ranged 0.029–5.29 µg g−1 FW, which are 
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in the range (24.5–2 µg g−1 ) of the observed yields for LTB 
or CTB chimeras produced in tobacco, lettuce, tomato, and 
Arabidopsis thaliana (Ríos-Huerta et al. 2017; Rosales-
Mendoza et al. 2011; Martínez-González et al. 2011; Rigano 
et al. 2004; Walmsley et al. 2003). The difference in antigen 
yields among the transformed lines may be due to differen-
tial transgene insertion sites into the tobacco genome (Kim 
et al. 2007). Although there is an apparent lack of correla-
tion between the expression levels determined by ELSIA 
and the band intensity observed in the Western blot analy-
sis, it should be considered that ELISA is a more accurate 
technique in which several serial dilutions were analyzed, 
whereas in western blot a single dilution containing a fixed 
amount of total protein was analyzed and thus the detected 
signal could be masked by saturation effects (Bass et al. 
2016). Therefore, the selection of the most productive line 
was based on ELISA data.

Interestingly no phenotypic alterations were observed in 
the tobacco lines, including those with the highest expres-
sion levels. This observation is notable since other bacterial 
toxin subunits have exerted toxicity in some plant species. 
For instance, Mason et al. (1998) reported that high levels 
of LTB in potato plants led to a severely stunted phenotype 
with slow shoot growth and poor tuber yield.

Immunogenicity evaluated by ELISA revealed that the 
plant-made LTBentero protein induced specific IgG (sera) 
and IgA (feces) against LTB, ST, and LptD epitopes in sub-
cutaneously and orally immunized mice. Interestingly, high 
levels of systemic IgG antibodies were observed in both sub-
cutaneously and orally immunized mice after the second 
immunization against LTB or ST and after third immuniza-
tion for LptD. Regarding IgA mucosal production, high lev-
els of antibodies against LTB and ST were detected after the 
third subcutaneous and oral immunization (except for anti-
LTB in orally immunized mice). The immunogenic proper-
ties observed for the LTBentero chimeric protein suggests 
that it was correctly assembled and functionally produced 
in the plant cell. LTB is recognized as a mucosal adjuvant 
related with its efficient uptake by epithelial and dendritic 
cells, which favors the induction of adaptive immune 
responses in the submucosa (Lazorova et al. 1993). Moreo-
ver, the adjuvant activity of LTB fused with other peptides 
in plant-based vaccines has been demonstrated elsewhere 
(Rosales-Mendoza et al. 2009; Hongli et al. 2013). In line 
with our findings, significant specific IgG levels in serum 
and IgA levels in the large intestine were detected in mice 
after oral immunization with maize and carrot-made LTB 
(Chikwamba et al. 2002; Rosales-Mendoza et al. 2008). Oral 
immunogenicity of LTB encapsulated in plant cells has been 
confirmed in humans (Tacket et al. 1998).

The ST antigen cannot be used directly as a vaccine com-
ponent due to its poor immunogenicity unless it is coupled 
to a carrier protein (Klipstein et al. 1986). Therefore, genetic 

fusions between ST and carrier proteins have been reported 
in an effort to successfully immunize against ST (Pereira 
et al. 2001). LTB fused with ST resulted in the induction 
of ST antibodies in test animals (Saarilahti et al. 1989; 
Clements 1990; Zheng et al. 2005; Zhang et al. 2010; Liu 
et al. 2011a, b; You et al. 2011). Interestingly, similar to our 
results, Deng et al. (2013) immunized mice (with 4 doses 
at 1-week intervals) with a ST peptide or a ST-LTB fusion 
protein using nanoparticles as carriers. The authors found 
a maximum production of specific IgG in serum and IgA 
in intestinal mucosa against both ST-LTB fusion protein 
and ST peptide at day 28. Interestingly, a tobacco plant-
made LTB:ST protein induced significant anti-LTB IgG 
(serum) and IgA (feces) levels in orally immunized mice 
after a third immunization at similar levels to those elic-
ited by the pure recombinant LTB (Rosales-Mendoza et al. 
2009, 2011). In agreement with all these reports, our data 
also shows that mice immunized with LTBentero induced 
humoral responses against both LTB and ST at the systemic 
and intestinal levels.

Interestingly, this constitutes the first report on the immu-
nogenicity of an LptD epitope encapsulated in plant cells. 
Li et al. (2014) reported LptD from V. parahaemolyticus as 
a highly immunogenic protein using an immunoproteomic 
approach. LptD is an integral OMP that along with other 6 
proteins (LptA, B, C, E, F and G) constitute a trans-mem-
brane complex responsible for transporting LPS (Freinkman 
et al. 2012; Xiang et al. 2014). LPS not only plays critical 
roles in protecting bacteria from harsh environments and in 
colonizing the host or evading attacks from the host immune 
system, but also forms a permeation barrier that prevents 
entering hydrophobic antibiotics to the microorganism, thus 
conferring antibiotic resistance (Ruiz et al. 2009; Li et al. 
2015). Therefore, LptD is an attractive target for the devel-
opment of vaccines and therapeutics. Moreover, Zha et al. 
(2016) showed that LptD is highly conserved and shared sur-
face epitopes among pathogenic Vibrio species with the abil-
ity to induce immunoprotection against Vibrio infection in 
mice. Remarkably, sera from LptD-immunized mice reduced 
bacterial growth and LPS levels and increased the bacte-
rial susceptibility to antibiotics. In contrast, in this study no 
significant IgG levels were found in serum against the FliC 
epitope. However, significant feces anti-FliC IgA levels were 
observed in mice subjected to four oral immunizations. It 
is proposed that the FliC is displayed in the context of the 
chimeric arrangement but optimizing the immunization pro-
tocol is required to increase the response against this target 
epitope. One alternative to be contemplated is combining 
the use of this plant-made chimeric antigen with boostings 
performed with a FliC antigen (e.g. a synthetic peptide). 
Salmonella expresses two types of flagellin (FljB and FliC) 
known as strong immunogens. FljB has been expressed 
in plants, being capable to induce humoral responses in 
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subcutaneously immunized mice (Bergeron-Sandoval et al. 
2011). The FliC protein flagellar subunit is an antigen capa-
ble to induce Th responses via macrophage-mediated pres-
entation, stimulating antibody production; and it has become 
a candidate for vaccine development because it possesses a 
broad protective activity against multiple salmonella spe-
cies (Cummings et al. 2006; Cookson and Beavan 1997; 
McSorley et al. 2000).

The positive results in terms of immunoreactivity and 
immunogenicity observed for the plant-made LTBentero 
merit further evaluations in challenge studies to assess its 
immunoprotective capacity against each of the target bacte-
rial pathogens. In parallel, future studies will be focused on 
optimizing the production of this antigen in edible crops that 
would allow for the straightforward formulation of oral vac-
cines, not requiring purification (Waheed et al. 2016); and 
assessing alternative immunization schemes to enhance the 
response against the FliC component.

Conclusion

LTBentero is a novel multiepitopic protein that can be 
functionally produced in the plant cell, having immuno-
genic activity in mice in terms of the induction of humoral 
systemic and mucosal antibody responses against a set of 
target epitopes upon oral and subcutaneous administration. 
Therefore, LTBentero is a promising oral immunogen with 
interesting implications in the fight against enteric diseases 
due to its low cost and easy administration.
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