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obviously cluster according to stress, time or tissue. The 
early response to abiotic stress typically involves induc-
tion of genes involved in transcription, hormone synthesis 
and signaling modules; a later response typically involves 
metabolism of amino acids and secondary metabolites. By 
linking specific primary and secondary response pathways, 
we outline possible stress-associated routes of response pro-
gression. The contextualization of specific processes within 
stress–tissue–time perspective provides a simplified repre-
sentation of cellular response while reducing the dimen-
sions in gene-oriented response description. Such simplified 
representation allows finding stress-specific markers based 
on process-combinations pointing whether a stress-specific 
response was invoked as well as provide a reference point 
for the conductance of comparative inter-plant study of 
stress response, bypassing the need in detailed orthologous 
mapping.
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Introduction

Most crop plants grow in suboptimal environments. 
Unfavorable conditions often induce stress responses 
involving physiological and morphological adaptations 
(Cramer et al. 2011). Often, stress-induced modifications 
prevent plants from attaining their full genetic poten-
tial (Buchanan et al. 2000), affect production (Shao et 
al. 2008) and lead to reduced yield (Wang et al. 2003). 
At the cellular level, resources, otherwise invested in 
growth, are transformed into the production of stress-
induced metabolites (Herms and Mattson 1992; Le Bot et 
al. 2009). Adjustments of the cellular metabolic activity 

Abstract
Key message  Contextualization of specific transcrip-
tional responses of Arabidopsis within the stress–tissue–
time perspective provides a simplified representation of 
the cellular transcriptional response pathways to abiotic 
stress, while reducing the dimensions in gene-oriented 
response description.
Abstract  Crops resistant to abiotic stresses are a long-term 
goal of many research programs, thus understanding the 
progression of stress responses is of great interest. We rean-
alyzed the AtGenExpress transcription dataset to go beyond 
gene-level characterization, and to contextualize the dis-
crete information into (1) a process-level signature of stress-
specific, time-specific, and tissue-specific responses and (2) 
identify patterns of response progression across a time axis. 
To gain a functional perspective, ∼1000 pathways associ-
ated with the differentially-expressed genes were character-
ized across all experiments. We find that the global response 
of pathways to stress is multi-dimensional and does not 
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Materials and methods

Stress related microarray databases

We used “The AtGenExpress” dataset of abiotic stress 
experiment from the GEO platforms on the NCBI data-
base. Experiments conducted on the Affymetrix platforms, 
Arabidopsis ATH1 Genome Array (GPL198), were chosen 
for this study as they provide extensive gene coverage and 
are widely used. GEO dataset of abiotic stress experiment 
series were (1) GSE5620 (Control Plant) (2) GSE5621 
(Cold stress) (3) GSE5622 (Osmotic stress) (4) GSE5623 
(Salt stress) (5) GSE5624 (Drought stress) (6) GSE5625 
(Genotoxic stress) (7) GSE5626 (UV-B stress) (8) GSE5627 
(Wounding stress) (9) GSE5628 (Heat stress). The RNA 
samples from root and shoot were taken in two biological 
replicas 0 min, 30 min, 1 h, 3 h, 6 h, 12 h and 24 h after 
the onset of stress treatment. In all experiments plants were 
handled in exactly the same way with the exception of the 
exposure to stress conditions (Kilian et al. 2007). Control 
data were utilized for normalization of experimental data. 
Overall the data includes 96 experiments (8 stress × 6 time 
point × 2 tissues).

Identification and functional analysis of differentially 
expressed genes

The microarray data were adjusted for the background of 
optical noise the with GC-RMA (Wu et al. 2004) package 
in MatLab tool and normalized using quantile normaliza-
tion non probe-level (Wu and Aryee 2010) followed by 
median-polish summarization. Gene expression values were 
normalized to the controls, primary normalization was used 
to generate the principal component analysis and secondary 
normalization was used to identify up- or downregulated 
genes. Further t test and false discovery rate (FDR) were 
applied to detect differentially expressed genes between 
treatment and control groups (Kim and Park 2004). Genes 
were considered differentially expressed, if they were regu-
lated in at least a single experiment. A total of 7300 and 4765 
up and down regulated genes, respectively, were detected. 
The breaking of the numbers of up-regulated genes into cat-
egories is now provided in Supplementary Table 1.

Functional annotations for Arabidopsis genes were 
downloaded from the MapMan annotation scheme (Thimm 
et al. 2004) that is structured in the form of a hierarchical 
tree and was specifically designed to cover plant-specific 
pathways and processes. Supplementary Table  2 specifies 
for each gene its functional annotations and its profile of 
up-regulation events across experiments.

Profiles of pathway enrichment in each experiment were 
determined by calculating the cumulative hypergeometric p 

is achieved through cross-talks between different regula-
tory levels (Verslues et al. 2006). For example, metabo-
lism of secondary metabolites such as phytohormones 
have been implicated in different stress responses (Cutler 
et al. 2010; Hare et al. 1997). Phytohormones further reg-
ulate the production of many other metabolites, including 
primary metabolites such as amino acids, carbohydrates, 
lipids, and a large variety of secondary metabolites 
(Akula and Ravishankar 2011; Goossens et al. 2003; Less 
and Galili 2009; Prescott 1999; Rolland et al. 2002; Rosa 
et al. 2009; Sasaki-Sekimoto et al. 2005).

Overall, cellular responses to abiotic stress are complex 
and vary over space, time and stress-type. In the coming 
decades, changes in global temperatures are predicted 
to include enhanced peaks of drought, flood, and heat 
(Mittler 2006), significantly affecting global agricultural 
systems (Parry 2007). The growing awareness of envi-
ronmental costs in agriculture leads to extensive studies 
of plant responses to abiotic stresses. Transcript profiling 
has been widely employed in studying plant responses 
to abiotic stress conditions (Ahuja et al. 2010; Bechtold 
et al. 2016; Grativol et al. 2012; Nakashima et al. 2009). 
AtGenExpress is one of the most comprehensive and 
systematic resources providing a four dimensional gene 
expression profile dataset for the study of abiotic stress 
transcriptional response in a plant (Kilian et al. 2007), with 
the dimensions as environmental conditions, time course, 
tissues and full gene-sets (as covered by the Arabidopsis 
Affymetrix DNA microarray). Expression profiles were 
generated for eight different abiotic stresses (osmotic, salt, 
drought, genotoxic, wound, cold, heat, UV-b), at six time 
points (0.5, 1, 3, 6, 12, and 24 h of treatment) for two tis-
sues (root and shoot). The published analysis of this data 
primarily focused on differential analysis of gene expres-
sion in response to three of the stress types (UV-B light, 
drought and cold stress) (Kilian et al. 2007), as well as 
the characterization of the response in the treated versus 
untreated tissue (Hahn et al. 2013). Yet much of these data 
remains under-analyzed.

The integration of gene-level data into higher level 
structures such as pathways and networks provides a key 
step in the analyses of big data (Ferrier et al. 2011; Heyn-
drickx and Vandepoele 2012; Toubiana et al. 2013). Here, 
we aimed to use available data to delineate the pathway-
level response to different stresses. To this end, we made 
use of this experimental platform and carried an enrich-
ment analysis to elucidate the pathway profiling of all 96 
experiments available. We further looked for both com-
mon and stress-specific response patterns across each of 
the experimental dimensions, characterized primary versus 
secondary response patterns, and delineate links between 
pathway categories across response progression.
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using the ‘organic’ layout option that visualizes the clus-
ters in the data. Clustering analysis was carried with both 
ClusterViz and ModuLand plugins, both detecting a single 
cluster using default and other cutoffs.

Results and discussion

Expression pattern of differentially expressed genes  
in abiotic stresses

A total of 7300 genes were up-regulated in a total of 49,986 
events across the 96 experiments (“Materials and methods” 
section), within the range of previous reports for the cur-
rent data set (Kilian et al. 2007). Figure  1a shows a heat 
map representing the number of up-regulated genes in roots 
and shoots along a time course following each abiotic stress 
condition. The results suggest communication between 
root and shoots tissue. For example, wounding stress was 
applied only to the aerial parts of the plants; this induced 
rapid responses in gene expression first in shoot, and a later, 
milder, response in the roots. The opposite was observed for 
salt and osmotic stress, where treatment of the roots caused 
significant alterations first in the root and then in the shoot. 
Response extent and patterns differ between stress types. 
A continuous increase over time in the number of induced 
genes is observed following cold and osmotic exposure 
(both root and shoot tissues), while the other stresses gener-
ally elicited transient alterations in gene expression. Geno-
toxic stress induced a small number of genes in comparison 
to the other stresses. Hahn et al. (2013) also observed abiotic 
stress has capability to generate systemic signals between 
the shoot and root tissues and suggested it might be essential 
to regain homeostasis.

This initial analysis confirms and builds on many of 
the conclusions from Kilian et al. (2007). The majority of 
these stress-regulated genes are not present in the basal 
co-regulation network we described previously (Atias et 
al. 2009). More specifically, while we identified genes as 
stress-induced, only 1020 of these are found in the basal co-
regulation network (Supplementary Table  2), representing 
14 % of this network. Thus most stress-induced genes are 
not co-expressed in the absence of stress conditions.

Identification of pathways enriched in differentially 
expressed genes across experimental dimensions

To delineate the overall cellular activity during the progres-
sion of stress response, genes were assigned to the MapMan 
hierarchical annotation scheme providing high (general, e.g. 
amino acid metabolism) and low (specific, e.g. alanine amino-
transferase) level descriptions for the functional role of each 
gene. For each experiment (specific stress, specific time point, 

value for the probability that a group of genes (up-regulated 
genes in an experiment) is over-represented within a func-
tional bin at a rate higher than chance expectation (Freilich 
et al. 2015). We chose to focus on upregulated genes to 
avoid mixed signals that can result from the co-inclusion 
of down-regulated genes and would likely introduce con-
tradicting signals (Freilich et al. 2015). A separate analysis 
of the down-regulated is given in Additional file 1. Mul-
tiple tests were performed for all gene groups—functional 
categories at all hierarchical levels. To control for multiple 
testing the original p values were then converted into FDR 
overlaps, with FDR < 0.001 considered significant.

Associating pathway categories

For associating pathways, we considered the following 
combinations: (i) primary pathways (RNA/hormones at 
time 0.5) versus secondary pathway (amino acids/second-
ary metabolites at time 6 h); (ii) amino acid and secondary 
metabolic pathways at 6 h. For each primary category, we 
iteratively formed pathway combinations considering all 
pathways assigned to each the key category (e.g., all cat-
egories classified under RNA versus all categories classified 
under amino acids). Each pathway category was described 
by its enrichment profile across all stresses in a tissue. For 
each category-combination we calculated an association 
score by dividing the number of AND events (experiments 
where pathways form both response types are significantly 
enriched) by the number of OR events (experiments where at 
least one of the pathways is significantly enriched). Results 
were tested under various cutoffs and a threshold of 0.6 
were chosen being both robust and comprehensive (Addi-
tional file 1). Calculations were carried employing MatLab 
tool. Network files providing pathway association across all 
classification level are provided in Supplementary Table 4. 
Associations were summed to a uniform level for each cat-
egory: RNA categories are at the third level of classification 
at the MapMan scheme (specific TFs); hormones and sec-
ondary metabolites classification categories at the 2nd level 
(specific compounds), and amino acids at the fourth level 
(specific amino acids). A table presenting associations at the 
selected level is provided as Supplementary Table 5.

Heat map, hierarchical clustering, PCA and network 
analysis

For the data mining and visualization, heat map and hier-
archical clustering were built in R studio and Matlab. PCA 
was applied using PAST software (Hammer et al. 2001). 
Cytoscape 3.2.1 (Shannon et al. 2003) was used for visu-
alization of biological network of pathways using the asso-
ciation index values of primary and secondary responses of 
abiotic stresses. Network layout was carried automatically 
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and wounding grouped together, while there was no clear 
separation between other stress responses. In general, this 
analysis of the pathways was not sufficient to delineate spe-
cific cellular processes associated with individual stresses. 
Similar patterns (or lack thereof) were observed using hier-
archical cluster analysis (Supplementary Fig. 2). Hence we 
looked in detail at the specific pathways involved.

Associating transcriptional response progression during 
abiotic stress with specific pathway categories

For each top-level category, we counted the total number of 
enriched pathways in each experiment. Out of 30 top-level 

specific tissue), we calculated the frequency of genes at each 
classification level in order to outline the cellular processes that 
are more significantly associated with the condition. Overall, 
we identified 1148 significantly enriched pathways at differ-
ent hierarchical levels (Supplementary Table 3). The number 
of pathways enriched per experiment (Fig. 1b) is in general 
agreement with the number of genes upregulated (Fig. 1a).

To identify similarities between experimental dimen-
sions, both the profiles of differentially expressed genes and 
of enriched pathway subjected to PCA analysis (Fig.  1c; 
Supplementary Fig.  1, respectively). The analysis shows 
that the transcriptional responses to osmotic and salt 
stresses are most similar. The early response to UV, cold 

Fig. 1  Distribution of differentially up-regulated genes or signifi-
cantly enriched pathways across experiments. a Heat map illustrating 
the number of upregulated genes. b Heat map illustrating the number 
of pathways significantly enriched with upregulated genes. c A PCA 

analysis of the up-regulated gene profiles across the 96 experiments. 
The data were normalized and auto scaled prior to PCA. Numbers in 
parenthesis indicate the percentage of variance explained by each PC
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pathways (Fig.  2). The main pathway category enriched 
following genotoxic stress was amino acid metabolism, at 
the relatively late time of 3 h. Reexamination of the data 
(Supplementary Table 3) showed that early (30 min) geno-
toxic exposure initially induced a DNA damage response; 
however the number of pathways induced was below the 
threshold for consideration in the analysis shown in Fig. 2 
(in correspondence with the small number of genes).

To delineate a generic trend of transcriptional response 
progression, we summed together the scaled scores given 
for each stress (Fig.  2), and looked at the level of repre-
sentation of each functional category across the stress 
responses in different time points for each tissue (Fig. 3a). 
This analysis reveals that the responses can be grossly 
divided into three steps (Fig. 3b). The early primary tran-
scriptional responses to abiotic stresses (0.5–1  h) include 
the induction of pathways related to RNA regulation (e.g. 
transcription factors) and hormone metabolism. This is 
followed by a late primary response (1–3 h) characterized 
by the up-regulation of various signaling modules, such as 
MAP kinases, Ca2+ and receptor kinase pathways. The later 
secondary responses include up-regulation of genes control-
ling amino acid, lipid and secondary metabolism pathways 
(typically 3–6 h). Notably, the current analysis focuses on 
the transcriptional response whereas an earlier cascade of 
information transduction is transmitted through a diverse 
array of molecule types including hormones, siRNA, pos-
sibly ssRNA molecules and electrical signals is beyond the 
detection scope here (Hahn et al. 2013).

categories, we focused on seven key categories, requiring 
the enrichment of at least ten sub-pathways in at least a sin-
gle experiment (Fig. 2). This analysis juxtaposed with those 
in Fig. 1 (and in particular the general pathway analysis in 
Fig. 1b), giving a more top-down description of the effect of 
exposure to abiotic stress on cellular activity, and allowing a 
detailed view of the cellular processes involved in response 
progression. Though the focusing on seven key categories 
induces potential bias for more-developed categories, fil-
tering was required for gaining a comprehendible signal, 
where the full dataset (Supplementary Table  3) allows a 
more detailed inspection.

For example, osmotic and salt response starts early in 
root tissues followed by a response in the shoot (Fig. 1a, b). 
Looking at the specific pathways involved, we observe a rel-
atively high number of hormonal pathways enriched during 
the early response in both tissue types (Fig. 2). The wound 
response starts in shoot tissues (Fig. 1a, b), also associated 
with a high number of enriched hormonal pathways. The 
drought response starts in the root tissue, and after 3 h con-
tinues in the shoot (Fig. 1a, b) with up-regulation of genes 
assigned to hormones pathways being the primary response 
in the root, and genes assigned to hormones and amino acid 
pathways being the later response in the shoot (Fig.  2). 
The transcriptional response to heat stress starts after 1  h 
in both tissues (Fig. 1a, b), with RNA regulatory pathways 
as the main contributors (Fig. 2). Cold stress responses are 
observed in the shoot after 3 h, followed by a response in 
the root, again here mediated mainly by RNA regulatory 

Fig. 2  Distribution of significantly enriched pathways from key cate-
gories across experiments. The heat map illustrates scaled distribution 
of the number of pathways significantly enriched with up-regulated 
genes across key MapMan categories. For each stress condition, the 

data point with the largest number of pathways was defined as 1 (dark 
red), to which all other points in the same conditions were scaled 
against (color bar on right)
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involvement of most of these TF families in the regula-
tion of stress response was supported by previous studies. 
C2H2-type zinc finger proteins were demonstrated to play 
a crucial role in plant stress responses following exposure 
to various stress types including low temperature, salt, 
drought, osmotic stress and oxidative stress (Kiełbowicz-
Matuk 2012; Wang et al. 2014). MYB proteins were shown 
to be regulators of the response to salinity, drought and cold 
in Arabidopsis (Lippold et al. 2009). WRKYs TFs are up-
regulated following exposure to dehydration, cold, heat, UV 
irradiation, drought, salt and ABA (Qiu and Yu 2009). More 
stress-specific enrichment patterns were detected for ABI3/
VP1-related B3-domain transcription category (shoot tis-
sues following genotoxic and UV stresses) (Fig. 4b); GRF 
zinc finger family (genotoxic and drought shoot tissues); 
and bZIP related family (root tissues following osmotic, salt 
and heat stresses) (Fig. 4b).

Unlike the relatively generalized enrichment pattern of 
hormonal and RNA activities, the metabolism of amino acids 
demonstrate higher specificity in response to stress. Most spe-
cifically, the synthesis of aspartate and cysteine are observed 
only following drought stress in the shoot tissue; degradation 
of asparagine was unique to root tissue following salt stress; 
and GABA synthesis was detected in root tissue following 
osmotic stress (Fig. 4c). The most diverse response in regard 
to the metabolism of amino acids was detected following 
exposure to drought and osmotic stresses in both root and 
shoot tissues (Fig.  4c). Shoot versus root responses show 
similarities between the two stress types. More generally, 
root versus shoot responses following stress do not typically 
cluster together suggesting the tissue types differ in their 

Characterization of stress-specific versus stress-generic 
pathways

The generic trend of response progression (Fig. 3b), allows 
narrowing the big picture by focusing on four dominant path-
way categories, each category at a single time point: RNA 
and hormones at time point 0.5; amino acids and secondary 
metabolites at time point 6 h. For each pathway category, we 
surveyed enriched pathways at all classification levels.

Notably, across all stresses, we observe that the number of 
enriched hormonal categories was higher in the tissue directly 
exposed to the stress (shoot versus root), with the exception of 
heat stress where the number of hormonal pathways is rela-
tively low. Across all stress types, the most common hormonal 
pathways are ethylene-associated functions, in accordance 
with previous reports supporting its key role in stress response 
regulation (Beguerisse-Dıaz et al. 2012; Kushwah et al. 2011; 
Zhai et al. 2013). The only experiments where ethylene 
response was not detected are in tissues not directly exposed to 
stress (e.g., ethylene response was detected in the shoot but not 
in root following wound stress) (Fig. 4a). Similarly, gibberel-
lin response was detected in all stress-exposed tissues with 
the exception of heat (Fig. 4a). Jasomonate response was not 
detected in cold, heat and UVb stresses. Abscisic response was 
not detected in genotoxic, heat and UVb stresses (Fig. 4a). The 
most specific hormonal pathways in this experimental system 
were auxin (wound, cold) and salicylic acid (UVb) (Fig. 4a).

Within the RNA category, the most common RNA 
pathways across all stress types are C2C2 (Zn) F-zinc fin-
ger family, MYB and WRKY transcription factor func-
tions (Fig.  4b). In support of our results, the dominant 

Fig. 3  Cross-stress response patterns of pathways. a Heat maps illus-
trating scaled distribution of pathways across multiple stresses. Values 
in each cell represent the summing together of scaled values across 

all stress conditions (as in Fig. 2). b Diagram of pathways response 
progression during abiotic stress
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based on co-occurrence patterns. We calculated a similarity 
coefficient between pathways classified under the four cat-
egories (RNA, hormones, amino acids, secondary metabo-
lites) based on the frequency a pathway from category A and 
a pathway from category B were enriched under the same 
experimental setting (tissue exposed to stress type; “Mate-
rials and methods” section). To this end, we iteratively 
crossed all primary responses with secondary responses, 
forming pair-wise combinations of a primary response 
pathway with a secondary response pathway. Similarly, 
pathways from the amino acids categories were iteratively 
crossed with pathways from the secondary metabolism cate-
gories. The links aim at revealing both regulatory (primary/
regulatory processes with secondary-metabolic processes) 
and biosynthetic (amino acids with secondary metabolites) 
associations.

subsequent cellular modifications. Finally, we see similar 
number of enriched pathways involved in degradation and 
in synthesis (Fig. 4c). Notably, amino acids act as common 
precursors of secondary metabolites (Akula and Ravishankar 
2011) whose production was in many cases induced follow-
ing abiotic stress (Nakabayashi and Saito 2015). Our survey 
points at glucosinolates, flavonoids, isoprenoids and phenyl-
propanoids as the main secondary metabolites for which we 
detect enrichment in upregulated genes (Fig. 4d).

Network analysis linking primary and secondary 
pathway responses

Highlighting the key regulatory (hormonal, RNA) and 
metabolic processes (amino acids, secondary metabolites) 
allows further delineating associations between pathways, 

Fig. 4  Enriched pathways from selected key categories in specific 
stresses within each panel, each color is corresponding to the top-
category of the pathways indicated on the right side of the graph. 
a, b Enriched pathways at 0.5  h following stress classified to a the 

hormonal category, or b the RNA category. c, d Enriched pathways 
at 6 h following stress classified to the c amino acids category, or d 
secondary metabolites category
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Associations between hormones and amino-acids include 
links between ethylene and aspartate and ethylene and 
alanine (shoots and roots, respectively). A link between 
ethylene and aspartate was supported by Arraes’ model 
suggesting an ethylene-mediated aspartate biosynthesis in 
drought stress (Arraes et al. 2015). The link between eth-
ylene and alanine can possibly reflect the role of β-alanine 
as an ethylene precursor (Stinson and Spencer 1969). 
Aromatic amino acids are linked with jasmonic acid and 
abscisic acid (in root) and auxin (in shoot). Such links can 
be related to either biochemical or regulatory associations. 
Phenylalanine, tyrosine and tryptophan serve as precursors 
for auxin (Tzin and Galili 2010). Jasomonate and abscisic 
acid induced signaling regulates tryptophan and tyrosine 
biosynthesis, respectively (Dombrecht et al. 2007).

Amino-acids serve as precursors for the synthesis of 
secondary metabolites. In accordance with the biochemi-
cal pathway, phenylpropanoids and flavonoids are linked 
with aromatic amino acids (Casati and Walbot 2005); 

Overall links were formed between 5 hormonal pathways 
and 11 transcription regulation pathways (primary response), 
22 amino acids metabolism pathways (synthesis and degra-
dation) and 7 secondary metabolism pathways (late response) 
in root and shoot tissues (Fig. 5a). Reassuringly, many of the 
links are supported by previous studies. For example, asso-
ciations between transcription factors and secondary metab-
olites include links between MYB transcription factors and 
glucosinolate biosynthesis in the root, in accordance with the 
reported role of MYB proteins as regulators of glucosino-
late biosynthesis in Arabidopsis stress response (Hirai et al. 
2007). Examples for hormonal and secondary metabolites 
associations include links between jasmonate pathway and 
flavonoids and glucosinolate, in accordance with the role of 
jasmonate as a regulator of the synthesis of these metabo-
lites during UV and wound stresses (Barah et al. 2013; Dem-
kura et al. 2010). Glucosinolates were also connected with 
abscisic acid and ethylene in Arabidopsis, and in a few other 
Brassica crop species (Yan and Chen 2007).

Fig. 5  Network association of primary and secondary categories at 
selected time points. Nodes represent pathways in the following cat-
egories: Primary response (0.5 h)—Hormones (green) and RNA tran-
scriptome (red); Secondary response (6  h)—amino acid (blue) and 
secondary metabolite (yellow). The edges were drawn between nodes 
when their co-appearance score was higher than threshold (“Materials 
and methods” section). Nodes of hormonal and secondary metabolites 

categories are shown at the second-level of classification; Nodes of 
RNA and amino-acids categories are shown at the third and fourth 
level of classification, respectively. a The full network containing 
associations from both shoot and root. Subnetworks composed of the 
direct neighbors of the nodes b for methionine synthesis and degrada-
tion and c for asparagine synthesis and degradation
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Conclusion

Numerous research programs have studied the transcrip-
tional response to various abiotic stresses. However, much 
of the data remains under-analyzed. Here we aimed at 
further delineating the molecular responses arising from 
abiotic stress conditions and understanding the transcrip-
tional response progression by gaining a pathway perspec-
tive of the functions carried out by up-regulated genes. The 
current analysis further allows mapping more than 1000 
stress-associated processes into stress type–tissue–time 
coordinates. This pathway representation provides a sim-
plified representation of cellular response while reducing 
the dimensions in gene-oriented response description, and 
ultimately allows for the identification of novel pathway 
dependencies. Notably, we expect different plants to differ 
at their response progression patterns. Hence, such simpli-
fied representation allows the conductance of comparative 
inter-plant studies, bypassing the need in detailed orthol-
ogous mapping and providing a constructed reference 
perspective.

Beyond comparative analyses, such mapping allows 
finding marker processes pointing whether a stress 
response was invoked. As many of the transcription factor 
and hormones are common to multiple stress type, stress-
specific markers can be based on more complex combina-
tions. Our reanalysis of the publically available data and 
particularly the predictions for higher-level functional 
associations arising from the network analysis contributes 
an additional layer of knowledge. While many of the path-
ways detected in the analysis were previously reported to 
take part in the cellular response to stress, novel connec-
tions are predicted. Moreover, supporting evidences are 
anecdotal and link-specific, each representing a piece in 
the puzzle. Their association within a framework of a net-
work attempts to capture the bigger picture and provide 
a step forwards towards a system-level understanding of 
the progression of stress specific responses. Delineating 
the metabolic activity following exposure to stress can 
shed light on the cost of specific responses to plant pro-
ductivity and broaden our understanding of the trade-off 
between stress response and plant’s primary metabolism. 
Hence, it can promote the design of metabolic engineering 
strategies, aiming, for example at the enhanced produc-
tion of selected amino acids. The links formed between 
processes, though not necessarily representing casualty, 
further provide a source for predictions associating path-
ways and allow better understanding of the regulatory and 
metabolic processes behind the transcriptional response 
to abiotic stress. The association of stress types with spe-
cific cellular processes lays a foundation for deciphering 
the roll of different response routes in term of agricultural 
productivity.

glucosinolates are linked with methionine, branched-chain 
and aromatic amino-acids (Halkier and Gershenzon 2006). 
Cysteine, also linked with glucosinolates, acts as a donor 
for all reduced sulfur in plant cells and involved in bio-
synthesis and metabolism of glucosinolates in Arabidopsis 
(Takahashi et al. 2011). Tryptophan and glutamate, linked 
with indole-glucosinolates, are known to be catabolized 
into many indole-containing secondary metabolites (Hil-
debrandt et al. 2015). The most highly connected categories 
are glucosinolate: indolic glucosinolate in root and aliphatic 
glucosinolate in shoot (Supplementary Table  5). This fur-
ther supports the centrality of glucosinolates metabolism in 
the response to environmental stress in Arabidopsis.

Beyond specific connections, the network perspec-
tive contextualizes individual links and allows identifying 
multiple pathway associations at several functional levels. 
Attempts to take a “guilt by association” approach (Oliver 
2000) were hampered by the low modularity of the network, 
where pathways could not be clustered into meaningful 
groups, in accordance with the typical pleiotropic nature of 
stress response. Taking an alternative approach, we focused 
on the links formed between amino-acids—the most stress-
specialized category (Fig. 4), and other pathway categories. 
In Fig. 5b, c we show sub-networks containing methionine 
and asparagine respectively—the two amino acids for which 
both synthesis and degradation categories were included in 
the network, and their direct neighbors. Notably, in both net-
works we observe that the regulatory elements are typically 
exclusively associated with either synthesis or degradation 
processes. In the methionine network, degradation is asso-
ciated with PHOR1, C3H zinc finger and GRAS transcrip-
tion factor families; synthesis is associated with C2H2 zinc 
finger family. Similarly, B3 transcription factor family is 
associated with asparagine degradation only (Fig. 5c). The 
glucosinolate category provides a bridge between aspara-
gine synthesis and degradation. Looking at the lower level 
of glucosinolate pathways (Supplementary Table  5) we 
observe that glucosinolate synthesis is directly linked with 
asparagine synthesis; glucosinolate degradation is indirectly 
linked with asparagine degradation, via its association with 
B3 transcription factor family. All these three pathways—
degradation of asparagine and glucosinolate and B3 tran-
scription factor—are enriched in the root tissue following 
exposure to salt stress conditions (Fig. 4), pointing at a pos-
sibly higher level coordinated process. All pathways asso-
ciated with asparagine synthesis are co-connected between 
themselves. That is, both hormonal categories associated 
with asparagine synthesis and both secondary metabolites 
categories associated with asparagine synthesis are co-asso-
ciated. Hence, taking this networks approach we predict a 
number of potential pathway interactions not previously 
identified, as well as possible higher-level, multi-pathways, 
functional modules.
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