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Abstract The survival and reproduction of plants depend

on their ability to cope with a wide range of daily and

seasonal environmental fluctuations during their life cycle.

Phytohormones are plant growth regulators that are

involved in almost every aspect of growth and develop-

ment as well as plant adaptation to myriad abiotic and

biotic conditions. The circadian clock, an endogenous and

cell-autonomous biological timekeeper that produces

rhythmic outputs with close to 24-h rhythms, provides an

adaptive advantage by synchronizing plant physiological

and metabolic processes to the external environment. The

circadian clock regulates phytohormone biosynthesis and

signaling pathways to generate daily rhythms in hormone

activity that fine-tune a range of plant processes, enhancing

adaptation to local conditions. This review explores our

current understanding of the interplay between the circa-

dian clock and hormone signaling pathways.
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Introduction

As sessile organisms, plants spend their entire life cycle in

the same place that they germinated. This, along with their

poikilothermic nature, forces them to adapt to a variety of

abiotic and biotic stresses that change both on short- and

long-term time scales. Persistent challenges such as

drought, shade, cold, and the changing seasons are dealt

with in part by the impressive developmental and physio-

logical plasticity of plants (de Jong and Leyser 2012).

Hormone signaling pathways have long been known to

play key roles in plant responses to such long-term envi-

ronmental challenges. Daily environmental fluctuations

also present plants with significant difficulties. For exam-

ple, day/night cycles cause huge alterations not only in

light levels but also in water availability; plants undergo

profound daily changes in their metabolism to cope with

fluctuations in these essential resources (Farre and Weise

2012; Muller et al. 2014). The circadian clock plays a

central role in plant adaptations to daily and even seasonal

changes in the environment. It is therefore perhaps not

surprising that multiple connections between the clock and

hormone pathways have recently been revealed. In this

review, we will focus on studies demonstrating circadian

modulation of hormone levels and physiological pathways

controlled by hormones. We will also discuss evidence that

hormone signaling may feed back to influence the circadian

network.

Circadian clocks are found in most eukaryotes and some

prokaryotes. They are cell-autonomous biological time-

keepers that generate roughly 24-h rhythms in many

metabolic and physiological processes (Greenham and

McClung 2015; Hsu and Harmer 2014). Daily rhythms can

be diel, observed when there are regular rhythmic inputs

such as daily light and dark cycles, or circadian, persisting

in the absence of rhythmic environmental cues. It has been

demonstrated in plants, bacteria, and mammals that circa-

dian clocks that run with a period matched to that of

external environmental cycles provide a competitive

advantage (Dodd et al. 2005; Ouyang et al. 1998; Spoelstra

et al. 2016), presumably by allowing organisms to correctly

anticipate regular changes in the environment including
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alterations in temperature, light, and humidity. The circa-

dian system can be generalized as consisting of input or

entrainment pathways, the central clock or oscillator, and

output pathways. Inputs such as light perceived by plant

receptors entrain the central oscillator to generate pre-

cisely-phased rhythmic outputs, such as the release of

volatiles timed to attract appropriate pollinators and

enhanced resistance to cold at night (Greenham and

McClung 2015; Yakir et al. 2007). The plant circadian

clock generates daily and even seasonal rhythms in many

physiological processes including stomatal opening, leaf

movement, hypocotyl elongation, photosynthesis and car-

bon metabolism, resistance to abiotic and biotic stresses,

and flowering time (Angelmann and Johnsson 1998; Farre

2012; Hsu and Harmer 2014; Muller et al. 2014; Song et al.

2015; Webb 1998; Yakir et al. 2007).

In addition to generating obvious daily rhythms, the

circadian clock plays a more subtle role in the regulation of

plant physiology. Many signaling pathways are modulated

by the clock so that they are differentially active at dif-

ferent times of the day or night in a process known as

‘‘gating’’. For example, plants treated with auxin (indole-3-

acetic acid; IAA) at night are more responsive than plants

treated with the same auxin concentration during the day

(Covington and Harmer 2007; Went and Thimann 1937).

Similar gating of responses to environmental cues such as

light and temperature have also been reported (Adams and

Carre 2011). It is thought that circadian gating may help

plants distinguish between random fluctuations in the

environment and longer-term alterations.

The plant circadian clock

The plant circadian clock is the most complex yet reported

in any organism and consists of a highly interconnected

network of transcription factors that regulate each other’s

expression (Fig. 1). Here we present a brief overview of

our current understanding of the plant circadian clock.

Readers are directed to recent excellent reviews and ref-

erences therein for more details about the clock machinery

(Hsu and Harmer 2014; McClung 2014). The closely-re-

lated, morning-expressed MYB-like transcription factors

CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and

LATE ELONGATED HYPOCOTYL (LHY) and the eve-

ning expressed TIMING OF CAB EXPRESSION 1

(TOC1/PRR1) reciprocally repress each other’s expression.

The repression of CCA1 and LHY by TOC1 requires the

CCA1 HIKING EXPEDITION (CHE) gene. The morning-

phased CCA1 and LHY proteins repress expression of the

‘‘evening complex’’ (EC) components LUX ARRHYTHMO

(LUX), EARLY FLOWERING 3 (ELF3), and ELF4, while

the afternoon-phased MYB-like transcription factor

REVEILLE8 (RVE8) activates their expression. Another

double-negative feedback loop exists between CCA1 and

LHY and the day-phased transcription factors PSEUDO

RESPONSE REGULATOR9 (PRR9), PRR7, and PRR5

(Adams et al. 2015; Fogelmark and Troein 2014). In

addition to repressing CCA1 and LHY expression, these

PRRs repress expression of RVE8 (Fig. 1).

In addition to regulating expression of other oscillator

components, the transcription factors that make up the

plant clock regulate expression of thousands of output

genes. Genome-wide studies carried out with RNA

extracted from intact seedlings suggest that about 30 % of

expressed genes are clock regulated (Covington et al. 2008;

Hsu and Harmer 2012; Michael et al. 2008b), although the

fraction of the transcriptome that is clock regulated in some

but not all cell types is likely considerably higher (Endo

et al. 2014). Intriguingly, genes regulated by the hormones

abscisic acid (ABA), brassinosteroids (BR), cytokinins

(CK), ethylene (ET), gibberellins (GAs), IAA, jasmonates

(JAs), and salicylic acid (SA) are more likely to be clock-

regulated than expected by chance (Covington and Harmer

2007; Covington et al. 2008; Dodd et al. 2007; Mizuno and

Yamashino 2008). Our recent analysis with a more com-

plete list of cycling genes (Hsu and Harmer 2012) than

used in previous studies reveals that between 35 and 46 %

of hormone related genes are also clock regulated in Ara-

bidopsis, significantly more than the 29 % expected by

chance (Fig. 2). Recent chromatin immunoprecipitation

studies demonstrated that CCA1, TOC1, and the PRRs bind

to the promoters of hundreds of genes (Huang et al. 2012;

Liu et al. 2013, 2016b; Nagel et al. 2015; Nakamichi et al.

2012). Interestingly, more of these putative direct targets of

the circadian clock machinery are regulated by plant hor-

mones than expected by chance (Fig. 3). Additional gen-

ome-wide analyses suggest functional links between clock

components and plant hormone pathways. For example,

more than one-third of the likely direct targets of PRR7

also contain ABA-responsive elements in their upstream

regions; the functional relevance of this finding is sup-

ported by the reduction of ABA-induced gene expression in

plants overexpressing PRR7 (Liu et al. 2013). Thus the

circadian clock machinery has been implicated in direct

control of genes involved in hormone signaling.

Daily rhythms in hormone levels

Clock regulation of hormone signaling occurs at additional

levels as well. It has long been noted that levels of many

phytohormones oscillate over 24-h day/night cycles. For

example, diel variations in ethylene levels have been

demonstrated in bean, cotton, sorghum, Arabidopsis, rice,

low-elevation longstalk starwort, red goosefoot, and
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Kalanchoe daigremontiana (Emery et al. 1994; Finlayson

et al. 1998; Kapuya and Hall 1977; Lee et al. 1981; Lipe

and Morgan 1973; Machackova et al. 1997; Morgan et al.

1990; Thain et al. 2004). In many species, ethylene pro-

duction has been reported to persist in constant conditions

and can thus be classified as circadian regulated (Finlayson

et al. 1998; Jasoni et al. 2000; Morgan et al. 1990; Thain

et al. 2004). However, in other species daily oscillations do

not persist in constant conditions (Machackova et al. 1997)

or are even absent in all conditions tested (Emery et al.

1994).

Diel oscillations in the growth-related hormones IAA,

GAs, CKs and BRs have been reported in multiple species.

Diel changes in IAA levels have been observed in leaves of

Coffea arabica and tobacco, with peak levels in the middle

of the day (Janardhan et al. 1973; Novakova et al. 2005).

Similar diel oscillations were reported in the tropical tree

West Indian locust (Velho do Amaral et al. 2012) and in

red goosefoot (Krekule et al. 1985), but with peak IAA

levels occurring at night. Circadian regulation of free IAA

Fig. 1 Brief overview of the plant circadian clock. Three different

size ovals represent levels of the indicated proteins. Arrows and

perpendicular bars indicate activation and repression, respectively.

For simplicity, the morning-expressed MYB-like transcription factor

LATE ELONGATED HYPOCOTYL (LHY), which functions semi-

redundantly with its homolog CCA1, is not shown. For more details

about the clock machinery, see recent reviews (Adams et al. 2015;

Hsu and Harmer 2014; McClung 2014)

Fig. 2 The percentages of clock-regulated genes (Hsu and Harmer

2012) that are also regulated by individual phytohormones (Blanco

et al. 2009; Nemhauser et al. 2006; Schenk et al. 2000) are plotted.

Asterisks indicate statistically significant circadian enrichment over

the 29 % circadian regulation expected by chance (Fisher’s exact test;

p\ 0.05)
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levels has been demonstrated in Arabidopsis and Cheno-

podium rubrum (Jouve et al. 1999; Pavlova and Krekule

1984), but with peak levels at the end of the subjective day

and midday, respectively. Interestingly, the cycling pat-

terns of expression of many IAA biosynthetic and signaling

genes are highly conserved across poplar, rice, and Ara-

bidopsis (Filichkin et al. 2011).

Levels of some but not all GAs have been reported to

peak at the end of the day in spinach and sorghum (Foster

and Morgan 1995; Lee et al. 1998; Talon et al. 1991), at the

beginning of the day in pea (Stavang et al. 2005), and to

show no significant daily variation in begonia (Myster et al.

1997). CK levels showed diel cycling in tobacco leaves,

with peak levels at midday (Bancos et al. 2002; Novakova

et al. 2005) while in pineapple levels were reported to peak

near dawn in shoots but in the middle of the night in roots

(Freschi et al. 2009). Finally, in Arabidopsis and tobacco,

BR and CK levels were reported to show diel regulation

with peak levels at midday (Bancos et al. 2002; Novakova

et al. 2005).

Stress and defense-related hormones undergo diel

oscillations as well. Levels of SA and JA are clock

regulated in Arabidopsis, with peak accumulation in the

middle of the subjective night and in the middle of sub-

jective day, respectively (Goodspeed et al. 2012). Diurnal

rhythms of JA have been reported in roots but not leaves of

Nicotiana attenuata (Kim et al. 2011); however, in this

plant JA levels peak at night. Similar variations in the

timing of ABA oscillations have been reported. While

ABA levels oscillate in poplar (Barta and Loreta 2006),

field-grown pearl millet (Henson et al. 1982), Arabidopsis

(Lee et al. 2006), and Arbutus unedo (Burschka et al. 1983)

with peak levels around midday, ABA levels in soybean

are circadian regulated with peak levels occurring at night

(Lecoq et al. 1983). Finally, in tobacco leaves, ABA levels

showed a complex pattern with two peaks during the day

and a higher peak at the beginning of the dark phase

(Novakova et al. 2005).

In summary, diel and circadian regulation of hormone

levels is widespread in plants, but species- and tissue-

specific variation is considerable. Thus there are undoubt-

edly many ways in which the circadian system interacts

with hormone metabolic pathways. We will discuss a few

below.

Circadian regulation of genes that control
hormone levels

Genome-wide transcriptome studies have revealed that

expression of many genes that encode hormone biosyn-

thetic enzymes is clock regulated. For example, many

genes that function in the synthesis of isoprenoids, pre-

cursors of the hormones ABA, BR, CK, and GA (Vranova

et al. 2013), are clock controlled. In Arabidopsis, the cir-

cadian clock regulates at least 50 % of the genes encoding

key enzymes of the mevalonate (MVA) and the

methylerythritol phosphate (MEP) pathways leading to

isoprenoid synthesis (Fig. 4). Key genes in the MEP

pathway have been shown to be targets of the central clock

proteins CCA1 and LHY (Pokhilko et al. 2015). Interest-

ingly, the conversion of 3-hydroxy-3-methylglutaryl-

coenzyme A to mevalonate by 3-hydroxy-3-methylglu-

taryl-CoA reductase is also clock regulated in mammals

(Shapiro and Rodwell 1969).

Downstream of the MVA and MEP pathways, the car-

otenoid biosynthesis pathway supplies precursors for the

biosynthesis of ABA. Circadian clock regulation of many

of the genes encoding enzymes in this pathway (Fig. 4) has

been demonstrated in both Arabidopsis and maize (Cov-

ington et al. 2008; Khan et al. 2010). Diel regulation of

genes involved in ABA synthesis has also been shown in

species such as tomato (Thompson et al. 2000) and the

perennial desert plant Rhazya stricta (Yates et al. 2014).

Studies in Arabidopis plants deficient for the circadian

Fig. 3 The percentages of CCA1, TOC1, PRR9, PRR7, and PRR5

target genes (as identified by chromatin immunoprecipitation (Huang

et al. 2012; Liu et al. 2013, 2016b; Nagel et al. 2015; Nakamichi et al.

2012) that are regulated by individual phytohormones (Blanco et al.

2009; Nemhauser et al. 2006; Schenk et al. 2000). Asterisks indicate

statistically significant enrichment of phytohormone-regulated genes

among all identified clock protein target genes (Fisher’s exact test;

p\ 0.05)
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clock components PRR5, 7, and 9 have shown that these

pseudo-response regulator-like proteins negatively regulate

the expression of both genes involved in the ABA

biosynthetic pathway and ABA levels (Fukushima et al.

2009). This regulation may be direct, as PRR7 directly

binds to the promoter region of ABA DEFICIENT 1

(ABA1), which encodes a zeaxanthin epoxidase involved in

ABA biosynthesis (Liu et al. 2013). Another mechanism

controlling daily levels of active ABA may be via the diel

regulation of AtBG1, a b-glucosidase that releases active

hormone from glucose-conjugated, inactive ABA (Lee

et al. 2006).

GAs are also major hormones generated from isoprenoid

precursors. At least in diel conditions, many GA biosyn-

thetic genes show daily rhythms in Arabidopsis, pea,

potato, and maize (Carrera et al. 1999; Garcia-Martinez

and Gil 2002; Hisamatsu et al. 2005; Khan et al. 2010). In

Arabidopsis, expression levels of the clock-regulated gene

AtGA20ox1 are increased in toc1 mutants (Blazquez et al.

2002). Similarly, expression levels of several GA biosyn-

thesic genes and levels of active GAs are increased in

barley mutant for the clock gene ELF3 (Boden et al. 2014),

further implicating the circadian clock in regulation of GA

biosynthesis. The clock may also be involved in the inac-

tivation of active GAs: mRNA levels of all six Arabidopsis

GA2ox genes, which encode enzymes that catabolize active

GAs, exhibited diel rhythms, with GA2ox1 and possibly

GA2ox2 also being circadian regulated (Zhao et al. 2007).

Less has been published on mechanisms underlying diel

and circadian regulation of CK and BR levels, two other

types of hormones generated from isoprenoid precursors.

However, the expression of two BR-biosynthetic genes has

Fig. 4 Circadian regulation of many phytohormone biosynthesis

enzymes in Arabidopsis. a The times of peak expression of clock-

regulated phytohormone biosynthesis genes. Light red early subjective

day, dark red late subjective day, light blue early subjective night, dark

blue late subjective night. b Overview of the major phytohormone

biosynthesis pathways and the enzymes involved. Black metabolites,

blue enzymes, red enzymes with clock regulated gene expression.

MVA—mevalonate, MEP—methylerythritol phosphate, ABA—

abscisic acid, BR—brassinosteroids, CK—Cytokinins, ET—ethylene,

GA—Gibberellins, IAA—indole-3-acetic acid, JA—Jasmonates, and

SA—salicylic acid. More details are found at http://biocyc.org/ARA/

NEW-IMAGE?object=Plant-Hormone-Biosynthesis and within the

following references (Dempsey et al. 2011; Gupta and Chakrabarty

2013; Mano and Nemoto 2012; Ruiz-Sola and Rodriguez-Concepcion

2012; Vranova et al. 2013; Wang et al. 2002; Wasternack and Hause

2013; Xu et al. 2013; Zhao and Li 2012)

Plant Mol Biol (2016) 91:691–702 695

123

http://biocyc.org/ARA/NEW-IMAGE%3fobject%3dPlant-Hormone-Biosynthesis
http://biocyc.org/ARA/NEW-IMAGE%3fobject%3dPlant-Hormone-Biosynthesis


been reported to be under circadian control in Arabidopsis

(Bancos et al. 2002).

The most abundant auxin in plants is IAA. In land plants it

is thought to be primarily derived from tryptophan via the

action of the tryptophan aminotransferase/flavin monooxy-

genase (YUCCA) pathway, although tryptophan-indepen-

dent biosynthetic pathways have also been proposed (Yue

et al. 2014). In rice, at least one member of each paralogous

set of genes from each of the six reactions in tryptophan

biosynthetic pathway is under strong diel regulation (Dhar-

mawardhana et al. 2013). A number of homologous genes are

also circadian regulated in Arabidopsis (Fig. 4). One mech-

anism by which the clock regulates free auxin levels is

through the circadian-regulated MYB-like transcription fac-

tor RVE1. RVE1 directly promotes the expression of the

auxin biosynthetic gene YUCCA8 (YUC8) and thus increases

free auxin production during the day (Rawat et al. 2009).

Several transcripts encoding GH3 enzymes, which join auxin

to amino acids to produce inactive conjugates, are also clock-

regulated (Covington et al. 2008; Khan et al. 2010), sug-

gesting an additional mechanism by which daily rhythms in

free auxin levels may be generated.

Although ET emissions have long been recognized as

clock controlled, mechanisms underlying this regulation are

elusive. Under typical conditions, ACC synthase (ACS) is

thought to be the rate-limiting step for ET synthesis, and in

Arabidopsis transcript level of ACS8 shows circadian

rhythm of expression with a peak phase similar to that of ET

production. However, plants mutant for ACS8 do not exhibit

altered ethylene rhythms (Thain et al. 2004), indicating other

biosynthetic components are under clock control. Under

some conditions ACC oxidase can be the rate-limiting step

in ethylene synthesis (Rieu et al. 2005), and two genes

encoding putative ACC oxidase enzymes are clock regulated

with a phase similar to that of ACS8 (Covington et al. 2008;

Khan et al. 2010). It is therefore possible that these enzymes

might act with ACS8 to generate rhythms in ethylene pro-

duction. Diel cycling of genes predicted to encode homologs

of the ethylene receptors ETHYLENE RESPONSE SEN-

SOR1 and ETHYLENE INSENSITIVE1 has been reported

in Japanese cedar (Nose and Watanabe 2014), suggesting the

clock may gate ethylene signaling in addition to regulating

ethylene production.

As described above, circadian regulation of JA and SA

levels has been reported in both Arabidopsis and other

plants. In Arabidopsis, the clock protein CCA1 has been

shown to bind to the promoter of the JA biosynthetic gene

LIPOXYGENASE2 (Nagel et al. 2015). It has been pro-

posed that similar regulation of the JA biosynthesis gene

LIPOXYGENASE3 also occurs in Nicotiana attenuata

(Kim et al. 2011). More is known about daily regulation of

SA levels in Arabidopsis. ISOCHORISMATE SYNTHASE1

(ICS1) encodes an enzyme essential for SA biosynthesis

(Wildermuth et al. 2001) and its expression is clock-reg-

ulated. The clock protein CHE directly, and perhaps also

indirectly, regulates ICS1 expression and is required for

daily rhythms in SA levels (Zheng et al. 2015). The clock

may also regulate SA signaling via additional mechanisms:

CCA1 has been implicated in the regulation of expression

of the phosphate transporter gene PHT4;1, a negative

regulator of plant defenses that acts genetically upstream of

SA signaling (Wang et al. 2014).

In summary, the circadian clock has been implicated in

control of most major plant hormones and therefore by

extension most physiological events. Below, we discuss

recent findings regarding joint clock and hormone regula-

tion of two important processes, plant growth and plant

defense.

The roles of hormones and the clock in growth
regulation

Plant growth is a complex process controlled by many

environmental and endogenous signals including major

roles for the phytohormones IAA and GAs. Daily rhythms

in stem and leaf growth are observed in multiple species

and at least in dicots are generated by the circadian clock

(Ruts et al. 2012). The mechanisms underlying these

rhythms have been best studied in the Arabidopsis hypo-

cotyl. Clock and environmental regulation of hypocotyl

elongation is mediated in part via the transcription factors

PHYTOCHROME INTERACTING FACTOR (PIF) 4 and

5 (Dowson-Day and Millar 1999; Nozue et al. 2007). Daily

rhythms in PIF4/5 expression and thus hypocotyl elonga-

tion are generated by the evening complex, ELF3, ELF4,

and LUX (Nusinow et al. 2011). Additional regulation may

be provided by PRR7 and PRR5, which also bind to the

promoters of PIF4 and PIF5 (Franklin et al. 2011; Liu et al.

2013; Nakamichi et al. 2012).

A number of studies have linked PIF4 and 5 to the

control of IAA and GA signaling (de Lucas et al. 2008;

Koini et al. 2009; Kunihiro et al. 2011; Nozue et al. 2011)

and biosynthesis (Filo et al. 2015; Franklin et al. 2011;

Hornitschek et al. 2012). A simple model for regulation of

daily growth patterns can be generated from the following

results: PIF4 and PIF5 are required for expression of key

GA biosynthetic enzymes (Filo et al. 2015) and plants

deficient for GA production exhibit large reductions in

rhythmic growth (Nozue et al. 2011). Expression of GA

receptors is clock controlled and plant responsiveness to

GA is accordingly gated by the clock (Arana et al. 2011).

Together, these data suggest that daily hypocotyl growth

rhythms are driven by the PIF-dependent rhythmic pro-

duction of GA combined with circadian gating of GA

perception.
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However, the full story is much more complex. PIF

function is modulated by other hormone signaling path-

ways: a BR-dependent kinase phosphorylates PIF4 and

promotes its degradation (Bernardo-Garcia et al. 2014)

while the ability of multiple PIF proteins to bind to DNA is

inhibited by their binding to DELLA proteins, negative

regulators of GA signaling that are themselves degraded in

response to GA (de Lucas et al. 2008; Feng et al. 2008).

PIF4 transactivation activity is also inhibited upon binding

to the clock protein ELF3 (Nieto et al. 2015), providing

another layer of clock regulation on PIF function. PIFs

have also been implicated in auxin signaling. PIF4 and 5

regulate auxin biosynthesis (Franklin et al. 2011; Hor-

nitschek et al. 2012) and PIF4 and 5 modulate plant sen-

sitivity to auxin (Nozue et al. 2011). Finally, auxin- (but

not GA-) responsive genes are overrepresented among

those misexpressed in pif4 pif5 seedlings (Nozue et al.

2011), suggesting that PIFs may play a more important role

in growth control via auxin signaling than the GA pathway.

PIF-independent clock control of plant growth has also

been reported. Circadian rhythms in leaf growth persist in

plants mutant for PIF4 and 5 (Dornbusch et al. 2014).

Since daily rhythms in floral stem elongation require IAA

(Jouve et al. 1999) and plant growth and transcriptional

responses to IAA are gated by the clock (Covington and

Harmer 2007), clock regulation of auxin signaling may

play a role in PIF-independent growth rhythms. Indeed, the

clock-regulated transcription factor RVE1 promotes

hypocotyl growth by increasing free auxin levels; this is

independent of PIF4 and PIF5 function (Rawat et al. 2009).

However, further complexity is suggested by a genome-

wide transcriptome study implicating daily rhythms in

ABA and BR signaling, in addition to rhythms in IAA and

GA signaling, in daily rhythms in growth (Michael et al.

2008a). Therefore diel and circadian regulation of plant

growth likely involves a complex network of hormone

signaling pathways that are modulated at many steps.

The roles of hormones and the clock in defense
responses

Plants are subjected to various biotic stresses throughout

their sedentary life cycle. In general, SA and JA are rec-

ognized as the major defense hormones with SA being

essential for the immune response against biotrophic

pathogens and JA helping defend against necrotrophic

pathogens and herbivorous insects. The other phytohor-

mones act as modulators of the plant immune signaling

network (Pieterse et al. 2012). The roles of hormonal sig-

naling pathways may vary depending on the plant and the

type of the threat (Kunkel and Brooks 2002; Lund et al.

1998; Thomma et al. 2001).

Not surprisingly, defense responses are diel and circa-

dian regulated. Susceptibility of plants to bacteria, oomy-

cetes, fungi, and chewing insects has been shown to be

clock regulated (Bhardwaj et al. 2011; Goodspeed et al.

2012; Hevia et al. 2015; Ingle et al. 2015; Wang et al.

2011). Even after harvest, the circadian clock regulates pest

resistance and plant nutritional value (Goodspeed et al.

2013). Many hormone pathways and mechanisms have

been implicated in clock modulation of plant defense, even

to the same pathogen. For example, while plant defense

responses to mechanical infiltration of the bacterial

pathogen Pseudomonas syringae into leaves are maximal

in the morning, defense responses are maximal in the

evening when these bacteria are simply sprayed on plants

(Korneli et al. 2014; Zhang et al. 2013). These distinct

phases of peak resistance are likely due to circadian reg-

ulation of both stomatal aperture and downstream defense

signaling pathways. Regulation of stomatal aperture is

perturbed in plants mutant for the clock genes CCA1 and

LHY (Dodd et al. 2005; Shin et al. 2012; Zhang et al. 2013),

which regulate expression of GLYCINE-RICH RNA-

BINDING PROTEIN7 (GRP7) (also known as COLD AND

CIRCADIAN REGULATED 2 [CCR2]) (Zhang et al. 2013),

a protein shown to promote stomatal closure (Kim et al.

2008). Notably, GRP7 also promotes translation of FLA-

GELLIN SENSITIVE 2, a receptor for bacterial flagellin

(Nicaise et al. 2013), demonstrating the complexity of

clock regulation of defense signaling. The clock genes

PRR7, TIC, ELF3 and the clock output gene PATHOGEN

AND CIRCADIAN CLOCK CONTROLLED 1 have also

been implicated in regulation of stomatal aperture (Ki-

noshita et al. 2011; Korneli et al. 2014; Liu et al. 2013; Mir

et al. 2013).

Roles for JA in circadian-driven variation in non-stom-

atal dependent defense pathways have been demonstrated.

Circadian-driven variation in susceptibility to the fungus

Botrytis cinerea requires a functional JA signaling pathway

(Ingle et al. 2015), as do daily rhythms in resistance to

cabbage looper (Goodspeed et al. 2012). Expression of the

JA receptor CORONATINE INSENSITIVE1 is clock regu-

lated, as is expression of the transcription factor MYC2, a

positive regulator of JA signaling. In addition, the clock-

associated protein TIC interacts with MYC2 and is

required for daily variation in JA-mediated defense

responses (Shin et al. 2012). Studies demonstrating the

functional importance of circadian regulation in SA-me-

diated defense pathways have not yet been published, and

in fact one report suggests that CCA1 and LHY modulation

of defense responses is largely SA-independent (Zhang

et al. 2013).

Most studies to date have focused on the role of the

plant circadian clock in daily rhythms of plant suscepti-

bility to pathogens and pests. However, studies on Botrytis
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cinerea (Hevia et al. 2015) and chewing insects (Good-

speed et al. 2013) have shown that circadian regulation of

pathogen and pest physiology helps determine the outcome

of their interactions with plants. Future work on how cir-

cadian clocks act in both plants and pathogens to modulate

defense responses is likely to be of great interest.

Roles for hormones in regulation of the circadian
clock

In animals, it has long been recognized that circadian

rhythms are generated in diverse organs but that rhythms at

the organismal level are coordinated via a ‘master clock’ in

the brain that entrains ‘slave oscillators’ in peripheral

organs. This coordination is achieved by multiple mecha-

nisms including daily rhythms in body temperature,

metabolism, and hormone levels (Mohawk et al. 2012).

Although some work suggests at most only weak coupling

between clocks in individual plant cells (Fukuda et al.

2007; Shimizu et al. 2015; Thain et al. 2000; Wenden et al.

2012), other studies suggest there may be significant

interactions between clocks in different plant tissues (Endo

et al. 2014; James et al. 2008; Takahashi et al. 2015). An

obvious question is therefore whether hormone pathways

can entrain the plant clock and help coordinate rhythms

between far-flung organs such as roots and shoots.

A number of studies have found that application of

exogenous hormones can affect clock function in plants.

Although treatment with ET, SA, auxins, or GAs have been

reported to have little or no effect on clock pace (Cov-

ington and Harmer 2007; Hanano et al. 2006), more sig-

nificant changes in phase and/or period were reported after

treatment with ABA, CKs, or BR (Hanano et al. 2006;

Salome et al. 2006; Zheng et al. 2006). SA treatment did

not affect clock phase or period (Hanano et al. 2006; Zhang

et al. 2013; Zhou et al. 2015) but has been suggested to

reinforce circadian robustness (Zhou et al. 2015). However,

flg22, a peptide activator of basal defense pathways, has

been reported to shorten clock pace (Zhang et al. 2013) via

an unknown mechanism. Consistent with the ability of

exogenous hormones to alter clock pace, mutation of genes

that act in hormone signaling pathways can affect free-

running period (Hanano et al. 2006; Salome et al. 2006;

Zheng et al. 2006).

However, there are inconsistencies in the literature that

complicate interpretation of these findings. For example,

ABA treatment has been variously reported to cause either

modest or significant period shortening (Lee et al. 2016;

Liu et al. 2013) or period lengthening (Hanano et al. 2006).

Such discrepancies may be due to differences in hormone

concentration or formulation and the clock reporter gene

examined: different concentrations of a CK can evoke

either period shortening or period lengthening (Salome

et al. 2006), and the periodicity of different circadian

reporter genes may be oppositely affected by treatment

with the same hormone (Hanano et al. 2006). Moreover,

many of the above studies used high concentrations of

hormones over prolonged periods of times, calling into

question the physiological relevance of the observed

effects on clock function. Finally, the authors of one study

concluded that the effects of mutation of hormone-related

genes on clock function were likely due to an unknown

mode of action independent of hormone signaling (Salome

et al. 2006). Thus our current understanding of the role of

plant hormones in control of clock function remains

incomplete.

In addition to changes in hormone levels, daily cycles in

plant metabolites have been suggested to coordinate clock

function in disparate organs (Haydon et al. 2013; James

et al. 2008). In support of this hypothesis, acute treatment

of plants with sucrose during the day was shown to cause

phase advances while acute treatment at night caused phase

delays (Haydon et al. 2013). Such time-of-day-dependent

effects of sucrose on circadian phase are consistent with it

acting as an endogenous regulator of the circadian system,

making fixed carbon a strong candidate as a global coor-

dinator of clock function. Similar studies on the acute

effects of hormones on clock phase will be of great interest

and may help reveal whether they normally coordinate

clock function in disparate organs, as for example between

the shoot apex and roots (Takahashi et al. 2015).

Conclusions and future perspectives

It is now clear that the circadian system has a pervasive

effect on many, and perhaps all, hormone signaling path-

ways. A deeper understanding of the physiological signif-

icance of the connections between circadian and hormone

signaling networks will require experiments carefully

designed to deal with the biological complexity of these

interactions. One complicating factor is the multifactorial

nature of clock modulation of hormone signaling pathways,

with circadian control of a single pathway occurring at

levels ranging from hormone synthesis to signal reception

and processing. In addition, significant differences in clock

control of hormone signaling have been observed between

species and even among organs within a single plant,

limiting our ability to make generalizations based on single

studies. Finally, clock regulation of multiple hormone

pathways with partially overlapping physiological activi-

ties further complicates the picture. However, the devel-

opment of new techniques, for example those enabling

precise genome editing (Liu et al. 2016a) and the isolation

of specific cell types (Wang et al. 2012), is providing us
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with powerful new tools that will ultimately allow a better

understanding of how the intricate interplay between clock

and hormone signaling networks enhances plant adaptation

to a continually changing environment.
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