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Abstract Nitrogen and phosphorus availability are fre-

quent limiting factors in plant growth and development.

Certain bacteria and fungi form root endosymbiotic rela-

tionships with plants enabling them to exploit atmospheric

nitrogen and soil phosphorus. The relationships between

bacteria and plants include nitrogen-fixing Gram-negative

proteobacteria called rhizobia that are able to interact with

most leguminous plants (Fabaceae) but also with the non-

legume Parasponia (Cannabaceae), and actinobacteria

Frankia, which are able to interact with about 260 species

collectively called actinorhizal plants. Fungi involved in

the relationship with plants include Glomeromycota that

form an arbuscular mycorrhizal (AM) association intra-

cellularly within the roots of more than 80 % of land

plants. Increasing numbers of reports suggest that the rhi-

zobial association with legumes has recycled part of the

ancestral program used by most plants to interact with AM

fungi. This review focuses on the most recent progress

made in plant genetic control of root nodulation that occurs

in non-legume actinorhizal plant species.
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Introduction

In the context of global change, priority needs to be given

to biological nitrogen fixation to sustain both population

growth and ensure a clean and healthy environment (St-

effen et al. 2015). The Haber–Bosch process, which turns

the nitrogen in the air into ammonia to make chemical

fertilizers, involves the production of large amounts of CO2

which largely contribute to global warming. Furthermore,

nitrogen pollution caused by chemical fertilizers in the

runoff from agricultural fields is a major threat to human

and animal health.

The ability to reduce atmospheric nitrogen to ammonia

(nitrogen fixation) is restricted to prokaryotes, some of

which form mutualistic symbioses with plants (Franche

et al. 2009). Two kinds of associations lead to endosym-

biotic plant-bacterial associations in which different

nitrogen-fixing soil eubacteria are hosted in root nodules:

filamentous Gram-positive Frankia bacteria associate with

about 260 plant species belonging to eight different fami-

lies called actinorhizal plants (Dawson 2007), whereas

Gram-negative rhizobia associate only with legumes

(Fabaceae) and Parasponia (Cannabaceae) (Trinick 1973,

1979).

Legumes, Parasponia and actinorhizal plants all belong

to the same clade (Fabid), suggesting that a predisposition

to evolve nitrogen-fixing root nodule symbioses appeared

only once during evolution (Soltis et al. 1995; Doyle 1998,

2011). Recent work using evolutionary models supports the

hypothesis of predisposition suggesting that a single evo-

lutionary innovation occurred over 100 million years ago

(MYA), and was followed by several evolutionary events

leading to the emergence of the different kinds of symbi-

otic associations (Werner et al. 2014). In contrast to

nitrogen fixing symbioses, the association between
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arbuscular mycorrhizal (AM) fungi involves about 80 % of

land plants and originated more than 400 MYA (Remy

et al. 1994). Several observations including the fact that

some legume mutants defective in nodulation also lack the

AM interaction, and the sharing of common signaling

components, suggest that the evolutionary younger nitro-

gen-fixing symbiosis recruited functions from the older

AM symbiosis (Parniske 2008).

Symbiotic associations with rhizobia and AM involve

the exchange of signals enabling mutual recognition and

activation of a signaling cascade. In the case of rhizobial

associations, lipo-chitooligosaccharides (LCOs), called

Nod factors, are synthesized in response to the flavonoids

released in plant root exudates (Oldroyd et al. 2011). AM

interactions begin when the plant hormones strigolactones

stimulate the branching and growth of AM fungi (Buee

et al. 2000), which respond by releasing chitin oligomers

(COs) and LCOS, the latter being structurally similar to

Nod factors (Maillet et al. 2011; Genre et al. 2013).

Genetic analyses demonstrated that rhizobia-legumes and

AM associations share a single signaling pathway, or

«common symbiosis pathway» (CSP) (Kistner and Par-

niske 2002; Oldroyd et al. 2011). This pathway contains a

receptor-like kinase SYMRK/DMI2, nuclear pores, and the

potassium channel proteins required for the induction of

calcium oscillations (Capoen et al. 2011; Gutjahr and

Parniske 2013). A nuclear calcium- and calmodulin-de-

pendent kinase (CCaMK/DMI3) interacting with tran-

scription factors (Cyclops/IPD3) is also part of this

common pathway. The nuclear Ca2?-spiking induced by

AM fungi and rhizobia is likely decoded by CCaMK

triggering infection and organogenesis programs (Levy

et al. 2004; Mitra et al. 2004; Miwa et al. 2006). Among

the infection related genes, vapyrin (VPY), a protein con-

sisting of a major sperm protein (MSP) domain and an

ankyrin domain, was found to be involved in AM and

rhizobia infection (Murray et al. 2011; Gutjahr and Par-

niske 2013). The vpy-1 mutant displays normal Ca2?-

spiking in root hairs in response to supplied Nod factors,

and the elevation of VPY transcripts upon application of

Nod factors depends on NFP, DMI1, and DMI3. These

findings thus show that VPY acts downstream of the

common signalling pathway (Murray et al. 2011). Like-

wise, a set of symbiotic genes are controlled by specific

early transcription factors (TFs) such as CYCLOPS/IPD3

(Singh et al. 2014), NSP1 (Smit et al. 2005), NSP2 (Kalo

et al. 2005), ERN1/ERN2 (Andriankaja et al. 2007) and

NIN (Schauser et al. 1999).

The lack of a genetic system for Frankia together with

the difficulty involved in obtaining actinorhizal plant

mutants are two major obstacles to deciphering the

molecular dialogue between the symbiotic partners. How-

ever, the use of RNA interference (RNAi) to downregulate

candidate genes in plants and the growing number of

sequenced Frankia genomes has enabled significant

advances in our knowledge of actinorhizal symbioses in the

last few years (Franche and Bogusz 2012; Bogusz and

Franche 2015).

The aim of this review is to highlight the most recent

findings in symbiotic signaling in actinorhizal symbiosis.

The infection process

Frankia can infect actinorhizal plants in two different

ways, intracellular infection via root hair penetration (Fa-

gales) or intercellular penetration (Rosales and Cucur-

bitales) (Berry and Sunell 1990). Intracellular infection

occurs in several actinorhizal genera (Myrica, Comptonia,

Alnus and Casuarina), where the infection process pro-

ceeds through root hair deformation and penetration. In

addition to Frankia, other soil bacteria, including Pseu-

domonas spp., deform the root hairs of Alnus sp. (Knowl-

ton et al. 1980). It has been hypothesized that these

«helper» bacteria in the rhizosphere prepare the root hair

surface for penetration of the root hair cell wall by Frankia

(Knowlton et al. 1980). After invagination of growing fil-

aments of Frankia into the curled root hairs, infection

proceeds intracellularly in the root cortex (Berry et al.

1986). In the host cell, Frankia is embedded within a host

derived growing tubular matrix enriched in polygalactur-

onans known as the infection thread (Berg 1999). Upon

infection, cell divisions occur in the root cortex leading to a

small protuberance called the prenodule, which consists of

Frankia-infected and uninfected cells (Laplaze et al. 2000)

(Fig. 1). While the prenodule develops, the nodule pri-

mordium results from mitotic activity in pericycle cells

located opposite a protoxylem pole (Callaham and Torrey

1977). As the nodule primordium grows, the nodule cortex

becomes infected intracellularly by Frankia hyphae com-

ing from the prenodule (Fig. 1). No root hair deformation

is observed during the intercellular root invasion

process (Discaria, Eleagnus, Ceanothus and Cercocar-

pus) (Valverde and Wall 1999). Frankia hyphae penetrate

the middle lamella between adjacent root epidermal cells

and progress apoplastically between cortical cells, within

an electron-dense matrix. Cell divisions are induced in the

root pericycle opposite a protoxylem pole, leading to the

formation of the nodule primordium. Frankia hyphae infect

primordium cells in the nodule lobe where intracellular

colonization occurs (Wall and Berry 2008). The prenodule

step has not been reported in intercellular infection. In

general, mature actinorhizal nodules are multilobed struc-

tures, each nodule lobe is a modified lateral root without a

root cap, including a central vascular bundle, infected cells

restricted to the cortex, and a meristem at the apex.
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Plant symbiotic signaling molecules

By acting as auxin transport inhibitors, flavonoids play

many different roles in signaling and in nodule develop-

ment at different stages of rhizobium symbiosis (Wasson

et al. 2006). It has long been postulated that flavonoids also

play a significant role in actinorhizal symbioses including

chemo-attraction, proliferation of Frankia, and plant host

specificity (Smolander and Sarsa 1990; Benoit and Berry

1997; Van Ghelue et al. 1997; Hughes et al. 1999; Popovici

et al. 2010). However, the mechanisms underlying the

movement of the non-motile Frankia are not yet known.

Recently, Casuarina cunninghamiana root extracts con-

taining flavonoids were shown to be causing alterations to

the surface components of the compatible Frankia strain

CcI3 in relation to infectivity (Beauchemin et al. 2012). In

C. glauca, flavonoids were shown to accumulate in nod-

ules, and a possible role in nodule compartmentation

between Frankia-infected and uninfected cortical cells was

suggested (Laplaze et al. 1999). When an RNAi approach
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Fig. 1 Schematic diagram of actinorhizal signaling in the intracel-

lular infected C. glauca. Actinorhizal plant roots release flavonoids

that trigger the production of Frankia signals. The nodulation

signaling pathway is triggered when as yet unknown receptors sense

Frankia signals. Activation of the receptors produces oscillations of

calcium concentration (calcium spiking). Two members of the CSP, a

leucine-rich repeat receptor kinase (SYMRK) and a calcium calmod-

ulin-dependent protein kinase (CCaMK), are expressed following

Frankia infection. Like in legumes, the NIN gene is expressed during

preinfection stages in developing root hairs and during Frankia

infection. Expression of Cg12 encoding a subtilisin-like serine

protease and of CgAUX1 encoding an auxin influx carrier have been

shown to be specifically linked to plant cell infection by Frankia

(Svistoonoff et al. 2003; Péret et al. 2007). Expression in prenodules

and in mature nodule lobes has also been demonstrated, suggesting

that some of the genes involved in symbiotic signaling may have

other roles in nodule function. Hemoglobin (CgHb) and metalloth-

ionein (CgMT1) genes have been shown to be highly expressed in

cells filled with Frankia both in prenodules and in mature nodule

lobes (Gherbi et al. 1997; Laplaze et al. 2000; Obertello et al. 2007)
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was used to silence the expression of the chalcone synthase

gene from C. glauca, a major reduction in nodulation was

observed (Abdel-Lateif et al. 2013). Since in CgCHS1-

RNAi plants, the nodulation rate was affected whereas the

nodule structure was not, it was suggested that flavonoids

act during the early stages of symbiotic interactions. Future

work should address the chemical nature of the specific

flavonoids that act as early signals, and identify their

specific targets, even if no homologs of canonical nod

genes have been found in the Casuarina infective Frankia

strain CcI3 (Normand et al. 2007). Previous studies in

legumes that form indeterminate nodules have shown that

certain flavonoids are required to control auxin transport

during nodule initiation (Wasson et al. 2006; Zhang et al.

2009). To study this hypothesis in actinorhizal symbiosis,

auxin transport was investigated in C. glauca as described

in the following paragraph.

The role of auxin in actinorhizal symbiosis

Auxins play a crucial role in different aspects of plant

growth and development (Ludwig-Muller 2011). They

contribute to the development of lateral roots, shoots, and

flowers, and are involved in defense mechanisms against

pathogens. Auxins also play an important role in different

growth processes associated with symbionts. The role of

auxin has been described in ectomycorrhizal infection

(Sukumar et al. 2013) and in the formation of arbuscules in

AM symbiosis (Etemadi et al. 2014). In legumes, auxin is

involved in indeterminate nodule formation (Mathesius

2008). More recently, auxin signaling was shown to con-

tribute to rhizobial infection of M. truncatula root hairs

(Breakspear et al. 2014).

Recent data suggest that auxin is a signal that regulates

the Frankia infection process and nodule organogenesis.

As treatment of C. glauca roots with the auxin influx

inhibitor 1-naphtoxyacetic acid (1-NOA) perturbs the

nodulation process, two genes encoding putative C. glauca

auxin influx carriers were cloned and characterized (Péret

et al. 2007). One of them, CgAUX1, was shown to be

expressed in Frankia-infected cells during nodule devel-

opment, suggesting that an influx of auxin could be

involved in the infection process. It was also shown that

auxins accumulate in Frankia-infected cells and that

accumulation is driven by coordinated cell-specific

expression of influx and efflux auxin transporters (Perrine-

Walker et al. 2010). Frankia strains have the ability to

produce auxins in pure culture (Wheeler et al. 1984;

Hammad et al. 2003). However, since Frankia mutants

defective in auxin biosynthesis are not available, the exact

source of the auxin, i.e. plant or bacteria, is not known

(Perrine-Walker et al. 2010). Transcriptional analyses in C.

glauca expanded the range of transcription factors

putatively involved in nodulation (Hocher et al. 2011;

Diédhiou et al. 2014). CgIAA7, one of the auxin-response

factor (AEF) genes in the AUX/IAA family, was identified

in C. glauca (Champion et al. 2015). CgIAA7 is expressed

both in plant cells infected by Frankia and in nodule pri-

mordia in C. glauca. This transcription factor, together

with the auxin response factors (ARF) family of tran-

scription factors, controls the expression of downstream

auxin-responsive genes (Peer 2013). To interfere in the

signaling pathway, dominant negative and positive ver-

sions of CgIAA7 were expressed during nodulation in C.

glauca. Based on the impacts of the expression of different

versions of IAA7 on the establishment of the symbiosis,

these authors concluded that auxin could be a negative

regulator of symbiosis. In the proposed model, which

resembles that of the long-distance regulation mechanism

described for AM symbiosis (Meixner et al. 2005), it is

hypothesized that auxin accumulation in infected plant

cells triggers the synthesis of an inhibitory diffusible factor,

resulting in the inhibition of nodulation (Champion et al.

2015). This suggests that high auxin concentrations control

nodulation to balance the nitrogen gains with energy

demands. It is also possible that at low concentrations,

auxin is involved in other processes such as the cell-wall

remodelling that occurs during infection, limitation of plant

defense mechanisms, or control of the division of pericycle

cells leading to the initiation of nodule primordia.

In contrast to C. glauca, in the actinorhizal plant Dis-

caria trinervis, nodulation is initiated by intercellular

infection. Since treatment with 1-NOA also impaired

nodulation efficiency in D. trinervis, the role of auxin

during the nodulation process was investigated (Imanishi

et al. 2014). Immunolocalization experiments indicated

that, as previously reported in C. glauca, auxin accumu-

lated in Frankia infected cells. However, in contrast to the

findings concerning CgAUX1 in C. glauca, the activity of

the promoter DtAUX1 from D. trinervis was restricted to

the meristem region of the nodules and was not detected

during infection by Frankia. This may be explained by the

fact that (i) the role of auxin differs between Frankia

intercellular penetration and intracellular hairy root infec-

tion mechanisms (ii) different auxin transporters may be

involved in C. glauca and D. trinervis.

New insights into the actinorhizal signal

transduction pathway

As mentioned above, phylogenetic studies have shown that

all plants able to enter a root nodule symbiosis belong to

the same clade, suggesting that they share a predisposition

for symbiosis (Soltis et al. 1995; Doyle 1998). This finding

prompted investigation of the possibility that the CSP is

also shared by actinorhizal symbioses. The legume
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homolog of the receptor-like kinase gene SYMRK/DMI2

positioned upstream from the genes involved in calcium

spiking, was isolated and its function in signaling was

assessed in C. glauca (Gherbi et al. 2008) and Datisca

glomera (Markmann et al. 2008). Following downregula-

tion of SYMRK/DMI2 in both C. glauca and D. glomerata,

a severe reduction in nodulation by Frankia and in colo-

nization by AM fungi was shown in the transgenic plants.

Furthermore C. glauca and D. glomerata SYMRK/DMI2

genes had the ability to complement knockout Lotus

japonicus symrk mutants. These results point to the exis-

tence of the CSP in actinorhizal plants.

Transcriptional analysis of C. glauca and A. glutinosa

expanded the range of CSP genes reported to be involved

in AM and legume-rhizobium symbioses (Hocher et al.

2011; Demina et al. 2013; Diédhiou et al. 2014). Most of

the CSP genes were identified in these two actinorhizal

plants, including CCaMK, the calmodulin-dependent pro-

tein kinase (CCaMK), which may decode calcium spiking

in response to a Frankia signal. In C. glauca, silencing of

CgCCaMK resulted in lower nodulation and AM fungal

colonization (Svistoonoff et al. 2013). The function of

CgCCaMK in endosymbioses was supported by full com-

plementation of the M. truncatula dmi3 mutant for nodu-

lation and colonization by AM fungi (Svistoonoff et al.

2013). In legumes and Parasponia andersonii, a gain-of-

function mutation of CCaMK has been shown to cause

spontaneous nodulation without rhizobia (Gleason et al.

2006; Tirichine et al. 2006). Interestingly, when an auto-

active form of CgCCaMK lacking the auto-inhibitory/CaM

domain was expressed in C. glauca and D. trinervis, nodule

organogenesis was also observed in absence of Frankia

(Svistoonoff et al. 2013). Since D. trinervis is an acti-

norhizal member of the Rosales infected by Frankia via the

primitive intercellular infection pathway, one can conclude

that CCaMKs are central components of actinorhiza

organogenesis, regardless of the mode of infection (Svis-

toonoff et al. 2013). Furthermore, since legume and acti-

norhial nodules differ anatomically, these results raise the

question of the specific mechanisms that determine the

organogenesis of the two different types of nodules.

Additional evidence for the conservation of CSP in acti-

norhizal plants was provided by the observation of Ca2?

oscillations in A. glutinosa and C. glauca root hairs in

response to exsudate to Frankia (Granqvist et al. 2015;

Chabaud et al. 2016).

In legumes, the transcription factor NODULE INCEP-

TION, NIN, is linked to a «NOD»-specific pathway

downstream from the CSP. The NIN gene is expressed

early during the interaction with rhizobia, in both root

epidermis and nodule promordia. NIN fulfills many func-

tions by targeting genes involved in bacterial infection,

nodule organogenesis, and autoregulation of nodulation

(Marsh et al. 2007; Soyano et al. 2013; Yoro et al. 2014).

CgNIN, a C. glauca sequence homolog to the Lotus

japonicus LjNIN gene, was recently identified (Clavijo

et al. 2015). This relationship and the finding that CgNIN

belongs to the same cluster that includes legume NIN genes

involved in symbiosis, led to its further characterization in

the control of nodulation by Frankia. CgNIN-RNAi plants

showed reduced nodulation, but AM colonization was not

affected. Complementation of a M. truncatula nin mutant

with a CgNIN under the control of MtNIN promoter

revealed the absence of infection events, but small nodule-

like structures were observed. These authors concluded that

CgNIN can only partly complement the MtNIN mutant by

activating early cell divisions, leading to nodule organo-

genesis. During the symbiotic process, the CgNIN promoter

was shown to drive some expression in early infected cells

including root hairs (Clavijo et al. 2015). Altogether, these

data show that, like in legumes, NIN plays a central role in

actinorhizal symbiosis suggesting, in addition to the CSP,

conservation of a « NOD » specific pathway in the host

plants nodulated by rhizobia and Frankia. In addition to

NIN, several transcription factors of the GRAS and NF-Y

families have been shown to play a critical role in rhizobia

and AM symbioses (for a review, see Rı́podas et al. 2014).

Their role is to trigger the developmental program of

nodule organogenesis and the infection process. Recently,

transcriptional and phylogenetic analyses in C. glauca and

A. glutinosa revealed several other potential transcription

factors homologous to those involved in legume-rhizobia

and AM symbioses (Diédhiou et al. 2014). Once again,

these results suggest conservation of the mechanisms reg-

ulating gene expression in these three endosymbioses and

extending far beyond the CSP.

The Frankia nodulation signal

In all rhizobia -except photosynthetic Bradyrhizobia- that

elicit root-and stem nodules of legumes belonging to the

Aeschynomene genus (Giraud et al. 2007), the synthesis of

the N-acylated chitin oligomers of Nod factors is controlled

by three specific enzymes, encoded by canonical nod genes

nodABC (NodA—acyl transferase, NodB—chitin deacety-

lase, NodC—chitin synthase) (Oldroyd et al. 2011). The

differences in the structure of Nod factors made by dif-

ferent rhizobia species are major determinants of host

specificity) (Oldroyd et al. 2011).

Compared to rhizobia, one distinguishing feature of

Frankia is that individual strains may have a gradient of

specificity for different plant species, host origin is not

always a determining characteristic for the classification of

Frankia (Swensen and Benson 2008). Several phylogenetic

chronometers including RAPD PCR, 16S and 23 s-rRNA,

gene sequences (ITS region) between 16S and 23S-rRNA,
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and nif gene sequences have been used to identify the

genetic variability and relationships among the Frankia

strains isolated from different host plants (reviewed in

Hahn 2008). Based on the 16S database, Normand et al.

(1996) grouped the Frankia genus in four clusters: cluster

1, strains effective in Alnus (Betulacea), Casuarina, Allo-

casuarina (Casuarinaceae) and Comptonia, Myrica and

Morella (Myricaceae); cluster 2, uncultured strains present

in nodules of Dryas (Rosaceae), Coriaria (Coriariaceae)

and Datisca (Dastscaceae); cluster 3, strains effective in

Elaeagnaceae and Gymnostoma (Casuarinaceae); and

cluster 4, non-infective or non-effective strains isolated

from a range of host plants. The recent determination of

several Frankia genomes made it possible to look for

canonical nod homologs from rhizobia. In the Frankia

genomes of symbionts belonging to cluster 1 (Frankia CcI3

and Frankia ACN14a) and cluster 3 (EAN1pec), several

nodC and nodB distant homologs were observed spread

throughout the actinobacterial genomes. Furthermore, they

did not form a SYM-island and no nodA gene was detected

(Normand et al. 2007). These findings are in accordance

both with those of previous studies in which no molecules

ressembling Nod factors were detected in Frankia super-

natants (Cérémonie et al. 1999) and with the absence of

rhizobial complementation of nod mutants with Frankia

DNA (Cérémonie et al. 1998). Transcriptomics and pro-

teomics approaches were used to identify Frankia genes

that are essential for the production of symbiotic factor

(Alloisio et al. 2007, 2010; Bickhart and Benson 2011;

Udwary et al. 2011). However, only genes that fulfill

metabolic functions in symbiosis have been identified so

far. The difficulty involved in isolating Frankia symbiotic

genes is amplified by the fact that, in the field of plant–

microbe interaction, Gram-positive bacteria have received

little attention compared with the intensive study

of Gram-negative bacteria (Francis et al. 2010).

Whether « omics » technologies will allow the identifica-

tion of candidate genes involved in the synthesis of the

symbiotic signals emitted by culturable Frankia strains

remains to be seen. Recently, the genome sequence of the

unculturable cluster 2 Frankia datiscae Dg1 revealed the

presence of canonical nod genes nodABC (Persson et al.

2011). Although Nod factors were not purified, transcripts

of these genes were detected, suggesting they play a role in

the Frankia/Datisca symbiosis (Persson et al. 2015). Since

actinorhizal symbioses involving cluster 2 Frankia strains

are thought to be the oldest actinorhizal symbioses, it was

hypothesized that canonical nod genes were probably lost

during the evolution of Frankia symbionts (Persson et al.

2015). The BMG5.1 strain, which also belongs to the

recalcitrant cluster 2, was isolated from Coriaria myrtifolia

and reported to fulfill Koch’s postulates by reinfecting its

host plants (Gtari et al. 2015). The genome of this isolate

does not contain the canonical nodABC genes (M. Gtari,

personal communication). This result contradicts the

hypothesis that most Frankia symbionts lost their nod

genes, and implies that Frankia dastiscae Dg1 may have

recently acquired them.

The root hair deformations observed after contact with

Frankia hyphae are similar to those observed following root

incubation with a filtrate from a Frankia culture. Further-

more, a correlation was found between root hair deformation

and the host range of the Frankia strains tested, suggesting

that a Frankia diffusible factor involved in actinorhizal

symbiosis is present in Frankia culture supernatant (Van

Ghelue et al. 1997; Cérémonie et al. 1999). Initial attemps to

isolate specific signal molecules with bioassays based on

root hair deformation with Frankia culture supernatants

were not sucessful (Van Ghelue et al. 1997; Bhuvaneswari

and Solheim 2000). Of great interest is the demonstration

that the CgNIN promoter was activated by diffusible factors

synthetized by Frankia at a very early stage (14 h) after the

incubation of the root system with a supernatant of Frankia

CcI3. Consistent with the expression of CgNIN at the pre-

infection stage, the inhibition of root hair deformation was

observed in CgNIN-RNAi plants (Clavijo et al. 2015). This

result paves the way for using transgenic plants ProCgNIN

driving the expression of a reporter gene as a biological test

to purify the diffusible Frankia symbiotic factors (Clavijo

et al. 2015). Thus, transgenic C. glauca expressing the

ProCgNIN:GFP fusionwere used to identify the biologically

active molecules in the Frankia supernatant (Chabaud et al.

2016). The candidate molecules for Frankia signals were

found to be hydrophilic and chitinase-resistant (Chabaud

et al. 2016), thereby confirming the results of previous

studies (e.g. Cérémonie et al. 1999). Interestingly, these

diffusible biologically active molecules were found to

induce calcium spiking in C. glauca, strengthening the

hypothesis of their role as signaling molecules (Chabaud

et al. 2016). The purification and complete characterization

of Frankia signaling molecules involved in symbiotic pro-

cess will indeed be of great interest.

Conclusions

Recent research in actinorhizal signaling has highlighted

the function of already known legume signaling compo-

nents of the CSP, such as SYMRK/DMI2 and CCaMK/

DMI3, or required for nodulation, such as NIN (see Fig. 1

for summary). These findings reinforce the hypothesis that

these genes are part of the predisposition to evolve nodu-

lation in Fabids. More research is needed to understand the

mechanisms that determine actinorhizal specificity. First,

the isolation and characterization of the Frankia symbiotic

factor and its plant receptor complexes must be pursued.
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The identification of CgNIN as a potential marker for pre-

infection events should help identify the active fractions

obtained from Frankia culture supernatant. In addition to

NIN, functional analyses of the transcription factors

recently identified in C. glauca and A. glutinosa are

essential to understand their specific role in actinorhizal

symbiosis (Diédhiou et al. 2014). Since actinorhizal nod-

ules are developmentally related to lateral roots, it would

be interesting to focus on transcription factors, as these are

also known to play a role in lateral root growth. In a recent

work, a new GRAS-domain containing protein, named

SIN1, involved in both lateral root and nodule formation,

was characterized in common bean (Battaglia et al. 2014).

How actinorhizal and legume plants recruited a pre-exist-

ing lateral root genetic program in response to Frankia and

rhizobia, is a key question for the future transfer of nitro-

gen-fixing symbiosis to major non-legume crops.
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Debellé F (2004) A putative Ca2? and calmodulin-dependant

protein kinase required for bacterial and fungal symbioses.

Science 303:1361–1364. doi:10.1126/science.1093038

Ludwig-Muller J (2011) Auxin conjugates: their role for plant

development and in the evolution of land plants. J Exp Bot

62:1757–1773. doi:10.1093/jxb/erq412
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