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one glycosyl-transferase and one glutathione-S-transferase) 
were NTSR markers which combined expression levels 
could reliably identify resistant plants. This work con-
firmed that NTSR is driven by differential gene expression 
and involves different mechanisms. It provided tools and 
foundation for subsequent NTSR investigations.
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Introduction

Agricultural weeds are currently a considerable threat to 
food security (Oerke 2006; Vigueira et  al. 2013). Weeds 
are mostly short-lived plants that successfully adapted to 
agricultural ecosystems (Baker 1974; Vigueira et al. 2013). 
Understanding the mechanisms driving weed adaptation is 
crucial to devise strategies enabling more efficient weed 
control. One key step towards this goal is unravelling the 
genes driving traits crucial for weed success (Délye 2013; 
Vigueira et  al. 2013). Prominent among these traits is 
resistance to herbicides that is weed adaptive response to 
herbicide applications (reviewed in Délye et al. 2013). Her-
bicide resistance is also an intriguing study system to deci-
pher plant stress response: exposure to the stress (herbicide 
application) can be controlled and the adaptive phenotype 
is clear-cut: only adapted (resistant) plants survive herbi-
cide application (Délye 2013).

Mechanisms of resistance to herbicides can be catego-
rised into two classes. Target-site-based resistance is con-
ferred by alleles of the herbicide target protein gene, with 
“allele” meaning a variant of a wild-type gene displaying 
differences in its nucleotide sequence and/or expression 
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level. Target-site-based resistance is now well elucidated 
(Beckie and Tardif 2012; Délye et  al. 2013). Non-target-
site based resistance (NTSR) is endowed by alleles caus-
ing herbicide neutralisation or compensation for herbicide 
action, and is the most agronomically noxious type of 
resistance (Délye et  al. 2013). NTSR is considered to be 
caused by constitutive or herbicide-induced mechanisms 
also involved in plant response to the herbicide stress, and 
thus would mostly be driven by inheritable differences in 
the expression of a set of genes between resistant and sen-
sitive plants (Yuan et al. 2007; Délye 2013). Cytochromes 
P450, glycosyltransferases, glutathione-S-transferases and 
transporters are involved in NTSR, but very few genes 
have been identified to date (Yuan et al. 2007; Délye 2013; 
Gaines et al. 2014; Iwakami et al. 2014; Saika et al. 2014).

Unravelling the complex genetic control of herbicide 
response and NTSR can be achieved using whole-tran-
scriptome sequencing (RNA-Seq) that is currently the most 
powerful tool to identify genes differentially regulated 
among experimental modalities (Martin and Wang 2011; 
Ozsolak and Milos 2011). RNA-Seq allows comprehensive 
transcriptome sequencing and yields qualitative data (tran-
script sequences) and quantitative data (transcript expres-
sion level) without the need for pre-existing genomic or 
transcriptomic resources. Accordingly, RNA-Seq is con-
sidered a highly promising way of unravelling the genetic 
control of complex traits in plants, but this approach is still 
fledging in weeds (Ward et al. 2012; Délye 2013; Vigueira 
et al. 2013).

Rye-grasses (Lolium spp.) are a group of outcross-
ing interfertile species. The three most common species 
in Europe are the diploid (2n  =  14) perennial Lolium 
perenne L. and the annual Lolium multiflorum Lam. and 
Lolium rigidum Gaud. (Charmet et al. 1996). Because they 
can adapt to a broad range of ecological conditions, rye-
grasses are major forage and turf grasses (Humphreys and 
O’Kiely 2006). Annual rye-grass species are also some 
of the world’s most troublesome and widespread agricul-
tural weeds (Heap 2014). As weeds, rye-grasses are most 
efficiently controlled by herbicide applications. How-
ever, recurrent herbicide use has selected for resistance in 
numerous rye-grass populations worldwide (Beckie and 
Tardif 2012). Polygenic NTSR that confers an unpredict-
able resistance to a range of herbicides (Busi et  al. 2011; 
2013) is largely the most important type of resistance in 
rye-grass (Beckie and Tardif 2012) and can cause severe 
control failures. Several contigs potentially involved in 
rye-grass NTSR to herbicides inhibiting acetyl-CoA car-
boxylase (ACCase), the second herbicide class most 
used against rye-grass, were recently identified using a 
RNA-Seq approach (Gaines et al. 2014). However, NTSR 
genetic bases remain largely unknown in rye-grasses. Here, 
we considered rye-grass NTSR to herbicide inhibiting 

acetolactate synthase (ALS), the herbicide class most used 
against rye-grass. RNA-Seq allowed establishing a tran-
scriptomic resource that was used to check whether (1) 
gene regulation was at the basis of herbicide response, 
and (2) whether particularities in gene regulation could be 
related to differences in herbicide sensitivity in rye-grass. 
Comparison of the transcriptomic responses of plants with 
NTSR and of herbicide-sensitive plants over a time-course 
experiment provided insight into key biological processes 
and molecular functions involved in rye-grass response to 
ALS inhibitors, and identified contigs that can be used as 
NTSR markers.

Materials and methods

Plant material and sample collection

Seeds were collected in 2008 in one French field where 
rye-grass control using ALS inhibitors failed. Seedlings 
were checked for the absence of ALS alleles conferring 
herbicide resistance by genotyping as described (Délye 
et  al. 2009). Twenty genotyped seedlings were grown in 
individual 2L-pots in a glasshouse at 22/18  °C day/night 
with 14-h photoperiod. At the eighteen tiller stage, they 
were subjected to vegetative propagation: all individual till-
ers were separated and transplanted into individual pots. 
For each plant, this yielded 18 clones at the 3–4 leaf growth 
stage, at which ALS-inhibiting herbicide application is 
recommended.

A time-course experiment including seven time-points 
was conducted: untreated (UT), two, six, 12, 24, 36 and 
48  h after treatment (HAT). Two clones (biological repli-
cates) intended for RNA extraction were used per plant at 
each time-point (i.e., 14 clones per plant in total). The four 
remaining clones of each plant were not sampled for RNA 
extraction. Two clones sprayed with herbicide (phenotype 
control) and two clones sprayed with water (water-sprayed 
control) together with the clones used for the time-course 
experiment served to characterise plant phenotype (resist-
ant or sensitive) 4  weeks after treatment. Two herbicide-
sprayed and two water-sprayed clones from a reference 
herbicide-sensitive plant were included in the spraying 
experiment to check herbicide application efficacy. The 
commercial herbicide formulation Abak that contains 
pyroxsulam (7.5 % w/w; Dow AgroScience, Saint Quentin 
en Yvelines, France), an ALS inhibitor frequently sprayed 
against rye-grasses, was used in the time-course experi-
ment at its recommended field rate (18.75  g pyroxsulam 
ha−1) with an adjuvant enhancing herbicide penetration 
into leaf tissues (Actirob B; Bayer CropScience, Lyon, 
France, 1 L ha−1). Herbicide application was as described 
(Petit et al. 2012).
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ALS inhibitors essentially act in the meristems (Zhou 
et al. 2007) that are at the leaf basis in grasses (Briske 1991). 
One sample collected for RNA extraction thus included the 
basis of the above-ground part of the two clones of one given 
plant in one given modality that was cut, immediately fro-
zen in liquid nitrogen and stored at −80 °C until phenotype 
assessment had been performed 4  weeks after herbicide 
application using the clones intended for this purpose. Three 
resistant plants and three sensitive plants were selected for 
RNA-Seq. Forty-two samples, each consisting of two clones 
for each of the six selected plants and seven time-points, 
were thus used for subsequent analyses.

RNA extraction and Illumina sequencing

Total RNA was extracted from the 42 samples using RNe-
asy plant mini kit (Qiagen, Courtaboeuf, France) following 
manufacturer’s instructions. Potential genomic DNA con-
taminations were removed using the RNase-Free DNase 
Set (Qiagen). RNA quality was checked on a 2100 Bio-
analyser (Agilent, Waldbroon, Germany). Our aim was to 
identify as many transcripts present in each phenotype at 
each time-point as possible. For this purpose and because 
sequencing 42 samples was not affordable, the 42 RNA 
samples were pooled prior to sequencing. One pooled sam-
ple was an equimolar mixture of total RNA extracted from 
the six biological replicates per phenotype at a given time-
point (two clones for each of the three resistant or sensitive 
plants at each time-point). Fourteen pooled samples were 
thus sequenced. This design allowed to investigate the aver-
age transcriptomic pattern of one resistant pool and one 
sensitive pool each consisting of three plants with two bio-
logical replicates per plant over the seven time-points.

RNA-Seq was performed by Fasteris (Plan-Les-Ouates, 
Switzerland). One µg RNA from each of the 14 pooled 
samples was processed using TruSeq RNA Sample Prep kit 
(Illumina). Transcripts were purified and fragmented by zinc 
breaking using mRNA-SEQ kit (Illumina). Non-normalised, 
double-stranded cDNA libraries were prepared with random 
primers and RNaseH and subjected to 15 PCR cycles. Frag-
ments with 160–240 base pair inserts were recovered after 
agarose gel electrophoresis. Each cDNA library was indexed 
with a unique 6-base identifier and sequenced in two inde-
pendent runs following manufacturer’s instructions to gener-
ate paired-end, 100-base reads. In each sequencing run, two 
lanes with seven libraries per lane were used on a HiSeq 2000 
(Illumina). Sequence data was extracted using the CASAVA 
1.8.1 pipeline (Illumina) and subjected to quality control 
using an indexed PhiX reference sequence on each call lane 
to estimate sequencing error. Identifier sequences and con-
taminant sequences were removed and the quality reads were 
subsequently attributed to the corresponding pooled samples, 
yielding one set of quality reads per experimental modality.

De novo transcriptome assembly and annotation

All quality reads obtained for all 14 experimental modali-
ties were pooled and used as starting material for de novo 
transcriptome assembly. As the pooled samples sequenced 
were obtained from plants issued from seeds collected in 
a field, nucleotide variation among plants was expected to 
complicate transcriptome assembly. Preliminary assembly 
tests with available software and protocols generated highly 
fragmented assemblies. A custom iterative procedure was 
thus designed to handle heterozygosity and sequencing 
errors. The first step implemented iterative Velvet (Zerbino 
and Birney 2008) runs with stringent parameters (k-mer 
ranging from 61 to 85, step = 4, max_divergence = 0.01). 
Reads were considered stranded (-strand_specific param-
eter) even if the actual data were not. At each iteration, the 
contig sequences assembled at the previous iteration were 
integrated as long reads (-long). This highly time-con-
suming procedure generated a set of accurate long reads. 
This data was very similar to Sanger EST sequence data. 
An iterative pipeline integrating an nrcl-like program and 
the cap3 assembler (Huang and Madan 1999) was devel-
oped. Each pipeline iteration combined an nrcl run remov-
ing redundancy by including short redundant contigs into 
longer contigs and a cap3 assembly merging contigs. At 
each iteration, less and less stringent parameters were used, 
because each iteration added constraints to the subsequent 
one. The thresholds used for nrcl and cap3 were an Identity 
percentage ranging from 99 to 93 %, an overhang length of 
5 and 40 nucleotides, respectively, and a high-scoring seg-
ment pair length of 100 and 40 nucleotides, respectively.

The assembly quality was manually checked on a set 
of contigs expected to correspond to single-copy genes 
by checking that a single consensus contig sequence was 
assembled for each gene (not shown). Putative peptide-
coding sequences were sought in all assembled contigs 
using FrameDP (Gouzy et  al. 2009) and annotated using 
InterProScan (Quevillon et al. 2005). Annotations included 
Gene Ontology (GO) terms, Enzyme Commission (EC) 
codes and Pfam domains. Similarity searches for peptide 
annotation were also conducted against TAIR10, Brachypo-
dium distachyon proteome, Swiss-Prot and TrEMBL using 
the BLASTp algorithm with an E value <10–5. Additional 
Pfam domain assignation was performed using the Pfam-
A 27.0 database and the hmmsearch program (Finn et  al. 
2011).

Contig expression analysis

All sequence reads corresponding to each pooled sample 
were mapped against the assembled contigs using Glint 
(Faraut and Courcelle unpublished; available at http:// 
lipm-bioinfo.toulouse.inra.fr/download/glint/) configured to  

http://lipm-bioinfo.toulouse.inra.fr/download/glint/
http://lipm-bioinfo.toulouse.inra.fr/download/glint/
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keep only the best scoring pairs without gaps in the align-
ment (maximum number of mismatches  =  5, minimum 
score =  24, length of each read aligned ≥50 %). Redun-
dancy was expected in the assembly. Thus, each read in 
each experimental modality could be mapped to different 
contigs, so that differential expression analysis was not 
biased by redundancy. The total number of reads mapped 
per contig was computed for each pooled sample and nor-
malised using the RPKM method (Mortazavi et al. 2008).

RT‑qPCR validation of RNA‑Seq expression patterns

Primers targeting 19 contigs showing RNA-Seq expression 
patterns stable or variable among modalities (Table S1) 
were designed using Primer3Plus (Untergasser et al. 2007). 
Amplification specificity and qPCR efficacy were checked 
as described (Duhoux and Délye 2013). The expression 
level of each contig was measured in each of the 42 origi-
nal RNA samples used to create the 14 pooled samples 
subjected to RNA-Seq. cDNA synthesis was performed in 
duplicate (technical replicates) from 5 µg total RNA using 
the Masterscript RT-PCR System (5PRIME, Hamburg, 
Germany). qPCR using a StepOnePlus Real-Time PCR 
System (Applied Biosystems, Foster City, USA) and con-
tig expression level normalization using three validated 
rye-grass reference genes were as described (Duhoux and 
Délye 2013). Correlation between contig expression level 
obtained by RNA-Seq and average contig expression level 
measured by RT-qPCR over the three original RNA sam-
ples used to create each pooled sample was checked using 
Pearson’s product-moment coefficient correlation.

Identification of differentially expressed contigs  
and GO term enrichment

Because of the absence of biological replicates in our 
experimental design, no statistic test could be performed 
to identify contigs with differences in expression among 
modalities. Thus, to identify differentially expressed con-
tigs, we used R DESeq package (Anders and Huber 2010) 
with the following, stringent criteria implemented: a differ-
ence in expression  >  threefold between two modalities, a 
contig length ≥400 nucleotides and a RPKM value ≥0.5 
in at least one modality. The TopGO package was subse-
quently implemented with the elim method (Alexa et  al. 
2006) to identify GO terms significantly enriched in con-
tigs differentially regulated among modalities. The tran-
scriptomic herbicide response of each phenotype (resist-
ant or sensitive) over time was investigated via pairwise 
comparisons between each treated modality and the cor-
responding UT modality. To identify phenotype-associated 
differences in herbicide response, pairwise comparisons 
were performed between phenotypes at each time point.

Candidate NTSR contig validation

Contigs with a possible role in NTSR were identified after 
GO enrichment analyses and/or based on the analysis of 
individual expression patterns of contigs assigned to Pfam 
families involved in NTSR. Differential expression was 
first confirmed by measuring the expression level of these 
contigs in each of the 42 individual samples using RT-
qPCR (Table S2). For further validation, the expression 
level of all contigs up-regulated in each resistant plant com-
pared to each sensitive plant at each time-point was meas-
ured in untreated clones of 212 additional plants originating 
from 15 geographically different French field populations 
(Table 1). For each of these plants, the absence of mutant 
ALS alleles conferring herbicide resistance had been 
checked and the phenotype characterised beforehand using 
the commercial herbicide formulations Abak (pyroxsulam) 
and Archipel WG (Bayer CropScience, Lyon, France) that 
is a mixture of two ALS inhibitors (iodosulfuron + meso-
sulfuron, 3 % w/w each). Briefly, each plant was split into 
eight clones. Two clones intended for RNA extraction were 
collected as before just prior to treatment. Abak or Archi-
pel were each applied on two clones per plant at their rec-
ommended field rates (18.75  g pyroxsulam ha−1 or 7.5  g 
iodosulfuron + 7.5 g mesosulfuron ha−1, respectively) with 
adjuvant (Actirob B, 1 L ha−1). The last two clones were 
water-treated controls. Four weeks after herbicide appli-
cation, plants which treated clones were killed, markedly 
affected but survived or unaffected or moderately affected 
but healthily growing were rated sensitive, moderately 
resistant or resistant, respectively.

Results

LOLbase, a rye‑grass transcriptome resource

A range of phenotypes were observed 4 weeks after treat-
ment among the 20 plants sprayed. The three plants show-
ing the most resistant phenotypes (phenotype control most 
similar to the water-sprayed control) and the three plants 
showing the most sensitive phenotypes (phenotype con-
trol most rapidly killed) were selected for RNA-Seq. RNA 
integrity numbers measured prior to sequencing ranged 
from 8.6 to 9.8, indicating good RNA quality. After filter-
ing, sequencing the 14 pooled samples yielded 323,833,502 
quality 100-base reads (>32 ×  109 nucleotides) that were 
pooled for de novo transcriptome assembly. Reads are 
available at the NCBI Sequence Read Archive (http://ncbi.
nlm.nih.gov/sra, accessions SRR1141056 to SRR1141083).

147,829 unique sequences with sizes ranging from 145 
to 13,078 nucleotides were assembled de novo. Assembled 
contigs shorter than 400 nucleotides or encoding predicted 

http://ncbi.nlm.nih.gov/sra
http://ncbi.nlm.nih.gov/sra
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peptides shorter than 133 amino-acids that probably cor-
responded to truncated transcripts were poorly annotated 
(Table 2, Fig. S1). They were considered as assembly waste 
and filtered out. The proportion of contigs with at least one 
mapped read was similar in all modalities (Fig. S2). Previ-
ous studies proposed that contigs with low RPKM values 
were assembly errors and that a twofold average sequenc-
ing coverage was an acceptable threshold to consider a 
contig as representing a potentially expressed transcript 
(Zhao et  al. 2010; Burke and Strand 2012). Herein, this 
threshold corresponded to a RPKM value of 0.5. Accord-
ingly, all sequences with RPKM values <0.5 in all modali-
ties were discarded from subsequent analyses. This yielded 

a rye-grass transcriptomic resource containing 92,381 con-
tigs (N50 =  771 nucleotides) predicted to encode 81,563 
potential peptides (Table  2). In the following, the name 
“LOLbase” will refer to these contigs and their predicted 
peptides. Sequences are available at https://iant.toulouse.
inra.fr/Lolium?download=1.

Expression data validation using RT‑qPCR

LOLbase expression data were validated by RT-qPCR 
measurement of the expression level of 19 randomly 
selected contigs in each of the 42 original individual RNA 
samples. The expression level of the 19 contigs showed 
variation among individual plants, including plants with 
the same phenotype at the same time-point (Figs.  1, S3). 
Yet, the average contig expression levels computed for the 
three resistant plants or for the three sensitive plants at each 
time-point matched the corresponding RNA-Seq expres-
sion data, with Pearson’s product-moment correlation coef-
ficient >0.90 for all contigs except LOLSS028240 (0.77) 
LOLSS003821 (0.42) and LOLSS001274 (0.47) (Figs.  1, 
S3). These relatively low values were due to the moder-
ate and stable expression level of these contigs over all 
modalities.

Transcriptional response to the ALS inhibitor pyroxsulam 
common to sensitive plants and plants with NTSR  
(treated vs. UT)

23,343 and 38,420 contigs were respectively up-regulated 
or down-regulated (>threefold difference in RPKM value) 
in the resistant and/or in the sensitive phenotype in at least 

Table 1   Rye-grass plants with 
a phenotype characterised using 
two herbicides that were used 
for expression analysis of the 
candidate NTSR contigs

a  The phenotype of all 
plants in each population 
was characterised with each 
herbicide
b  S sensitive, r moderately 
resistant, R resistant

Rye-grass population Number of plantsa Pyroxsulam phenotypeb (Iodosulfuron + mesosul-
furon) phenotypeb

Nb. S Nb. r Nb. R Nb. S Nb. r Nb. R

RG06-006 13 5 3 5 2 5 6

RG07-012 14 5 0 9 3 1 10

RG07-019 11 0 0 11 0 0 11

RG07-021 15 4 3 8 0 6 9

RG07-038 15 10 4 1 11 4 0

RG07-039 12 1 2 9 0 1 11

RG07-040 12 0 2 10 1 1 10

RG07-046 10 4 3 3 4 3 3

RG07-054 9 3 0 6 0 1 8

RG08-094 14 10 4 0 10 2 2

RG08-0681 15 0 1 14 1 0 14

RG08-0941 22 10 1 11 12 1 10

RG08-0943 22 11 1 10 9 2 11

RG08-0944 14 10 0 4 10 0 4

RG11-028 14 1 2 11 3 2 9

Table 2   LOLbase statistics

a  Filters: contig size ≥400 nucleotides, RPKM ≥0.5 in at least one 
experimental modality

Total number of reads 323,833,502

Total assembled contigs 147,829

Total size of the assembly 107,323,854 
bases

N50 516 nucleotides

Average contig size 726 nucleotides

Total contigs after filteringa 92,381

Total size of the assembly after filteringa 91,557,401 bases

Average contig size after filteringa 985 nucleotides

N50 after filteringa 771 nucleotides

Total predicted peptides after filteringa 81,563

% Predicted peptides with a GO annotationa 57

% Predicted peptides with an Interpro annotationa 36

https://iant.toulouse.inra.fr/Lolium?download=1
https://iant.toulouse.inra.fr/Lolium?download=1
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one herbicide-treated modality compared to the respective 
UT modalities, of which 8,284 and 10,600 were respec-
tively up-regulated or down-regulated in both phenotypes 
in at least one herbicide-treated modality. The numbers 
of contigs regulated at a given time-point after herbicide 
application or starting from one time-point after herbicide 
application in each phenotype are shown in Figs. 2 or S4, 
respectively.

In the following, we only considered enriched terms 
with a p value <10−10 in at least one modality (Table S3). 
Twelve molecular functions or four biological processes 
were enriched in up-regulated contigs in at least one her-
bicide-treated modality (Table S3). Eleven molecular func-
tions and three biological processes were common to both 

phenotypes. They included terms involved in gene expres-
sion regulation, amino-acid metabolism (e.g., leucine bio-
synthetic process) or potentially herbicide response (i.e., 
monooxygenase activity, transferase activity-transferring 
hexosyl groups, drug transmembrane transport/multidrug 
transport and FMN binding). Five molecular functions, six 
biological processes or seven cellular components were 
enriched in down-regulated contigs in at least one herbi-
cide-treated modality (Table S3). Four molecular func-
tions, five biological processes and the six cellular com-
ponents were common to both phenotypes. They included 
terms involved in photosynthesis or gene expression 
regulation.

The terms drug transmembrane transport (molecu-
lar function) and multidrug transport (biological process) 
included the same set of contigs, as was the case for 2-iso-
propylmalate synthase activity (molecular function) and 
leucine biosynthetic process (biological process), and for 
drug transmembrane transport (molecular function) and 
multidrug transport (biological process). Thus, 12 and 
15 non-redundant terms were enriched in up-regulated 
or down-regulated contigs after pyroxsulam application, 
respectively, in both phenotypes. The herbicide-regulated 
contigs assigned to these terms in each phenotype included 
contigs with a similar regulation in both phenotypes that 
could belong to the general herbicide response and con-
tigs with a phenotype-specific regulation. The propor-
tion of contigs potentially involved in pyroxsulam general 
response (up- or down-regulated in both phenotypes) varied 
greatly among terms, ranging from 100 % (leucine biosyn-
thesis process and photosystem I reaction center) to 24 % 
(nucleus) (Fig. 3). Terms involved in protein or amino-acid 
biosynthesis (leucine biosynthesis process, aminoacyl-
tRNA ligase activity, arginine-tRNA ligase) or photosyn-
thesis had a high proportion of herbicide-regulated contigs 
common to both phenotypes (85–00 %) (Fig. 3).

Phenotype‑specific transcriptional response to the ALS 
inhibitor pyroxsulam (resistant vs. sensitive)

The numbers of contigs up-regulated in one phenotype at a 
given time-point or starting from one time-point are shown 
in Figs.  4 or S5, respectively. 9,583 and 10,805 contigs 
were respectively up-regulated UT in the resistant or in the 
sensitive phenotype (Fig. 4). In the following, we only con-
sidered terms significantly enriched with a p value <10−5 
(Table S4). Three molecular functions, three biological pro-
cesses or one cellular component were enriched UT in the 
resistant phenotype. They included terms involved in gene 
regulation or ATP metabolism. Three molecular functions, 
one biological processes or two cellular components were 
enriched in the sensitive phenotype, most of which were 
involved in protein biosynthesis or catabolism (Table S4).
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21,001 and 27,209 contigs were up-regulated in the 
resistant or in the sensitive phenotype, respectively, in a 
least one herbicide-treated modality, of which 1,981 and 
1,749 were respectively up-regulated in the resistant or 
in the sensitive phenotype over the whole time-course 
(Fig.  4). Twenty-one molecular functions, 13 biological 
processes or four cellular components were significantly 
enriched in up-regulated contigs in at least one herbicide-
treated modality (Table S4). Among these, 12 molecular 
functions, seven biological processes or two cellular com-
ponents were only enriched in up-regulated contigs in 
the resistant phenotype, including terms involved in gene 
expression regulation, stress response or potentially herbi-
cide response (transferase activity-transferring acyl groups 
other than amino-acyl groups). Five molecular functions, 
two biological processes or two cellular components were 
only enriched in up-regulated contigs in the sensitive phe-
notype. They included terms involved in oxidative stress 
response or protein catabolism (Table S4). Among the 
terms enriched in contigs differentially regulated between 
phenotypes, monooxygenase activity, transferase activity-
transferring hexosyl groups, ATP binding, iron ion binding, 
electron carrier activity, chitinase activity/chitin catabolic 
process, protein amino acid phosphorylation, response to 
water, microtubule motor activity/microtubule-based move-
ment, nucleosome and nucleus were also identified when 
comparing phenotype response to pyroxsulam (Fig. 3).

Expression patterns of contigs assigned to Pfam families 
involved in herbicide response

Pfam families known to be involved in herbicide response 
and NTSR are cytochromes P450, glutathione-S-trans-
ferases, glycosyltransferases and ABC transporters (Yuan 
et  al. 2007; Délye 2013). Annotation identified 3,498 
potential peptides assigned to these families in LOLbase, 
for which a considerable variation in the expression pat-
terns was observed between phenotypes, over the time-
course, and with the contig (Figs.  5, S6). The number of 
contigs up-regulated in one modality varied from 28 (ABC 
transporters) to 127 (UDP-glycosyltransferases) in the 
resistant phenotype, and from 55 (ABC transporters) to 
204 (cytochromes P450) in the sensitive phenotype. Over-
all, more contigs assigned to these Pfam families were 
regulated by pyroxsulam application in the sensitive phe-
notype than in the resistant phenotype (Figs. 5, S6). Five, 
seven, six, four and three contigs annotated as cytochromes 
P450, UDP-glycosyltransferases, glycosyltransferases, 
glutathione-S-transferases or ABC transporters, respec-
tively, were up-regulated at least threefold in the resistant 
phenotype over the whole time-course. Eight contigs could 
be considered as relevant candidates for NTSR. The 17 
remaining contigs had low RPKM values (<0.5) in most 
modalities, or an expression level sharply decreasing after 
herbicide application (not shown).

Fig. 2   Number of contigs regu-
lated or with a stable expres-
sion after herbicide application 
compared to UT. A Number of 
contigs up-regulated, down-reg-
ulated or with a stable expres-
sion in the resistant phenotype 
(left) or in the sensitive pheno-
type (right) in each herbicide-
treated modality compared to 
the corresponding UT modality. 
B Total number of contigs up-
regulated, down-regulated or 
with a stable expression in the 
resistant phenotype (left) or in 
the sensitive phenotype (right) 
compared to the corresponding 
UT modality
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Fig. 3   Contigs up-regulated (A) and down-regulated (B) specifically in the resistant phenotype (R), specifically in the sensitive phenotype (S) or 
in both phenotypes in each herbicide-treated modality compared to the corresponding UT modality
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The glutathione-S-transferase LrGSTF1 plays a sig-
nificant role in rye-grass NTSR to ACCase inhibitors, an 
herbicide group distinct from ALS inhibitors (Cummins 
et al. 2013). Nine additional rye-grass contigs annotated as 
cytochromes P450, glutathione-S-transferases, monooxyge-
nases or glycosyl-transferases were also proposed to have a 
link with NTSR to ACCase inhibitors (Gaines et al. 2014). 
A BlastN search in LOLbase identified a predicted glu-
tathione-S-transferase fully encompassing LrGSTF1 coding 
sequence (identity =  94.7, E value =  2.8 ×  10−168), and 
homologs of the nine other NTSR candidates (identities 
between 92.5 and 99.1 %, E-values between 2.1 ×  10−56 

and 0.0). LOLbase RNA-Seq expression patterns of these 
10 contigs showed a constant increase with the time after 
herbicide application in both phenotypes, and their differ-
ence in expression between phenotypes was never above 
three-fold (not shown). These contigs could therefore not 
be considered as contigs potentially involved in NTSR to 
ALS inhibitors in our study.

Candidate NTSR contigs identification

To avoid possible confusing effects due to the com-
mercial herbicide formulation, candidate NTSR contigs 
were selected from LOLbase on the basis of an up-regu-
lation >  threefold in the resistant phenotype at each time-
point, including UT. Affiliation of the predicted peptide to 
a GO term enriched in up-regulated contigs exclusively in 
the resistant phenotype and/or to a Pfam family involved 
in NTSR was an additional selection criterion. Thirty can-
didate NTSR contigs were identified. Annotation identified 
six cytochromes P450, six glutathione-S-transferases, one 
glycosyltransferase, one zinc-finger protein, one carbonic 
anhydrase, two uromethyl-transferases and four DUF pro-
teins. The nine remaining contigs could not be assigned an 
annotation.

As our RNA-Seq was conducted on pooled samples with 
no true biological replicates, RNA-Seq yielded the average 
expression of each contig over the three plants contained 
in each pooled sample. RT-qPCR based validation of LOL-
base expression data revealed variation in contig expression 
among individual plants in each pooled sample (Figs.  1, 
S3). Accordingly, contigs up-regulated in each resistant 
plant compared to each sensitive plant at each time-course 
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Fig. 5   Differences in the 
regulation of contigs assigned 
to Pfam families known to be 
involved in herbicide response 
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point were sought by measuring the expression level of 
the 30 contigs in all 42 individual samples used to gener-
ate the 14 pooled samples subjected to RNA-Seq. Four of 
the 30 contigs met this criterion. Their expression level was 
subsequently measured using RT-qPCR in 212 additional, 
untreated plants not containing herbicide resistant, mutant 
ALS and with characterised sensitivity to pyroxsulam and 
(iodosulfuron +  mesosulfuron): 123 plants were resistant 
or moderately resistant to both herbicides, 56 sensitive to 
both herbicides and 33 resistant or moderately resistant to 
one herbicide (Table  1). All four contigs displayed a sig-
nificantly higher expression level in the resistant plants 
(Figs.  6, S7). They putatively encoded cytochromes P450 
from families 72A or 81B (referred to hereafter as CYP72A 
and CYP81B1), one glycosyltransferase (GTA) and one glu-
tathione-S-transferase (GSTA).

Cytochromes P450, glutathione-S-transferases and gly-
cosyltransferases can be involved in NTSR via enhanced 
expression (Délye 2013). There was a 2,217-, 1,768-, 

676-, and 125,032-fold difference in expression between 
the highest and lowest relative expression levels observed 
for CYP72A, CYP81B1, GTA and GSTA, respectively 
(Fig. S8). Variation was higher among plants than among 
populations. Expression of each of these four contigs was 
almost undetectable in a few plants, and very high in a few 
others (Fig. S8). For all these plants, both biological rep-
licates showed the same extreme expression level, and an 
expression level of the reference genes similar to those of 
the other plants analysed. No plant displayed an extreme 
expression level for more than one of the four contigs.

Although some sensitive plants had expression lev-
els higher than some resistant plants for a given con-
tig, the highest expression levels for each contig were 
always observed in resistant plants (Fig. S8). Consider-
ing each herbicide separately, the nine, 23, one and three 
plants most transcribing CYP72A, CYP81B1, GTA and/
or GSTA, respectively, were all moderately resistant or 
resistant to pyroxsulam. The 45, 23, eleven and ten plants 
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most transcribing CYP72A, CYP81B1, GTA and/or GSTA, 
respectively, were all moderately resistant or resistant to 
(iodosulfuron  +  mesosulfuron). Plants sensitive to one 
herbicide could be resistant or moderately resistant to the 
other, thus not being “true” sensitive plants. Considering 
sensitivity to both herbicides improved phenotype discrimi-
nation, with the 47, 23, ten and 26 plants most transcribing 
CYP72A, CYP81B1, GTA and GSTA, respectively, being 
moderately resistant or resistant to at least one herbicide 
(Fig. S8).

NTSR is considered to evolve by accumulation of genes 
in a plant (Délye 2013; Délye et  al. 2013). Considering 
the expression levels of all four contigs together should 
thus improve phenotype discrimination. Principal com-
ponent analysis was implemented to check the hypoth-
esis that expression data from the four contigs in the 212 
plants could be a predictor for NTSR. A clear separation of 
many, but not all, plants resistant to at least one herbicide 
from sensitive plants was obtained (Fig. 7). Separation was 
driven by higher expression of several of the four contigs 
in plants with NTSR. From this finding, we computed a 
cumulated relative expression level (CREL) value for each 
plant as the sum of the relative expression levels of each 
contig in this plant divided by the highest corresponding 
relative expression level observed among the plants studied 
(Figs. 8, S9). Considering each herbicide separately, the 11 
and 28 plants with the highest CREL were all moderately 

resistant or resistant to pyroxsulam or to (iodosulfu-
ron  +  mesosulfuron), respectively. Considering both her-
bicides improved phenotype discrimination: the 47 plants 
with the highest CREL value (≥0.85) were moderately 
resistant or resistant to at least one herbicide (Figs. 8, S9).

Discussion

LOLbase, a reliable rye‑grass transcriptome resource

Our aim was to establish a resource enabling to study tran-
scriptomic patterns in herbicide-resistant and herbicide-
sensitive rye-grass plants in the absence of herbicide and 
at the early stages of herbicide response using experimen-
tal conditions as similar as possible to realistic field con-
ditions. Herbicide damage to plants starts occurring 3–8 h 
after herbicide application (reviewed in Délye 2013). To 
be efficient, NTSR must be implemented before herbicide 
damage is irreversible, and must be upheld long enough to 
allow resistant plants to recover (Délye 2013). Accordingly, 
RNA-Seq data was obtained from a time course experiment 
ranging from UT until 48HAT. A commercial pyroxsulam 
formulation applied in the field was used together with its 
recommended adjuvant in our experiments, because NTSR 
is selected for in field populations by recurrent applications 
of not only herbicide molecules, but also associated formu-
lations and adjuvants. The Illumina technology that is con-
sidered most adequate for de novo transcriptome assembly 
without a reference sequence (Ward et al. 2012) was used 
for RNA-Seq. LOLbase contains 91,928 contigs potentially 
representing active transcripts and predicted to encode 
81,563 peptides, of which 46,451 could be assigned an 
annotation. LOLbase was established from the aerial part 
of young plants at a vegetative growth stage, and is thus not 
expected to be a comprehensive transcriptomic resource. 
Indeed, 185,833 contigs obtained by an RNA-Seq approach 
from leaf, root, stem and flowers from the perennial Lolium 
perenne were recently made available in GenBank (Farrell 
et al. 2014; accession GAYX00000000). As a comparison, 
the genomes of the five grass species fully sequenced (rice, 
sorghum, barley, maize and the weed Brachypodium dis-
tachyon) contain 25,532–63,540 genes. Rye-grass being 
a diploid species, the number of contigs in LOLbase sug-
gests redundancy among the assembled contigs, i.e., more 
than one assembled contig may represent a same unigene 
and/or several contigs may represent different segments of 
the same unigene. LOLbase contig N50 size value was 771 
nucleotides (Table 2), similar to those obtained for recent 
de novo plant transcriptome assemblies based on Illu-
mina reads (Fan et al. 2013; Xu et al. 2013) or on a com-
bination of Illumina and 454 reads (Yang et al. 2013), but 
shorter than the average length of protein-encoding genes 
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in grasses (1,000–1,300 nucleotides; Carels and Bernardi 
2000). LOLbase data compares favourably to a previous 
partial rye-grass transcriptome resource obtained from 
similar plant material using 454 sequencing (Gaines et al. 
2014). The assembly statistics of this previous assembly 
(N50  =  1,150 nucleotides, average contig size  =  1,049 
nucleotides) were similar to those of LOLbase (Table  1), 
but a lower number of contigs were assembled [19,623 
and 12,450 contigs >100 nucleotides and >500 nucleo-
tides, respectively, vs. 92,381 contigs >400 nucleotides in 
LOLbase (Table 1)]. While redundancy was present in both 
assemblies, LOLbase representation of rye-grass transcrip-
tome is most likely more comprehensive, due to the higher 
sequencing depth in our work (>32  ×  109 nucleotides 
sequenced) compared to Gaines et al. (2014) (>405 × 106 
nucleotides sequenced).

LOLbase contigs were assembled from RNA-Seq data 
obtained from three resistant and three sensitive plants 
from a field population, i.e., not genetically homogenised. 
Thus, nucleotide variation among the plants sequenced 
likely contributed to the redundancy observed in LOLbase. 
Considering these limitations, LOLbase annotation iden-
tified a total of 3,498 potential peptides assigned to Pfam 
families potentially involved in NTSR (cytochromes P450, 
glutathione-S-transferases, glycosyltransferases and/or 
transporters) (Yuan et al. 2007; Délye 2013), thereby pro-
viding a strong basis for further NTSR investigation.

Rye‑grass response to pyroxsulam

The effect of ALS inhibitors had essentially been studied 
on broadleaved plants. It was previously summarised (Zhou 
et  al. 2007) and further elucidated in recent works (Das 
et al. 2010; Orcaray et al. 2011; Zulet et al. 2013). Briefly, 
ALS inhibition is followed by growth arrest and subsequent 
slow plant death. ALS inhibitor application causes a rapid 
activation of specific stress response pathways, includ-
ing xenobiotic metabolism (Manabe et al. 2007; Das et al. 
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2010). The biosynthesis of branched amino-acids (BCAAs) 
is interrupted, causing a decrease in the cell contents in 
free BCAAs followed by a rapid (12–24 h after herbicide 
application) overall increase in free amino-acid contents, 
including BCAAs, due to amino-acid remobilisation from 
proteins via enhanced degradation and to reduced protein 
synthesis (Trenkamp et al. 2009; Orcaray et al. 2011; Zulet 
et al. 2013). Side-effects of ALS inhibitors also include an 
increase in the leaf cell carbohydrate contents that triggers 
alternative respiratory pathways (Orcaray et al. 2011; Zulet 
et al. 2013) and modifications of central energy pathways 
in response to oxidative damage (Das et al. 2010).

LOLbase allowed insight into a grass response to ALS 
inhibitors. Part of rye-grass transcriptional response to 
pyroxsulam application was shared by resistant and sensi-
tive plants: pyroxsulam caused a rapid (from 2HAT on) up-
regulation of contigs involved in stress response, metabo-
lism or detoxification that preceded an up-regulation of 
contigs assigned to BCAA biosynthesis or central energy 
pathways and a down-regulation of contigs assigned to 
photosynthesis (Table S4). This was consistent with plant 
growth arrest and with the expected early effects of ALS 
inhibition. Later effects of ALS inhibition such as enhanced 
protein degradation or carbohydrate accumulation were 
not detected in our experiment, probably because our time-
course ended at 48HAT, while these effects were observed 
starting from 72HAT (Orcaray et  al. 2010; Zabalza et  al. 
2013; Zulet et al. 2013).

In a previous transcriptome-wide survey, A. thaliana 
plants carrying an herbicide-resistant ALS displayed no 
transcriptional changes after application of an ALS-inhib-
iting herbicide, while their sensitive counterparts showed 
extensive transcriptional changes (Manabe et  al. 2007). 
This is in contrast to our data, which suggest that rye-grass 
plants expressing NTSR to pyroxsulam underwent a stress 
exerted by ALS inhibitor application, with part of their 
transcriptional response to pyroxsulam action similar to 
that observed in the sensitive plants (Tables S4, S6; Figs. 3, 
5). Our data are consistent with plants resistant because of 
NTSR being affected by the herbicide action but ultimately 
overcoming it, as previously proposed (Délye 2013).

Considering phenotype-specific response to pyroxsulam, 
herbicide-induced oxidative stress response seemed more 
marked in the sensitive phenotype (Table S7), which could 
reflect an herbicide stress stronger than in the resistant phe-
notype. General analysis of contigs differentially expressed 
between the resistant and the sensitive phenotypes did not 
allow identification of processes or functions that could 
directly explain NTSR. More contigs assigned to Pfam 
families involved in herbicide response were regulated by 
herbicide application in the sensitive phenotype than in the 
resistant phenotype (Fig.  5). This could reflect a random 
herbicide response of the sensitive phenotype, while the 

resistant phenotype response would be more focussed and 
more efficient.

From all the foregoing, it is clear that despite some 
redundancy and the genetic heterogeneity of the plant 
material used for RNA-Seq, LOLbase is a reliable resource 
to investigate rye-grass transcriptomic response and NTSR 
to ALS-inhibiting herbicides.

Candidate NTSR contigs

Transcriptomic data obtained from each pooled sample 
reflected the average variation in gene expression induced 
by biological variation among individuals (three plants per 
phenotype) and by the environment (two clones per plant). 
Yet, the pooled samples used for RNA-Seq did not con-
tain distinct biological replicates, as is generally recom-
mended to identify contigs differentially expressed among 
experimental modalities (e.g., Egan et  al. 2012; Ward 
et  al. 2012). Our experimental design was thus not opti-
mal to identify contigs specifically up-regulated in resistant 
plants, especially because of variation in expression level 
among the individual samples constituting each pooled 
sample (Figs.  1, S3). However, rye-grass transcriptomic 
response to ALS inhibitor obtained from LOLbase expres-
sion data was fully consistent with the literature. This 
encouraged us to seek potential NTSR determinants using 
LOLbase expression data despite the limitations inherent 
to our experimental design. We considered contigs with a 
constitutive up-regulation in the resistant plants that was 
maintained during the early phases of the transcriptional 
response to pyroxsulam because NTSR is expected to be 
most effective in avoiding irremediable physiological dam-
age if constitutive, and target contigs to be used as a target 
for NTSR detection would be most useful if constitutively 
differentially expressed in resistant plants. Only contigs 
which were confirmed by RT-qPCR to be up-regulated in 
each resistant plant compared to each sensitive plant at 
each time-point were retained as candidate NTSR contigs.

The four candidate contigs identified herein potentially 
encoded peptides with functions consistent with herbi-
cide degradation: two cytochromes P450 (CYP72A and 
CYP81B1), one glycosyltransferase (GTA) and one glu-
tathione-S-transferase (GSTA). Some cytochromes P450 in 
families 81B1 and 72A were directly involved in herbicide 
degradation (Werck-Reichhart et al. 2000). Rice CYP72A31 
and barnyardgrass (Echinochloa phyllopogon) CYP72A254 
that respectively shared 62.4 and 68.4  % amino-acid iden-
tity with CYP72A were very recently demonstrated to con-
fer NTSR to ALS-inhibiting herbicides (Iwakami et  al. 
2014; Saika et  al. 2014). CYP72A and CYP81B1 are thus 
promising NTSR candidates in rye-grass. Induction of gly-
cosyltransferases like GTA triggered by the application of 
ALS-inhibiting herbicides was observed in A. thaliana (e.g., 
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Manabe et al. 2007), although it was not clear whether these 
enzymes detoxified the herbicide or were part of a broader 
response. Glutathione-S-transferases like GSTA can cata-
lyse the conjugation of an herbicide to glutathione, or act as 
peroxidases protecting the cell from oxidative damage that 
can derive from herbicide action. Although both roles of 
glutathione-S-transferases were demonstrated in NTSR to 
ACCase inhibitors (Cummins et  al. 1999, 2009, 2013), no 
data are currently available regarding glutathione-S-trans-
ferase-mediated degradation of ALS-inhibiting herbicides.

The CREL of the four candidate NTSR contigs allowed 
to clearly identify many plants that were resistant to at 
least one of the ALS inhibitors studied (plants with CREL 
value ≥0.85). Considering plant sensitivity to both herbi-
cides improved the reliability of the diagnosis (Figs. 8, S9), 
suggesting the candidate contigs would play a role in or be 
markers for NTSR to both herbicides. Despite pyroxsulam 
(a triazolopyrimidine) and (iodosulfuron + mesosulfuron) 
(sulfonylureas) belonging to dissimilar chemical families, 
123 out of the 156 plants resistant to one herbicide were 
also resistant to the other. Thus, some mechanisms confer-
ring NTSR to one herbicide likely also conferred resistance 
to the other. This is consistent with previous data support-
ing the hypothesis that evolution of NTSR to one herbicide 
decreases sensitivity to other herbicides, whatever their cel-
lular target or chemical family, thereby facilitating further 
evolution of NTSR to a broader range of herbicides (Délye 
et al. 2013). In this hypothesis, purely chemical grass weed 
control is ultimately doomed, and integrated weed manage-
ment must be implemented (Délye et al. 2013).

In summary, we identified four candidate NTSR contigs. 
Their expression levels varied among plants: some resist-
ant plants showed a low level of expression for all four 
transcripts, and no resistant plant displayed a high level of 
expression for all contigs. This suggests that not all plants 
studied were resistant because of the same NTSR mecha-
nisms and that NTSR determinants remain to be identi-
fied. This is in accordance with previous data showing that 
mechanisms controlling NTSR can vary among rye-grass 
populations and even among rye-grass plants (Busi et  al. 
2011, 2013), or can be herbicide-induced (Délye 2013).

Our data support the hypothesis that herbicide response 
and NTSR are driven by differential expression of a set of 
genes. Despite the limitations inherent to our experimen-
tal design and the genetic heterogeneity of the plant mate-
rial studied, four contigs were identified that enabled reli-
able identification of many, but not all, NTSR plants in 15 
different rye-grass populations on the basis of their expres-
sion levels. These four contigs are clearly potentially useful 
for developing molecular assays to help detecting NTSR in 
rye-grass populations. As gene expression regulation also 
involves post-transcriptional steps, the possible direct role in 
NTSR of these four contigs must be further investigated by 

confirming the increase in transcription causes an increase in 
the corresponding protein amount. The possible degrading 
activity against pyroxsulam and (iodosulfuron  +  mesosul-
furon) of the proteins predicted to be encoded by the four 
contigs also needs to be assessed. Also, other NTSR deter-
minants clearly exist in rye-grass that need to be identified. 
Additional RNA-Seq experiments using LOLbase and an 
appropriate experimental design including biological repli-
cates are clearly a relevant way towards this purpose.

Herbicide degradation is a complex process involving 
the coordinated actions of detoxifying enzymes and regula-
tory genes (reviewed in Délye 2013). To fully understand 
NTSR, identifying the underlying genes and unravelling 
their interactions is a first step. This will enable developing 
DNA- or RNA-based NTSR diagnosis tools, and possibly 
contemplating neutralising NTSR using emerging tech-
nologies such as RNA interference (e.g., Li et al. 2013). In 
a second step, the evolutionary dynamics of NTSR selec-
tion needs to be elucidated so that effective integrated weed 
management strategies tailored to delay NTSR evolution 
and/or disadvantage NTSR plants in the field are imple-
mented (Délye et al. 2013). Identifying NTSR genes seems 
near at hand, and LOLbase will clearly be of great help for 
this purpose.
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