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Abstract Floral senescence involves an ordered set of

events coordinated at the plant, flower, organ and cellular

level. This review assesses our current understanding of the

input signals, signal transduction and cellular processes

that regulate petal senescence and cell death. In many

species a visible sign of petal senescence is wilting. This is

accompanied by remobilization of nutrients from the

flower to the developing ovary or to other parts of the plant.

In other species, petals abscise while still turgid. Coordi-

nating signals for floral senescence also vary across spe-

cies. In some species ethylene acts as a central regulator, in

others floral senescence is ethylene insensitive and other

growth regulators are implicated. Due to the variability in

this coordination and sequence of events across species,

identifying suitable models to study petal senescence has

been challenging, and the best candidates are reviewed.

Transcriptomic studies provide an overview of the MAP

kinases and transcription factors that are activated during

petal senescence in several species including Arabidopsis.

Our understanding of downstream regulators such as

autophagy genes and proteases is also improving. This

gives us insights into possible signalling cascades that

regulate initiation of senescence and coordination of cell

death processes. It also identifies the gaps in our knowledge

such as the role of microRNAs. Finally future prospects for

using all this information from model to non-model species

to extend vase life in ornamental species is reviewed.
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senescence � Proteases � Transcription factors

Introduction

Higher plants are radically different to animals in that the

germ line is not set down during embryogenesis, but rather

develops from somatic cells. This process is regulated by a

combination of environmental and developmental cues that

trigger the formation of a transient reproductive structure:

the flower. In some species, the individual plant will go on

to recreate a new germ line and new reproductive apparatus

season after season until its death. However each individual

flower has a lifespan which is usually a small fraction of

the lifespan of the parent plant (Rogers 2006). The life of

the flower typically terminates in senescence and ulti-

mately a form of programmed cell death (PCD).

There has been much debate on the use of the terms

‘‘senescence’’ and ‘‘programmed cell death’’ (Thomas et al.

2003; van Doorn and Woltering 2004). In the context of

petal senescence it seems appropriate to use these words

almost interchangeably (Rogers 2006), in agreement with

others in the field (van Doorn and Woltering 2008). This is

because cell death, at least in some cells, starts very early

during petal senescence (Wagstaff et al. 2003). However at

an organ level, senescence implies a degree of remobili-

zation of nutrients (Thomas et al. 2003) and cell death can

also be seen as the terminal event, following the remobi-

lization process.

Flowers are not the only plant organ to undergo senes-

cence, however compared to leaves, the lifespan of flowers

attached to the plant is less influenced by environmental

factors. In many cases floral senescence is activated or

greatly accelerated by pollination, and is thus tightly reg-

ulated by developmental signals (van Doorn and Woltering

2008; Rogers 2006). Petals have often been the focus of

attention in floral senescence. They provide a relatively

simple organ that consists of many similar cell types and

H. J. Rogers (&)

School of Biosciences, Cardiff University, Main Building Park

Place, Cardiff CF10 3TL, UK

e-mail: rogershj@cardiff.ac.uk

123

Plant Mol Biol (2013) 82:563–574

DOI 10.1007/s11103-012-9968-0



structures to those found in a leaf. Arguably petal senes-

cence can therefore provide a useful model for studying the

regulation of senescence in general, largely freed from

environmental constraints.

This review starts by evaluating progress in identifying

good models for studying petal senescence. It then focuses

on those species in which most progress has been made to

gauge our understanding of the key regulators of senes-

cence, and prospects for regulating vase-life in ornamen-

tals, particularly cut flowers.

The need for good models

Despite the many obvious advantages of studying petal

senescence, our understanding of its regulation has been

hampered by the lack of a good model species. This is due

to several factors. Firstly two key features of petal senes-

cence vary across species: sensitivity to ethylene and tim-

ing of abscission in relation to petal wilting. In many

species floral senescence is coordinated by endogenous

ethylene production often induced by pollination These

include established models such as Arabidopsis thaliana,

and many important ornamental species such as orchids

(e.g. Phalaenopsis spp.), roses (Rosa spp.) and petunia

(Petunia spp.) (Rogers 2006). In these species processes of

remobilization, characteristic of senescence and leading to

cell death, are coordinated by the ethylene signal. Fur-

thermore, treatment with exogenous ethylene accelerates

senescence, while treatment with inhibitors of ethylene

synthesis or ethylene signalling, delay it (Stead and van

Doorn 1994). In other species, however, little or no eth-

ylene is produced in association with floral senescence.

Furthermore floral senescence is insensitive to exogenous

ethylene or ethylene inhibitors. This latter group also

includes many important ornamental species such as lilies

(Lilium spp.,) daffodils (Narcissus pseudonarcissus), tulips

(Tulipa spp.) and Iris (Woltering and van Doorn 1988).

Independently of whether or not floral senescence is

ethylene-regulated, species also differ in the progression of

petal senescence in relation to abscission. Thus in some

species, such as rose and magnolia (Magnolia grandiflora),

petals abscise while still turgid. In contrast, in other species

such as Iris and petunia, petals wilt and deteriorate while

still attached to the plant (van Doorn and Woltering 2008).

Petal deterioration is associated with variable levels of

nutrient remobilization followed by PCD (Verlinden 2003;

Rogers 2006). This is often associated with increasing

vacuole size, followed by vacuole rupture in a process that

resembles autophagic cell death (e.g. in Japanese morning

glory, Ipomoea nil; Shibuya et al. 2009a). In some species

that abscise turgid petals, cell death markers are not

apparent prior to abscission (Yamada et al. 2007). PCD

markers are however detected in other abscising species

suggesting that the timing of PCD and abscission are

independently regulated.

Thus identifying a single model that explains all the

patterns of petal senescence is not attainable. However in

other areas of plant development much has been achieved

by focussing attention on Arabidopsis even though it can-

not model all features of higher plant development.

Unfortunately Arabidopsis has proven to be a somewhat

limited model for studying detailed progression of petal

senescence, although it has been used successfully to study

petal abscission (Cho et al. 2008), and gross changes in

petal senescence (Chen et al. 2011a). One of the key pre-

requisites of a good model for petal senescence is the

ability to stage flowers based on key changes, usually

associated to the development and maturation of the sexual

organs. Unfortunately in Arabidopsis, although a devel-

opmental chart is available (Smyth et al. 1990) the detailed

sequence of events is not as predictable as the chart would

suggest. Furthermore Arabidopsis flowers abscise without

substantial wilting, calling into question their role as a

useful model for species whose petals wilt before abscis-

sion (Jones et al. 2009). Nevertheless, tools for Arabidopsis

research outshine all other suitable models, and array data

comparing young (stage 12) with older (stage 15) petals do

provide the most complete dataset for the senescent petal

transcriptome. The choice of these stages was validated by

a clear up-regulation of the SAG12 gene expression in stage

15 petals (Wagstaff et al. 2009). SAG12 expression is an

accepted marker for senescence in leaves and petals

(Weaver et al. 1998). Its expression is closely linked to

other petal senescence markers in wilting species where

stages of senescence are better defined such as wallflowers

(Erysimum linifolium; Price et al. 2008).

There are at least a couple of good alternative candidates

as models for ethylene-sensitive petal senescence. Wall-

flowers are closely related to Arabidopsis and hence benefit

from the use of cross-species microarrays. Approximately

80 % of genes tested cross-hybridised between wallflowers

and Arabidopsis with very similar patterns of expression

(Price et al. 2008). Wallflowers have the advantage over

Arabidopsis of larger flowers with a range of petal colours,

a predictable lifespan ending with wilting prior to abscis-

sion. Furthermore some varieties such as Bowles mauve

are perennial (Price et al. 2008). However to date this

species lacks many of the key tools required for an ideal

model such as a transformation system, stocks of mutants

and a genome sequence.

Petal senescence in petunia can be conveniently induced

by pollination resulting in substantial wilting followed by

abscission (Jones et al. 2009) thus allowing the study of both

these processes. It boasts both transient and stable transfor-

mation systems (Conner et al. 2009; Chen et al. 2004),
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increasingly complete genome and transcriptome sequen-

ces (Zenoni et al. 2011) and an increasing bank of available

mutant lines. As yet these resources have not been fully

exploited, but the future seems rosy for the study of eth-

ylene-sensitive petal senescence.

Brassica species also have potential as models for petal

senescence. Cross species arrays are available and have been

tested for leaf transcripts (Trick et al. 2009). Software has

also been developed for facilitating analysis of cross species

arrays (Hammond et al. 2005) and tested across Arabidopsis

and Brassica oleracea. Interest in Brassica species has also

provided resources including genome sequencing projects,

genetic maps and markers, and proteomic and metabolomic

datasets (http://www.brassica.info/resources.php). However

although Brassica species are used as ornamentals for their

colourful foliage, they are not directly related to flower

ornamentals and thus information gained from them would

need to be translated to ornamental crop species.

Progress in finding good models for ethylene-insensitive

petal senescence however is lagging behind. Ethylene

sensitivity in petunia can be suppressed by expression of

the etr1-1 mutant allele, enabling the study of the processes

that are essentially ethylene independent (Wilkinson et al.

1997). However, this is easily criticizable as a somewhat

artificial system. Four o’clock (Mirabilis jalapa) is one of

the few dicotyledonous species with apparently ethylene-

independent petal senescence (Xu et al. 2007a). Although

floral senescence is accelerated in this species by exoge-

nous ethylene, little endogenous ethylene is produced

during senescence and inhibitors of ethylene synthesis or

action have little effect on its progression. However

research on four o’clocks has not flourished even though a

transformation system was established (Zaccai et al. 2007).

The lack of a good model has lead to the proliferation of

papers studying floral senescence in a wide range of both

monocotyledonous and dicotyledonous ornamental species

(van Doorn and Woltering 2008; Rogers 2006), for which

few tools and no complete genome sequences are available.

However, this situation is rapidly improving with the

advent of new much cheaper high throughput sequencing

and the increasing use of virus induced gene silencing

(VIGS; Edwards and Batley 2010; Senthil-Kumar and

Mysore 2011).

Developmental and environmental signals

Although petal senescence is relatively unaffected by

environmental signals there is an interaction between stress

and senescence. Clearly the situation changes dramatically

in cut flowers compared to those still attached to the plant.

In petunias, growth at higher temperatures resulted in a

shorter floral life span of unpollinated flowers attached to

the plant (Gubrium et al. 2000). However, vase life of cut

flowers was longer when plants had been grown at a higher

compared to a lower temperature (Shvarts et al. 1997). In

the cut flower Alstroemeria vase life was reduced by

up to 20 % following stress treatments (Wagstaff et al.

2010) and was accompanied by substantial changes in gene

expression.

Where comparisons have been made, longevity is gen-

erally reduced in cut flowers compared to those on the plant

(e.g. in lilies: Arrom and Munné-Bosch (2010); carnation,

Dianthus caryophyllus L.: van Staden and Dimalla 1980).

In Lilium (Lilium longiflorum x Asiatic Hybrid var. Cou-

rier) antioxidants increased more sharply in the tepals of

cut flowers although whether these might have a regulatory

role is not known (Arrom and Munné-Bosch 2010). Fur-

thermore changes in growth regulators differed between

cut and uncut Lilium flowers (Arrom and Munné-Bosch

2012a). In particular levels of IAA and ABA were less in

the outer petals of intact compared to cut flowers at

anthesis. An interaction between environmental stress

signals and plant growth regulators (PGRs) is also indi-

cated by studies on transgenic petunias in which ethylene

signalling has been down-regulated. In these flowers lon-

gevity is much more sensitive to growth at a higher tem-

perature compared to wild type (Gubrium et al. 2000).

More studies comparing global changes in transcription

and metabolic status in stressed and unstressed and cut

versus uncut flowers may reveal to what extent the regu-

latory signals and down-stream processes differ.

In species where multiple flowers are produced on the

same stem, there is another important signal based on the

interaction between the longevity of the less-developed and

more-developed flowers. For example trimming younger

flowers from Alstroemeria cymes increased longevity of

the remaining flower (Chanasut et al. 2003). This is prob-

ably due to the important sink-source nutrient relationships

within the inflorescence (Picchioni et al. 2007).

Nutrient status and energy depletion have been proposed

as important regulators of floral senescence in cut flowers

(Azad et al. 2008), and treatment with sucrose delayed

floral senescence both in ethylene-sensitive (e.g. carnation:

Hoeberichts et al. 2007) and ethylene-insensitive species

(e.g. Alstroemeria: Chanasut et al. 2003; tulip: Azad et al.

2008; Lilium: Arrom and Munné-Bosch 2012a). In carna-

tion (Hoeberichts et al. 2007) and wallflowers (Rogers,

unpublished) sucrose treatment was very similar to treat-

ment with the ethylene inhibitor STS indicating that it may

be acting by repressing ethylene signal transduction. How

the sucrose signal exerts its effects in ethylene-insensitive

species remains to be determined. However, in Lilium at

least, it affected the PGR balance (Arrom and Munné-

Bosch 2012a) and thus may be acting via PGRs other than

ethylene such as abscisic acid (ABA) or auxins.
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Plant growth regulators (PGRs)

In species with ethylene-sensitive floral senescence, polli-

nation induces a burst of ethylene production associated

with up-regulation of ethylene biosynthetic enzymes:

S-adenosylmethionine (SAM) synthase, 1-aminocyclopro-

pane-1-carboxylic acid (ACC) synthase and ACC oxidase

(Jones 2004; Hoeberichts et al. 2007). Ethylene production

is associated with pollen tube growth in the style and later

with fertilisation (Hoekstra and Weges 1986; ten Have and

Woltering 1997). This results in autocatalytic ethylene

production in the petals (Woodson and Lawton 1988;

Graham et al. 2012). In rose (Müller et al. 2000) but not

carnation (Shibuya et al. 2002), petal senescence is asso-

ciated with changes in expression levels of the ethylene

receptor genes. However expression of a mutated ethylene

receptor gene (etr1-1) resulted in delayed floral senescence

in several species including petunia. Components of the

ethylene downstream signalling pathway (Yoo et al. 2009;

Fig. 1) are expressed in petals and have also been targets

for manipulation to delay flower senescence. Expression of

CTR1-like genes in rose (Rosa hybrida) were up-regulated

by exogenous ethylene (Ma et al. 2006), and expression of

Rh-CTR1 also increased during floral senescence (Müller

et al. 2002). Mutation of EIN2 delayed floral senescence in

both petunia and Arabidopsis (Shibuya et al. 2004; Graham

et al. 2012). EIN3-like gene expression increased in car-

nation during floral senescence and in response to ethylene

(Iordachescu and Verlinden 2005), and its accumulation

was delayed in sucrose-treated flowers. Down regulation

(Tieman et al. 2001) or up-regulation (Yang et al. 2008) of

tomato EIN3-like genes resulted in delayed or accelerated

petal senescence respectively. This confirms a role for

these genes too in ethylene-induced petal senescence.

In ethylene sensitive flowers this PGR clearly plays a

decisive role in the initiation and coordination of

EIN2

EIN3

↑ SAM synthase 
↑ ACC synthase 
↑ ACC oxidase

↑ ethylene 
receptors

CTR1 inactive

MKK7-9

MPK3-6

↓ cytokinin

↑ ethylene 
sensitivity

age

NUCLEUS
transcription

ARF

↑ auxin
↑ ROS

NAC
WRKY
MADS

FYF

KDEL proteases
VPEs

metacaspases

autophagy 
genes

AUTOPHAGOSOMES

VACUOLE

RICINOSOMES

ER

protease processing?

Pollination

AUX/IAA

KN TFs
ARRA&B

ERFs

↑ ethylene

↑ ABA

Fig. 1 Pollination and/or age

related processes, resulting in a

reduction of cytokinins and rise

in ABA, trigger up-regulation of

ethylene biosynthetic genes and

an increase in ethylene

sensitivity. Ethylene-responsive

TFs are activated directly or via

a MAP kinase signalling

cascade. Other TFs are activated

by auxin and other signals

including probably ROS.

Protease transcription is up-

regulated presumably by a

combination of transcription

factors. KDEL proteases are

localised to the ER and then

ricinosomes, VPEs are targeted

to the vacuole where they may

be involved in processing of

downstream proteases,

metacaspases are activated and

contribute to cell death.

Autophagy genes are also up-

regulated and presumably result

in the formation of

auotophagosomes which later

fuse with the vacuole
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senescence and ultimately cell death. However, even in these

species, other PGRs also play important roles. In several

species studied there was a senescence-associated fall in

cytokinins and rise in ABA levels (Borohov et al. 1976;

Mayak and Halevy 1970; Chang et al. 2003; van Staden et al.

1987). Both these changes seem to be connected to ethylene

signalling. In carnations sensitivity to ethylene was reduced

by treatment with cytokinin and inhibition of cytokinin

metabolism delayed senescence (Taverner et al. 2000). Fur-

thermore treatment of carnation petals with cytokinins

blocked the conversion of exogenously supplied ACC to

ethylene (Mor et al. 1983). In transgenic petunia, expression

of the IPT gene, resulting in overproduction of cytokinin, led

to a decrease in ethylene sensitivity and a reduction in ABA

accumulation (Chang et al. 2003). Blocking ethylene signal-

ling in petunia expressing etr1-1 abolished senescence-asso-

ciated ABA accumulation in corollas (Jones et al. 2009)

which is consistent with these results. Furthermore in carna-

tion, exogenous ABA treatment accelerated senescence and

increased both production of and sensitivity to ethylene

(Ronen and Mayak 1981). However in hibiscus (Hibiscus

rosa-sinensis L.;Trivellini et al. 2011) although exogenous

ABA treatment accelerated flower senescence, it reduced

ethylene biosynthesis and sensitivity. The complex relation-

ship between ethylene, ABA and senescence in species with

ethylene-sensitive floral senescence is therefore worthy of

further investigation. There is a need for more physiological,

transcriptomic and metabolomic studies in more species to

make results more comparable and establish whether appar-

ent species-specific differences are supported.

In ethylene insensitive cut flowers there is accumulating

evidence that ABA may play an important role in petal

senescence. Endogenous levels of ABA are found to rise in

several species with ethylene insensitive floral senescence:

e.g. daylily (Hemerocallis hybrid, cv. Stella d’Oro; Pana-

vas et al. 1998), daffodil (Hunter et al. 2004a, b) and Lilium

(Arrom and Munné-Bosch 2012a, b). Exogenous applica-

tion of ABA to day lilies, resulted in an acceleration of

natural senescence events including changes in transcrip-

tional patterns (Panavas et al. 1998). Furthermore the effect

could also be mimicked by treatment with sorbitol that

induced an increase of endogenous ABA levels. Similar

results were also obtained in daffodil (Hunter et al. 2004a)

where it was further shown that the effects were ethylene-

independent. However in daffodil, inhibitors of ABA bio-

synthesis did not delay senescence, although treatment with

gibberellic acid (GA3) did mitigate the effects of exoge-

nous ABA. This suggests that the ABA might be acting via

GA. In all three species, however, the rise in endogenous

ABA levels occurred quite late. This suggests that although

this PGR may have a role in coordination of the later stages

of petal senescence it is not likely to be involved in the

initiation of the senescence programme.

The role of other PGRs such as auxin, jasmonates (JA)

or salycilic acid (SA) in petal senescence remains unclear

(van Doorn and Woltering 2008). Endogenous auxin levels

fell in Lilium post-anthesis, while SA increased and JA

remained stable (Arrom and Munné-Bosch 2012b). How-

ever in wallflowers free IAA increased during petal

senescence (Mohd Salleh et al. unpublished results).

Furthermore, in senescent Arabidopsis petals auxin bio-

synthetic and responsive gene expression was strongly

up-regulated (Wagstaff et al. 2009). Application of exogenous

auxin also accelerated senescence and ethylene production in

carnation petals (Wulster et al. 1982; van Staden 1995).

Endogenous levels of reactive oxygen species (ROS)

and ROS-related enzyme activities have been measured in

numerous flowers with both ethylene-sensitive or insensi-

tive senescence programmes (Rogers 2012). In general

ROS levels rise and antioxidant levels fall during both

forms of petal senescence. However, changes appear to

start too late for ROS to be a key initiator of petal senes-

cence. Nevertheless, this does not exclude a signalling role

for redox status and or the mitochondrion in the coordi-

nation of later events. More information on the intracellular

localisation of ROS production, levels of different ROS

moieties, and on ROS signal transduction is needed in

order to be able to resolve their role in petal senescence

with confidence.

Signal transduction and transcription factors (TFs)

MAP kinases are central to signal transduction in many

environmental and developmentally regulated cellular

processes (Fiil et al. 2009), and senescence is no excep-

tion. The Arabidopsis genome contains 20 MAPKs, 10

MAPKKs, and more than 60 MAPKKKs (MAPK Group

2002). In leaf senescence MEKK1 bypasses the cascade

by acting directly on the promoter of WRKY53, a senes-

cence-associated TF (Miao et al. 2007). However MKK9

and MPK6 are also involved (Zhou et al. 2009). Less is

known about MAPKs that might be involved in petal

senescence. Expression of relatively few MAPK genes

were up-or down regulated in Arabidopsis silique, leaf or

petal senescence microarray analyses (Wagstaff et al.

2009) and none were specifically up or down-regulated in

petal senescence. However expression of MPK11 was up-

regulated in both petal and silique senescence and may be

an interesting target for further study. This MAPK is also

involved in both biotic and abiotic stresses and responds to

both ROS and ABA, providing a potential link between

these processes. In wallflowers, expression of a homo-

logue of MKK9 was strongly up-regulated in both senes-

cent leaves and petals (Price et al. 2008) and is also

up-regulated in these tissues in Arabidopsis (Schmid et al.
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2005). It is not surprising that at least some of the signal

transduction mechanisms in leaf and petal are likely to be

shared given the high levels of shared senescence-induced

transcriptional changes in these tissues (Price et al. 2008;

Wagstaff et al. 2009).

In ethylene-insensitive species MAPK-like transcripts

have also been identified: in Alstroemeria a MAP3Ka-like

transcript was up-regulated with tepal senescence (Wag-

staff et al. 2010), although further work is needed to verify

its expression pattern and function. Further work on MAP

kinases involved in petal senescence is urgently needed.

Downstream of the MAP kinase cascade, TFs expressed

during floral senescence have been identified in numerous

EST, microarray, and SSH experiments including both

ethylene-regulated species (e.g. wallflowers: Price et al.

2008; petunia: Liu et al. 2011; Arabidopsis: Wagstaff et al.

2009; carnation Hoeberichts et al. 2007) and ethylene-

insensitive species (e.g. Alstroemeria: Breeze et al. 2004;

Iris: van Doorn et al. 2003). A detailed analysis of the petal

data from Wagstaff et al. (2009) revealed changes in the

expression of 316 putative TFs of which 130 changed

expression only in petal senescence and not in leaf or

silique senescence. Forty-seven TF families were repre-

sented (as classified by Guo et al. 2005). The best repre-

sented was the AP2-EREB (ERF) family representing over

10 % of up-regulated TFs in petals (Fig. 2). Interesting

differences are revealed by comparing TFs in three

expression classes: (1) all those whose expression changed

in petals (2) those whose expression was only up-regulated

in petals but not in the other senescing tissues, and (3)

those whose expression was up-regulated in all three

senescing tissues (Fig. 2). Whereas the three most repre-

sented TF families up-regulated in class (1) were AP2-

EREBP (ERF), NAC and WRKY accounting for almost

30 % of all the TFs expressed in this class, in class (2) the

most represented families amongst TFs specifically up-

regulated in petals were AP2-EREBP, homeobox (HB) and

AUX-IAA (again accounting for about 30 % of the total). In

contrast, in class (3) i.e. TFs up-regulated in all senescent

tissues studied, the most represented families of up-regu-

lated TFs were NAC (32 %), WRKY (18 %) and bZIP

(11 %). Thus AP2-EREBP, HB and AUX-IAA TFs stand

out as up-regulated TF classes that are most highly repre-

sented specifically in ethylene-regulated petal senescence

and may be of significance in regulating specific senes-

cence-associated events in this tissue. Although WRKY TFs

were up-regulated in all three tissues, more family mem-

bers were up-regulated in petals compared to leaves.

Interestingly, WRKY53 which has been identified as an

important hub regulator in leaf senescence, integrating

MeJA and SA signals (Balbi and Devoto 2008; Miao and

Zentgraf 2007; Miao et al. 2007), was not up-regulated in

petal senescence.

The prevalence of the AP2-EREB TFs is not surprising

given the established role of ethylene in these species.

However the up-regulation of genes encoding AUX-IAA

proteins raises again the issue of the role of auxin in petal

senescence, which remains to be fully resolved in any

species. AUX-IAA proteins are short-lived nuclear proteins

forming part of an auxin co-receptor complex (Calderón

Villalobos et al. 2012), that bind and repress auxin

responsive factor (ARF) TFs. An auxin signal results in

degradation of the AUX-IAA protein and de-repression of

the ARFs.

Amongst the HB TFs up-regulated in petals was KNAT1,

a member of the Class I KNOX family known to modulate

cytokinin levels, and four members of the Class II KNOX
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Fig. 2 Top 15 most represented transcription factor families

expressed in Arabidopsis petals from the data of Wagstaff et al.

(2009) whose expression was a up- or b down-regulated. (1) All TFs

whose expression changed in petals (2) TFs whose expression only

changed in petals (Stage 15 compared to stage 12) but not in

senescent leaves (leaf 6: 6 weeks old/leaf 6: 4 weeks old) or

senescent siliques (19-23/9-11 DAA), and (3) TFs whose expression

changed in all three senescing tissues
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family most of which are of unknown function (Hay and

Tsiantis 2009). A KNAT1 homologue was also up-regu-

lated in senescent carnation petals (Hoeberichts et al. 2007)

indicating that the involvement of these genes in the reg-

ulation of petal cytokinin levels may be common to dif-

ferent species. Furthermore expression of ARR genes, part

of the cytokinin signal transduction chain (To and Kieber

2008), was altered in Arabidopsis senescent petals. Two of

these (ARR1 and ARR2) are associated with the vascular

tissue and, as noted by Wagstaff et al. (2009), may be

important in retaining function of this tissue during

senescence-associated nutrient remobilization.

Further work will be needed to establish the role of all

these TFs through analysis of over-expression and knock-

out mutants, as well as screens to identify their down-

stream targets. Work on petal senescence in Arabidopsis

will benefit greatly from systems biology approaches to

identify hubs in the transcriptional networks regulating

senescence and stress responses in leaves (Breeze et al.

2011). However, an analysis of individual TFs has revealed

an important role in floral senescence for at least one

MADS box TF: AGL42 (FOREVER YOUNG FLOWER;

FYF). Chen et al. (2011a) showed that this gene acts as a

repressor of ethylene-mediated floral abscission and

senescence in Arabidopsis. It acts upstream of BOP2 and

IDA, genes involved in floral abscission. It would be

interesting to analyse the effects of FYF perturbation on the

progression of petal senescence in more detail. It is

important to try to clarify whether its role in abscission is

distinct from its role in senescence, or whether the two are

linked. It will also be interesting to establish whether

homologues in other species play a similar role. An orchid

(Oncidium sp.) homologue of FYF also delayed petal

senescence/abscission when expressed in Arabidopsis

(Chen et al. 2011b). This suggests that this gene may

indeed be important in other species whose floral senes-

cence is ethylene regulated. Whether it might also play a

role in ethylene-independent senescence remains to be

tested.

In petunia flowers, the ERF (Ethylene-responsive ele-

ment binding factor) family of TFs was studied in detail

(Liu et al. 2011). This TF family is one of the largest in

plants with 122 members in Arabidopsis belonging to 12

groups (Nakano et al. 2006). Thirteen ERF TFs belonging

to four of these groups were expressed in petunia corollas,

showing distinct patterns of expression. Group VII ERFs,

previously associated with fruit ripening and senescence

(El-Sharkawy et al. 2009; Yin et al. 2010) were also

associated with corolla senescence in petunia. Their

expression was up-regulated with ethylene, down-regulated

by STS, and up-regulated by MeJA and ABA supporting

the link between ethylene and ABA responses. Expression

of three of the ERFs, belonging to group IX were down-

regulated during corolla senescence and with exogenous

ABA. The authors hypothesise that the reduction in

expression during senescence may be linked to the rise in

endogenous ABA levels (Vardi and Mayak 1989).

Expression of several ERFs was also up-regulated by SA

treatment indicating an interaction between ethylene and

SA signalling in petunia corolla senescence. However,

surprisingly none of the ERFs responded to exogenous

cytokinin treatment, despite a clear link between cytokinins

and ethylene in petunia flowers (Chang et al. 2003).

In other species with ethylene-regulated petal senes-

cence similar TFs have also been identified. In wallflowers

expression of genes with homology to WRKY75 and two

NAC TFs were up-regulated in both leaf and petal senes-

cence (Price et al. 2008) as they were also in Arabidopsis.

In carnation petal senescence, as in Arabidopsis, expression

of IAA-AUX TFs (Hoeberichts et al. 2007) was also up-

regulated suggesting a link to auxin signaling that is sup-

ported by changes in the endogenous levels of this PGR in

senescing petals (see above).

Much less is known about the expression of TFs in

species where petal senescence is ethylene-insensitive

although transcriptomic analyses have revealed a few

(Table 1). In Alstroemeria transcripts for 21 TFs were

identified from the 2000 ESTs sequenced (Wagstaff et al.

2010). Of these, one C2-H2, one HMG-box, two zinc-fin-

ger, one LIM-domain and one homeodomain TF changed

in expression during tepal senescence. Expression of sev-

eral others was also affected by stress treatments indicating

shared regulation between these processes. Transcriptomic

analyses also identified TFs from daffodil (AP2/ERF and

NAC families; Hunter et al. 2002) and Iris (HLH-Zip; van

Doorn et al. 2003). It is interesting that WRKY TFs have not

Table 1 Transcription factors that are differentially expressed in senescent petals of species with ethylene-insensitive petal senescence

programmes

Species TF family Reference

Alstroemeria C2H2, HMG-box, Zinc finger, LIM domain, homeodomain Breeze et al. (2004), Wagstaff et al. (2010)

Narcissus AP2/ERF, NAC Hunter et al. (2002)

Iris HLH-Zip, MADS Van Doorn et al. (2003)

Mirabilis jalapa bZIP, C2H2, HD-Zip, JUMONJI, MADS, MYB Xu et al. (2007a)
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been identified from these species so far, although the

promoter of a putative E3 ubiquitin ligase that was highly

up-regulated in four o’clock senescent petals included

putative binding sites for several TF classes including

WRKY TFs (Xu et al. 2007b). Cheaper transcriptomic

sequencing should help to establish whether WRKY TFs are

indeed important in ethylene-independent floral senescence

systems.

Another layer of regulation that is becoming increasingly

studied is provided by microRNAs (miRNAs). These act as

negative regulators and are involved in the regulation of

many stages of plant development (Voinnet 2009) including

senescence. The leaf-senescence NAC TF ORE1 was found

to be regulated by a complex trifurcate feed-forward

mechanism involving a miRNA, mi R164 (Kim et al. 2009),

and EIN2 from the ethylene-mediated senescence pathway.

By negatively regulating ORE1 expression, miR164 may be

fine tuning the timing of leaf senescence promoted by EIN2.

EIN2 then negatively regulates miR164 as senescence pro-

gresses. In fact mathematical modelling showed that per-

sistent rise in EIN2 results in activation of SAG12 supporting

this fine tune control. TCP TFs are also miRNA regulated

and participate in the regulation of leaf senescence

(Schommer et al. 2008). Furthermore some miRNAs are

highly conserved across species (Cuperus et al. 2011) pro-

viding opportunities for manipulation of developmental

programmes through transformation. Thus a fruitful

research area is likely to be an investigation of miRNAs

regulating floral senescence. It is possible that in petals as

well as leaves they may be involved in the fine tuning of

senescence progression to orchestrate the complex remobi-

lization processes and delaying cell death as required.

Downstream cell death regulation

Although cell death often starts before visible signs of petal

deterioration are evident (Rogers 2006), it is clear from

careful analyses of cellular structure (e.g. Wagstaff et al.

2003; Battelli et al. 2011) that cell death is not uniform

across the petal. In many species mesophyll cells degen-

erate completely in older petals while the epidermal cells

remain essentially intact. In Iris this differential timing

coincides with a closure of plasmodesmata, interrupting the

movement of nutrients, PGRs and other small molecules

(van Doorn et al. 2003). This may result in effective star-

vation of the cells and lead to ATP depletion triggering cell

death as discussed above.

Furthermore in several species such as Iris, Lilium and

Alstroemeria (van Doorn et al. 2003; Battelli et al. 2011;

Wagstaff et al. 2003) cell death starts at the petal margins

and spreads inwards. The assumption is that this is part of a

remobilization programme that favours the survival of the

cells nearer the vascular tissue to enable transport of

nutrients out of the petal. This presumes a long-range

coordination of cellular responses, perhaps involving

cytokinins as suggested by the up-regulation of the ARR

genes discussed above.

At a cellular level petal PCD resembles closely auto-

phagic (van Doorn and Woltering 2005; Shibuya et al.

2009a) or ‘autolytic’ (van Doorn 2011) cell death. This

process is characterised by the formation of small vacuoles

that fuse to merge with the central vacuole. The vacuole

then ruptures releasing hydrolases which rapidly clear the

remaining cytoplasm (van Doorn 2011). Auotophagosomes

have been detected in petals (e.g. Japanese morning glory:

Shibuya et al. 2009b) and genes encoding components of

the conserved autophagic regulatory mechanism are

expressed in the petals of several species (e.g. Arabidopsis:

Wagstaff et al. 2009; Japanese morning glory: Shibuya

et al. 2009b; Alstroemeria: Wagstaff et al. 2010). However

to what extent the autophagic mechanism is a requirement

for petal cell death is not clear. In Arabidopsis knockouts

of autophagy genes, leaf senescence is accelerated, but it

has been proposed that this might also be due to an indirect

stress effect rather than an indication that autophagy delays

senescence (van Doorn and Woltering 2008). A closer

investigation of petal senescence phenotype in autophagy

gene knockouts would be very useful.

In animal PCD a specific class of proteases, caspases

play a key regulatory role both in the initiation and exe-

cution of cell death (Sanmartı́n et al. 2005). Caspase

activity has been detected in a number of plant cell death

systems (Bonneau et al. 2008), and recently in Lilium (L.

longiflorum) petals (Battelli et al. 2011), however caspase

genes with homology to those in animals have not been

found in plant genomes. In plants, vacuolar processing

enzymes (VPEs) are a family of proteases that share

structural features with caspases and have caspase-1

activity (Rojo et al. 2004). They localise to the vacuole and

are involved in maturation of hydrolases. In tobacco petals

expression of a VPE gene increased 100-fold with age, and

VPE genes are also up-regulated in senescent petals of

carnation (Hoeberichts et al. 2007), daffodil (Hunter et al.

2002), Japanese morning glory (Yamada et al. 2009) and

L. longiflorum (Rogers, unpublished). Furthermore of the

four VPEs in Arabidopsis, expression of two (b and c) was

up-regulated in senescent petals (Wagstaff et al. 2009).

Further work is clearly needed to determine whether per-

turbation of VPE expression affects petal senescence and to

identify VPE substrates in petals. This will shed light on

whether VPEs might be playing a regulatory role.

Metacaspase genes also form a large gene family in

plants and resemble part of the caspase coding sequence

(Tsiatsiani et al. 2011). Moreover, their expression in

plants is associated with cell death processes (Coll et al.
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2010). A metacaspase gene was expressed in petunia petals

(Jones et al. 2009), but its role remains to be established.

Expression of two Arabidopsis metacaspase genes (AtMC9

and AtNC3) was up-regulated in senescent petals (Wagstaff

et al. 2009) indicating that they may play a role in petal

senescence. However as they comprise a large gene family

unravelling their roles may take some time.

Petal senescence in many species is also associated with an

increase in cysteine protease activity. In some species, such as

Iris (Pak and van Doorn 2005) and Sandersonia (Sandersonia

aurantiaca; Eason et al. 2002), treatment of flowers with

inhibitors of cysteine proteases delayed visible senescence.

This indicates a potential regulatory role for these proteases.

In several species up-regulation of papain-family cysteine

protease genes with a C-terminal KDEL sequence has been

reported (E.g. Sandersonia, Eason et al. 2002; day lily, Val-

puesta et al. 1995). Expression of some of these genes e.g.

Alstroemeria ALSCYP1 was up-regulated before visible signs

of senescence (Wagstaff et al. 2002) suggesting that they

might participate in a proteolytic cascade activating other

down-stream proteases. The KDEL sequence anchors the

proteases to the endoplasmic reticulum but they are also

associated with ribosome studded vesicles known as ricino-

somes (Schmid et al. 1999). Ricinosomes deliver their cargo

of protease directly to the cytoplasm following vacuolar

rupture and were also detected in senescing day lily petals

(Schmid et al. 1999). However, they have not been reported in

other species. Identifying the substrates for these early-

expressed proteases and defining whether they are indeed

released directly into the cytoplasm, are important goals to

establish their role in petal cell death. In petunia, down-reg-

ulation of cysteine protease genes did not affect senescence

progression indicating likely functional redundancy in this

gene family (Jones et al. 2009) which will complicate their

analysis by a genetic route.

Prospects for understanding and controlling

senescence in ornamentals

Our understanding of the genes and processes regulating

petal senescence in species where these are coordinated by

ethylene is progressing fast. Although many of the pieces

are still missing, a tentative model can be assembled to

incorporate available data on the genes and processes

involved, as discussed above (Fig. 1). Key tools are also

becoming available in petunia for this to become a testable

model for this group of species. The next step will then be

to test and transfer this understanding to other species of

commercial relevance and exploit control points to extend

vase life. Already several different treatments are available

for extending vase life in these species (Rogers and Stead

2011) involving down-regulation of ethylene responses

through chemical treatments. Furthermore, prospects seem

good for refining chemical approaches e.g. through the use

of nanosponges (Seglie et al. 2011). In addition an

increasing number of these species can be transformed

(Chandler and Tanaka 2007), and transgenic approaches

for reducing ethylene signalling can be refined through the

use of more specific promoters. Other targets may also be

of interest such as FYF or hub TFs driven by tissue specific

or senescence induced promoters such as the SAG12 pro-

moter (Chang et al. 2003).

Progress in understanding ethylene-independent floral

senescence has lagged behind. Given that the PGR regu-

lation in these species is likely to be very complex, there

seems to be much more promise in the manipulation of the

signalling and TF intermediaries. It will be crucial to

determine whether information from the more tractable

ethylene-regulated species can be directly transferred. This

will depend on whether the key regulators are shared across

the physiological groups. Comprehensive transcriptomic

sequencing projects using new high throughput sequencing

approaches will be very powerful especially in species such

as Lilium where genome sizes of up to 127 000 Mb

(Zonneveld et al. 2005) make genome sequencing projects

unrealistic. This approach will provide a global view of

gene expression changes crucially in up-stream signalling

and TFs. This would then enable the use of systems

approaches now available for leaf senescence in Arabid-

opsis. How this information is then used will depend on the

species. A major challenge is to develop robust transfor-

mation protocols for a transgenic approach in these less

tractable species. In some species, however, marker-assis-

ted breeding programmes may be the most immediate way

of exploiting the new information.
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