
Axillary bud outgrowth in herbaceous shoots:
how do strigolactones fit into the picture?

Tanya Waldie • Alice Hayward •

Christine Anne Beveridge

Received: 9 August 2009 / Accepted: 7 January 2010 / Published online: 29 January 2010

� Springer Science+Business Media B.V. 2010

Abstract Strigolactones have recently been identified as

the long sought-after signal required to inhibit shoot

branching (Gomez-Roldan et al. 2008; Umehara et al.

2008; reviewed in Dun et al. 2009). Here we briefly

describe the evidence for strigolactone inhibition of shoot

branching and, more extensively, the broader context of

this action. We address the central question of why strig-

olactone mutants exhibit a varied branching phenotype

across a wide range of experimental conditions. Where

knowledge is available, we highlight the role of other

hormones in dictating these phenotypes and describe those

instances where our knowledge of known plant hormones

and their interactions falls considerably short of explaining

the phenotypes. This review will focus on bud outgrowth in

herbaceous species because knowledge on the role of

strigolactones in shoot branching to date barely extends

beyond this group of plants.
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Regulation of bud outgrowth

In different species, and also different positions along the

plant stem, axillary buds exhibit differing degrees of

development and outgrowth during the vegetative phase.

Along the main shoot axis in pea (Pisum sativum), axillary

meristems develop into buds with immature leaves at most

nodes, and the outgrowth of these buds typically remains

arrested (Stafstrom and Sussex 1988, 1992; Stafstrom

1993). In Arabidopsis (Arabidopsis thaliana), axillary buds

form late during vegetative growth and are generally sup-

pressed until the switch to flowering (Grbić and Bleecker

2000). In monocots such as rice (Oryza sativa), the char-

acteristic growth habit comprises the release of many

axillary buds to form tillers, while in other monocot species

such as corn (Zea mays) the outgrowth of axillary buds

remains relatively restricted (McSteen 2009).

Despite the diversity in growth habits, bud outgrowth

among herbaceous species is a multifactorial process

determined largely by the same factors. In addition to the

classical hormones auxin and cytokinin, and the recently

identified strigolactone compound (Gomez-Roldan et al.

2008; Umehara et al. 2008), other external and internal

cues also contribute to spatial and temporal regulation of

bud outgrowth. Together, these are thought to impose three

distinct states of dormancy: (1) endodormancy, by factors

acting within the bud, (2) paradormancy, by signals within

the plant but external to the bud, and (3) ecodormancy, by

environmental factors external to the plant (Lang et al.

1987). Interpretation of multiple signals within buds may

be accomplished, at least in part, by the existence of dis-

tinct stages at which different signals might act (Fig. 1;

Dun et al. 2006). For example, numerous studies demon-

strate that the transition of axillary buds from dormancy to

growth is likely to comprise an intermediate phase of

altered metabolic activity. This transition phase is charac-

terised by increased cellular activity compared to cells

within dormant buds, as evidenced by gene and protein

expression levels and even small increases in bud size
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(Stafstrom and Sussex 1988, 1992; Madoka and Mori 2000;

Shimizu-Sato and Mori 2001; Morris et al. 2005; Shimizu-

Sato et al. 2008). Importantly, buds undergoing this

transition are capable of cycling back and forth between

dormancy and growth (Stafstrom and Sussex 1988; Devitt

and Stafstrom 1995; Shimizu and Mori 1998; Napoli et al.

1999; Shimizu-Sato and Mori 2001). This may provide a

convenient framework in which to consider multiple

branching inputs, where factors such as light, nutrient

availability, the age and position of the bud and the plant’s

developmental stage may determine the ability of indi-

vidual buds to respond to other long-distance signals such

as auxin, cytokinin and strigolactone.

Hormone interactions and functions

Strigolactones are carotenoid-derived terpenoid lactones

first characterised as germination stimulants of the parasitic

plant genera Striga and Orobanche, and as hyphal

branching regulators in arbuscular mycorrhizal associations

(Cook et al. 1972; Matusova et al. 2005; Akiyama et al.

2005; Humphrey and Beale 2006; López-Ráez et al. 2008).

Strigolactones, or a derivative thereof, have recently been

identified as the long-distance branching inhibitor regu-

lated by the RMS (RAMOSUS) pathway in pea, MAX

(MORE AXILLARY GROWTH) pathway in Arabidopsis,

and D/HTD (DWARF/HIGH TILLERING DWARF)

pathway in rice (Gomez-Roldan et al. 2008; Umehara et al.

2008). Mutants for these pathways that are defective in the

production, but not the perception, of the branching

inhibitor have reduced strigolactone levels. Furthermore,

the increased branching in the synthesis mutants, but not

the perception mutants, can be repressed by addition of the

strigolactone analogue, GR24 (Gomez-Roldan et al. 2008;

Umehara et al. 2008). As small, potent molecules required

for communication within the plant body and between

plants and the environment, strigolactones therefore fit the

bill as a new class of phytohormone (Klee 2008; Leyser

2008; Dun et al. 2009).

The hormones auxin and cytokinin are also essential

components of the network controlling branching in plants.

Auxin transported downwards from the shoot tip in the

polar auxin transport stream (PATS) indirectly represses

bud outgrowth, while cytokinin promotes cell division and

differentiation and bud outgrowth (reviewed in Kyozuka

2007; Shimizu-Sato et al. 2009). A number of studies have

begun to elucidate how these hormones and strigolactones

may specifically interact to regulate bud dormancy.

Auxin has been shown to promote the expression of

strigolactone biosynthesis genes encoded by MAX3 and

MAX4 in Arabidopsis, RMS5 and RMS1 in pea, and HTD1

and D10 in rice (Foo et al. 2005; Bainbridge et al. 2005;

Johnson et al. 2006; Zou et al. 2006; Arite et al. 2007;

Hayward et al. 2009). In Arabidopsis, this regulation is

dependent on AXR1 (AUXIN RESISTANT1) (Bainbridge
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Fig. 1 Stages of bud outgrowth. Buds may progress (bold arrows)

through different growth states depending on different regulatory

factors (standard arrows). Various cues including positional and

developmental information can cause dormant buds (1) to enter a

stage of transition, characterised by altered metabolic activity.

(Stafstrom and Sussex 1988; Devitt and Stafstrom 1995; Shimizu

and Mori 1998; Napoli et al. 1999; Shimizu-Sato and Mori 2001).

Buds may then become responsive (2) to regulatory factors such as

stem auxin level, which may be influenced by florigen signalling

(Shalit et al. 2009). Auxin acts to independently up-regulate

strigolactones and down-regulate cytokinin level. Auxin and strigo-

lactones inhibit the progression to growth while cytokinins promote

this progression. If a bud is induced to grow (3), auxin transported

from the bud into the PATS acts to feedback up-regulate strigolactone

synthesis and attract nutrient import. Depending on nutritional status

and hormonal interactions a growing bud will enter into sustained

growth (4) and can inhibit the growth of additional buds by

correlative inhibition (Morris 1977; Li and Bangerth 1999)
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et al. 2005; Hayward et al. 2009). AXR1 is required for the

optimal activity of SCF (Skp1-Cul1/Cdc53-F-box) E3

ubiquitin ligase complexes including the auxin receptor

SCFTIR1 (TRANSPORT INHIBITOR1), and auxin binding

to SCFTIR1 induces the degradation of Aux/IAA tran-

scriptional repressors (reviewed in Mockaitis and Estelle

2008). In Arabidopsis, recent data has provided evidence

that this transcriptional interaction between auxin and

strigolactone synthesis genes is required, at least in part, for

auxin-mediated branching inhibition. The auxin response

mutant bodenlos, which has a lesion in domain II of the

Aux/IAA transcriptional repressor IAA12, has very low

MAX3 and MAX4 expression and increased branching that

is dependent on strigolactone supply (Hayward et al. 2009).

The increased branching in additional auxin response

mutants can also be suppressed by strigolactone application

(Brewer et al. 2009).

While the above studies demonstrate auxin may regulate

strigolactone levels, this interaction is not sufficient to

completely explain auxin-mediated branching inhibition

(Bennett et al. 2006; Hayward et al. 2009), which also likely

involves auxin-mediated repression of cytokinin levels

(reviewed in Shimizu-Sato et al. 2009). In pea stems, auxin

inhibits the expression of ISOPENTENYL TRANFERASE

(IPT) cytokinin biosynthesis genes and promotes the

expression of a CYTOKININ OXIDASE (CKX) gene

involved in cytokinin breakdown (Tanaka et al. 2006; Shi-

mizu-Sato et al. 2009). In Arabidopsis, cytokinin levels are

negatively regulated by auxin in an AXR1-dependent

manner (Nordström et al. 2004). Thus a transcriptional

interaction via the SCFTIR E3 ubiquitin ligase signalling

cascade may control both strigolactone and cytokinin levels.

On the other hand, a functional interaction between strigo-

lactones and cytokinin is yet to be clarified and evidence so

far suggests they may act partly independently, as discussed

further below (Bennett et al. 2006; Ongaro et al. 2008;

Ferguson and Beveridge 2009; Leyser 2009). Nonetheless, it

is known that low strigolactone signalling in the shoot leads

to decreased cytokinin content in the root xylem sap (Foo

et al. 2007) and, in Arabidopsis, exogenous cytokinin can

prevent the up-regulation of strigolactone synthesis gene

expression by auxin in the root (Bainbridge et al. 2005).

Currently, the mechanism of strigolactone action in

branching inhibition is uncertain. Strigolactone perception

or signal transduction requires localised action of an F-box

protein within axillary buds or the adjacent nodal stem,

encoded by MAX2 in Arabidopsis, RMS4 in pea and D3 in

rice (Stirnberg et al. 2002, 2007; Ishikawa et al. 2005;

Johnson et al. 2006; Gomez-Roldan et al. 2008; Umehara

et al. 2008). Therefore, strigolactone perception via an SCF

complex, similarly to auxin and SCFTIR1, may target

additional downstream branching regulators for ubiquiti-

nation and degradation by the 26S proteasome (Stirnberg

et al. 2007). In Arabidopsis, a gene thought to act down-

stream of the MAX pathway is BRANCHED1 or TEOSINTE

BRANCHED-LIKE1 (BRC1 or TBL1), identified based on

its similarity to TEOSINTE BRANCHED1 (TB1) in maize

and its orthologue, OsTB1/FC1 (FINE CULM1), in rice

(Doebley et al. 1997; Hu et al. 2003; Takeda et al. 2003;

Aguilar-Martı́nez et al. 2007). TB1 encodes a member of

the TCP (TB1, CYCLOIDEA, PCF domain) transcription

factor family, and TB1 is required in buds to inhibit out-

growth. In Arabidopsis, BRC1 expression is down-regu-

lated in max mutant buds, and double mutants for brc1 and

the max genes show similar branching phenotypes as the

single mutants, suggesting they act on the same pathway

(Aguilar-Martı́nez et al. 2007; Finlayson 2007). BRC1 is

also thought to act partly independently of cytokinin to

control branching (Aguilar-Martı́nez et al. 2007), consis-

tent with some distinct aspects of strigolactone- and cyto-

kinin-mediated branching control (Leyser 2009). In rice,

however, evidence so far suggests that FC1 may act inde-

pendently from strigolactone, as FC1 expression is not

altered in strigolactone pathway mutants (Arite et al. 2007).

Two hypotheses have been presented for the ultimate

output of strigolactone signalling. The first is that strigo-

lactones modulate the ability for buds to establish an auxin

flow into the PATS of the primary stem (Bennett et al.

2006; reviewed in Ongaro and Leyser 2008). This is based

on the premise that axillary meristems require auxin-

transporting vascular connections to the main stem vascu-

lature, canalised by auxin flow and driven by source-sink

relationships, in order to function and grow (reviewed in

Ongaro and Leyser 2008; Leyser 2009). Accordingly,

auxin transport and/or level is increased in strigolactone

pathway mutants of Arabidopsis and rice, and where tested,

branching in these mutants can be reduced by applying

polar auxin transport inhibitors (Bennett et al. 2006; Arite

et al. 2007; Lin et al. 2009). The second hypothesis for

strigolactone action builds upon the auxin regulation of

strigolactone synthesis and suggests that strigolactones

function downstream of auxin to inhibit branching as sec-

ond messengers (reviewed in Dun et al. 2009). In accor-

dance with this hypothesis, GR24 applied to buds can

inhibit bud outgrowth in auxin-depleted stems of decapi-

tated pea plants (Brewer et al. 2009). Here, auxin transport

from buds is proposed to be important for continued

growth, rather than the initial release of buds, and the

increased auxin content often observed in the mutants is

suggested to be a result of bud outgrowth and/or feedback

up-regulation (Dun et al. 2006, 2009).

Auxin and strigolactone may also interact to control

branching as part of a feedback process. Recently it was

demonstrated in Arabidopsis shoots that the increased

auxin content of strigolactone pathway mutants acts to

feedback up-regulate the expression levels of strigolactone
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synthesis genes (Hayward et al. 2009). Auxin and strigo-

lactone are therefore likely to be linked in a feedback loop,

where low strigolactone leads to increased auxin content,

which in turn up-regulates strigolactone synthesis (Hay-

ward et al. 2009; Fig. 1).

Developmental and positional effects

The position or age of a bud along the stem can determine

its ability to grow out. During vegetative development, bud

outgrowth tends to occur in an acropetal wave before

shifting to a basipetal wave during the reproductive phase

(McSteen and Leyser 2005). This pattern of branch

development broadly defines three distinct zones in the

main stem: (1) an upper zone, where increased bud out-

growth accompanies flowering, (2) a middle zone directly

beneath the upper zone where bud outgrowth is typically

reduced, and (3) a basal zone (Weberling 1989; Napoli

et al. 1999). In pea, the bud at node 2 within the basal zone

is particularly responsive to outgrowth following the

release of apical dominance by decapitation or girdling

(discussed below; Ferguson and Beveridge 2009). Buds at

these basal nodes are also very responsive to photoperiod,

having a greater tendency for outgrowth under short days

(Beveridge et al. 2003). Cytokinin application to buds at

the first four nodes only promotes branching in nodes 1 and

2 in intact plants; decapitation is additionally required to

trigger the outgrowth at the upper nodes (King and Van

Staden 1988). Buds at lower nodes, particularly node 2

may possess particularly well-established vascular con-

nections (Ferguson and Beveridge 2009).

Auxin is one candidate for mediating some of these

positional effects (reviewed in McSteen and Leyser 2005).

As described above, it has been proposed that vascular

connectivity and the ability of buds to plumb into the PATS

is critical for outgrowth (Ongaro and Leyser 2008; Ongaro

et al. 2008). The maintenance of bud outgrowth also

appears to correlate with the ability of buds to synthesise

auxin de novo and export it into the stem, even in cases

where buds already have well-developed vascular con-

nections (Morris 1977; Morris and Johnson 1990; Li and

Bangerth 1999). Furthermore, auxin movement may also

determine the ability of a bud to attract nutrients to support

sustained outgrowth (Davies and Wareing 1965; Phillips

1968; Jiang et al. 2001; Yang et al. 2007; Fig. 1).

Three-dimensional positioning can also influence axil-

lary branching. When plants are placed horizontally, bud

outgrowth occurs along the upper stem, and when plants

are completely inverted, the most basal bud grows out

(Cline and Riley 1984; Prasad and Cline 1985). Likewise,

when only the upper part of the main stem is bent down-

wards, the axillary bud at the node closest to the bend point

is induced to grow. This response is likely to be mediated

by gravity because the agravitropic weeping (we) mutants

in Japanese morning glory (Pharbitis nil) exhibit a reduced

lateral outgrowth response of buds to stem bending (Kit-

azawa et al. 2008). This gravity-induced release of axillary

buds appears to act independently of auxin and cytokinin,

and possibly independently of strigolactone, as auxin and

cytokinin levels do not change in accordance with shoot

bending. The we mutants also possess a normal decapita-

tion response that can be rescued by auxin application. A

gravity-mediated mechanism for bud outgrowth further

highlights the ability of plants to adapt their growth pattern

in order to cope with changing conditions.

Correlative inhibition

For branching to be optimised in the context of a growing,

healthy shoot system, it must be carefully modulated. In

branching terms, correlative inhibition refers to the ability

of one branch to suppress the growth of other axillary

shoots, and this has been associated with the active transport

of auxin from the growing branch (Morris 1977; Li and

Bangerth 1999). In pea, where more than one dormant bud

may exist at each node, the largest bud will generally be

induced to grow, suppressing the growth of the accessory

buds (reviewed in Shimizu-Sato and Mori 2001). In rms

mutants, growing basal axillary buds can inhibit the out-

growth of aerial buds and accessory buds in the same node,

suggesting correlative inhibition acts at least partly inde-

pendently from the strigolactone pathway (Morris et al.

2005; Ferguson and Beveridge 2009). Using a two-bran-

ched system in Arabidopsis, correlative inhibition was

found to comprise both MAX-pathway dependent and

independent components that can be transmitted unilater-

ally across the stem (Ongaro et al. 2008). Interestingly,

double mutants for the aforementioned rms genes and rms2,

which is not yet cloned but causes increased xylem cyto-

kinin content, display outgrowth of previously inhibited

accessory buds compared to single rms mutants (Beveridge

et al. 1997; Murfet and Symons 2000a, b), suggesting the

RMS2 gene product and/or cytokinin may also be involved

in correlative inhibition independent from strigolactones.

Decapitation

Activities which cause loss of the shoot apex, such as

pruning and herbivory, can lead to the activation of dormant

axillary buds, enabling continued shoot growth and repro-

duction. This is particularly important in species that show a

strong apical dominance phenotype (where lateral shoot

growth is normally suppressed). Loss of auxin produced by
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these apices is central to this response, resulting in increased

sink strength of the main stem PATS for bud-derived auxin,

reduced strigolactone production and increased cytokinin

biosynthesis and levels (Sachs and Thimann 1964, 1967;

Bangerth 1994; Nordström et al. 2004; Tanaka et al. 2006;

Brewer et al. 2009; Hayward et al. 2009). Nonetheless, in

pea, the outgrowth of the bud at node 2 is rapidly induced by

decapitation in a manner that does not correlate with the

reductions in auxin level and strigolactone synthesis gene

expression in the stem (Morris et al. 2005; Ferguson and

Beveridge 2009). Decapitation itself may trigger a physical

signal (such as an electrochemical pulse), which is trans-

mitted along the main stem to buds at every node to induce

an initial growth response (Morris et al. 2005; Ferguson and

Beveridge 2009). The enhanced ability of the bud at node 2

to respond to this signal and subsequently grow may be due

its well-developed vascular connectivity. Such connections

are essential for meristems to export auxin and receive

nutrients, as previously described. Indeed, physical

re-directions in assimilates, minerals, endogenous cytoki-

nins and water flow from the shoot apex to axillary buds

occur rapidly after loss of the shoot apex, as well as alter-

ations in photosynthate supply and source-sink relations

(Husain and Linck 1966; Stahlberg and Cosgrove 1992;

Turnbull et al. 1997). In addition, cytokinin is metabolised

in buds soon after decapitation (Mader et al. 2003).

Further evidence for an auxin-independent effect of

decapitation on bud outgrowth is that branching at certain

nodes of pea is not always induced when stem auxin levels

are depleted by girdling or inhibiting polar auxin transport,

unless plants are simultaneously decapitated (Morris et al.

2005; Ferguson and Beveridge 2009). For example, buds at

node 2 of pea remain dormant even when the plant is

girdled in the internode directly above (Ferguson and

Beveridge 2009). In these girdled plants, reduced branch-

ing responses are associated with low expression of IPT

cytokinin synthesis genes in the vicinity of the bud, sug-

gesting that the regulation of cytokinin by factors inde-

pendent from polar auxin transport could be an additional

determining factor for bud outgrowth (Ferguson and Bev-

eridge 2009). Accordingly, cytokinin application to these

buds restores outgrowth (Ferguson and Beveridge 2009). In

pea rms mutants and in the rice d10 mutant, treatments that

disrupt the flow of auxin from the shoot tip cause an

additive branching response (Beveridge 2000; Arite et al.

2007; Ferguson and Beveridge 2009). Again this suggests

that auxin inhibits branching via strigolactone-dependent

and independent pathways. Buds in different locations may

also be controlled by partially distinct genetic pathways, as

shown in the monocot, foxtail millet (Setaria italica),

where the branches produced in the basal nodes are under

separate control to those produced in the upper nodes

(Doust et al. 2004; Doust 2007).

Despite an initial growth response following decapita-

tion, the sustained growth of buds in pea and many spe-

cies is reliably inhibited by exogenous auxin applied to

the decapitation site (Thimann and Skoog 1933, 1934;

Cline 1996; Cline et al. 2001). In flowering Arabidopsis,

however, auxin cannot prevent the outgrowth of buds

following decapitation except in the axr3 increased auxin-

response mutant and in isolated cauline nodes lacking a

root system (Cline 1996, 2000; Cline et al. 2001; Ouellet

et al. 2001). In these isolated nodes, basally supplied

cytokinin can counteract the inhibitory effect of apically

supplied auxin on bud outgrowth (Chatfield et al. 2000).

Perhaps in different species, differences in the relative

levels or influence (response) of branching hormones in

the context of diverse developmental programs and

environmental signals may be a source of varied

branching responses. In species with short life-cycles such

as Arabidopsis, a strong response to decapitation after the

transition to reproductive growth may be particularly

important for the completion of the life-cycle.

Light

The length and quality of light that plants are exposed to

can alter their branching patterns. As mentioned above,

under short day conditions, branching is increased at basal

nodes in pea (Beveridge et al. 2003). Similar branching

patterns are also observed in Arabidopsis and petunia

(Petunia hybrida) (Grbić and Bleecker 2000; Stirnberg

et al. 2002; Snowden and Napoli 2003). Unlike WT plants,

intact die neutralis (dne) mutants in pea lack the ability to

produce basal branches under short days, suggesting that

the DNE gene product is probably required to mediate

photoperiod responsiveness in basal axillary buds. The

branching pattern of rms mutants is dependent on photo-

period, as the basal branching habit of rms1 and rms2

mutants under short days is shifted towards a relatively

more aerial pattern of branching under long days (Bever-

idge et al. 2003). Reduced outgrowth of buds at basal nodes

under long days is also observed in decapitated WT plants,

suggesting a similar pathway mediates this photoperiod

response (Beveridge et al. 2003).

The ratio of red to far-red light (R:FR) is critical in the

light reception response. The relative amount of FR light

is greatly enhanced when light conditions are low (i.e.

canopy shading), or when light is reflected (i.e. crowding

or increased plant density). High FR levels alter phyto-

chrome activity and initiate light responses, particularly

phytochrome B, which acts in the shade response (Robson

et al. 1993). As a consequence, the plant’s resources are

invested into growth of the main shoot axis, including

the hypocotyl, at the expense of bud outgrowth and leaf

Plant Mol Biol (2010) 73:27–36 31
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growth (Cerdán and Chory 2003; Casal et al. 2004; Doust

2007; Kebrom and Brutnell 2007; Carabelli et al. 2007).

Recent work has demonstrated interactions and overlap

between strigolactone- and light-mediated branching con-

trol. In Arabidopsis, the MAX2 F-box gene has been

identified independently in three mutant screens for

delayed leaf senescence, increased branching and photo-

morphogenesis regulation, respectively (Woo et al. 2001;

Stirnberg et al. 2002; Shen et al. 2007). In rice, the D3

F-box is also involved in leaf senescence (Yan et al. 2007).

The pleiotropic phenotypes of max2 mutants are indicative

of multiple roles for MAX2 in plant development and

consistent with a possible function for the nuclear-localised

F-box in regulating multiple signalling cascades (Stirnberg

et al. 2007). MAX2 expression is induced by light in WT

seedlings, and max2 mutant seedlings are hyposensitive to

R and FR light in a phytochrome-dependent manner (Shen

et al. 2007). However, MAX2 and phyB appear to have

antagonistic roles in older plants in branching regulation, as

phyB mutants display small reductions in branch number

and MAX2 is epistatic to phyB in double mutants which

possess a max2 increased-branching phenotype (Reed et al.

1993; Shen et al. 2007). These findings suggest MAX2

could play different roles in the plant depending on

developmental stage.

In Sorghum bicolor, increased apical dominance in a

phyB mutant is accompanied by increased expression of

the TB1 orthologue SbTB1 (Kebrom et al. 2006). Thus, low

R:FR ratios leading to inactive phyB (or non-functional

phyB in a mutant), results in maintenance of SbTB1

expression and bud outgrowth is inhibited. Further to this,

expression of BRC1 in Arabidopsis is increased under

crowded conditions, though it is not known for certain if

the crowding effect is specifically related to reduced R:FR

ratios (Aguilar-Martı́nez et al. 2007). Together, these data

suggest TB1 could be an important integrator of light and

strigolactone to control bud dormancy in some species.

Another point of cross-talk between light and branching

could potentially occur via cytokinin catabolism. As part of

shade avoidance response, the arrest of leaf growth is also

known to rely on the up-regulation of certain CKX genes

under low R:FR ratios (Carabelli et al. 2007). It is possible

that a low R:FR ratio might also restrict branching in a

similar way by maintaining levels of CKX enzymes. As

reviewed in Leyser (2009), much of this relationship

between light quality and branching may be mediated by

affects of light on auxin fluxes and auxin response.

Flowering

In most annual/model species, the amount of vegetative

branching is typically decreased under environmental

conditions conducive to flowering, while delayed flowering

promotes branching (e.g., Beveridge et al. 2003). In Ara-

bidopsis, while growth under long days promotes flowering

and results in less overall rosette branching, rosette bud

outgrowth is usually not induced until the switch to flow-

ering. This is possibly due to reduced auxin production by,

and increased distance from, the floral apex (McSteen and

Leyser 2005).

In monocots and dicots, overexpression or high expres-

sion of TERMINAL FLOWER1 (TFL1) usually leads to

delayed flowering and increased lateral branching, while tfl1

mutants exhibit early flowering and little to no branching

(Ratcliffe et al. 1998; Jensen et al. 2001; Nakagawa et al.

2002; Foucher et al. 2003). In tomato, TFL and FLOWER-

ING LOCUS T (FT) homologues are considered important

regulators of vegetative development in their own right

(Shalit et al. 2009). The aforementioned circadian clock

photoperiod response gene DNE in pea may act via regu-

lation of FT to enhance basal branching under short days

(Liew et al. 2009). In sweet pea, where floral induction

occurs vary late in development (even in early day-neutral

flowering lines) assimilate partitioning and basal branching

is regulated by the photoperiod response pathway well

before flowering has been induced at the shoot apical mer-

istem (Beveridge et al. 1992). In perennial plants, FT has

been strongly implicated in growth cessation and bud end-

odormancy (reviewed by Horvath 2009). Consequently,

evidence from a broad range of species supports the notion

that florigen, mediated by FT, can be considered as a general

plant hormone affecting vegetative and reproductive

development.

Strigolactone mutants do not possess major pleiotropic

effects on flowering time or flower number. However, the

dad1-1 mutant in petunia flowers later than WT, dad2-1

and dad3 mutants (Napoli 1996; Snowden and Napoli

2003). Nevertheless, interactions between flowering and

axillary branching involving florigen, strigolactone and

other chemical hormones are beginning to emerge. Over-

expression of a gene promoting the vegetative-to-flowering

transition, TaVRN1, encoding a MADS-box transcription

factor, has been shown to increase axillary bud outgrowth,

as well as MAX4 expression (Adam et al. 2007). This raises

the possibility that a feedback mechanism(s) may act to

coordinate the strigolactone branching pathway with

inflorescence development. Recently it was suggested that

interactions between auxin and florigen may coordinate

sympodial branching, axillary bud release and flowering in

tomato (Solanum lycopersicon L.). Mutations in the tomato

TFL1 homologue SELF-PRUNING (SP) gene can be

mimicked by the PATS inhibitor TIBA (2,3,5-triiodoben-

zoic acid) and sp mutants possess reduced apical domi-

nance (Pnueli et al. 2001; Shalit et al. 2009). A possible

model for the regulated release of axillary buds to form

32 Plant Mol Biol (2010) 73:27–36
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sympodial branches is that a particular ratio between the

gene products of SP (an inhibitor of florigen) and SINGLE

FLOWER TRUSS (SFT) (florigen) arrests the PATS in

localised manner, leading to outgrowth of an adjacent

axillary meristem (discussed in Shalit et al. 2009).

Depleted gibberellin and auxin content underlie the

reduced internode lengths and increased branching at upper

nodes of gigas-1 (gi-1) late flowering pea plants under long

days compared to short days (Beveridge et al. 2001). These

gi-1 plants likely carry a mutation in one of the FLOW-

ERING LOCUS T-LIKE (FTL) genes in pea (Weller et al.

2009) and exhibit photoperiod-dependent delayed flower-

ing which under long-days is accompanied by a reiterative

reduction in vegetative growth commencing at about the

time where flower development occurs in WT (Taylor and

Murfet 1994; Beveridge et al. 2001; Hecht et al. 2005). In

contrast with the gibberellin flowering pathway in Ara-

bidopsis, gibberellin application to pea can only restore the

vegetative phenotype back to WT and has no affect on

flowering (Beveridge and Murfet 1996).

Nutrients

Nutrient status can undoubtedly affect the ability of shoots

to produce lateral branches. As strigolactone acts as a shoot

branching inhibitor and a promoter of hyphal branching in

mycorrhizal associations, it is possible strigolactone could

provide the plant with a means for balancing nutrient lev-

els, particularly phosphorus, with shoot growth (Akiyama

et al. 2005; Gomez-Roldan et al. 2008; Umehara et al.

2008; Leyser 2009). Indeed, in rice, tomato and red clover,

phosphorous starvation can increase the production of

strigolactones (Yoneyama et al. 2007; López-Ráez et al.

2009; Umehara et al. 2008). Finer regulation of branching

might also be achieved in combination with auxin and

cytokinin, which exhibit nutrient dependent responses

either in movement, accumulation or levels (for review, see

Rubio et al. 2009). As discussed above, auxin flow in the

PATS may influence the movement of nutrients within the

plant. Auxin transport can act as a sink for phosphorus

(Davies and Wareing 1965). Nitrogen availability is critical

for cytokinin synthesis and nitrate has been shown to

up-regulate cytokinin levels and IPT gene expression

(Takei et al. 2004; Miyawaki et al. 2004). Boron deficiency

in pea causes bud outgrowth, probably due to reduced

auxin transport out of the apex (Wang et al. 2006). Defo-

liation of plants cannot inhibit branching in plants triggered

by decapitation, though branch length is reduced (Ferguson

and Beveridge 2009). This suggests nutrients, specifically

carbon sources, could limit the sustained outgrowth of buds

but not the initial release of bud dormancy.

Conclusions and perspectives

Like many developmental processes, shoot branching is

under multifactorial regulatory control. Even with the

discovery of strigolactones, the complexities and number

of interactions means we are still far from a solid under-

standing of branching control in plants. Moreover, in some

cases, the hormone interactions are in themselves multiple.

For example, auxin may affect strigolactone levels, and

strigolactones may affect auxin levels in a feedback role, or

more directly, as strigolactone function may involve

localised auxin transport. In addition to strigolactone and

auxin, cytokinin, nutrient supply and the interaction with

light, photoperiod and the induction of flowering are all

important. It is likely that branching is induced by changes

in different pathways under different conditions and at

different developmental stages and that the relative

importance of each may vary in different species. Eluci-

dation of the strigolactone signal transduction pathway and

the mechanisms of crosstalk in biosynthesis and signalling

are likely to yield major progress in understanding

branching control in the future. However, the discovery of

strigolactones already provides new avenues to consider

agricultural and horticultural opportunities such as sup-

pressing an undesirable vegetative flush after pruning.

Acknowledgments We thank the Australian Research Council for

grant funding and the Australian Postgraduate Award scheme for

funding to AH and TW.

References

Adam H, Ouellet F, Kane NA, Agharbaoui Z, Major G, Tominaga Y

et al (2007) Overexpression of TaVRN1 in Arabidopsis promotes

early flowering and alters development. Plant Cell Physiol

48:1192–1206

Aguilar-Martı́nez JA, Poza-Carrión C, Cubas P (2007) Arabidopsis
BRANCHED1 acts as an integrator of branching signals within

axillary buds. Plant Cell 19:458–472

Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes

induce hyphal branching in arbuscular mycorrhizal fungi. Nature

435:824–827

Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M, Kojima M

et al (2007) DWARF10, an RMS1/MAX4/DAD1 ortholog,

controls lateral bud outgrowth in rice. Plant J 51:1019–1029

Bainbridge K, Sorefan K, Ward S, Leyser O (2005) Hormonally

controlled expression of the Arabidopsis MAX4 shoot branching

regulatory gene. Plant J 44:569–580

Bangerth F (1994) Response of cytokinin concentration in the xylem

exudate of bean (Phaseolus vulgaris L.) plants to decapitation

and auxin treatment and relationship to apical dominance. Planta

194:439–442

Bennett T, Sieberer T, Willett B, Booker J, Luschnig C, Leyser O

(2006) The Arabidopsis MAX pathway controls shoot branching

by regulating auxin transport. Curr Biol 16:553–563

Beveridge CA (2000) Long-distance signalling and a mutational

analysis of branching in pea. Plant Growth Regul 32:193–203

Plant Mol Biol (2010) 73:27–36 33

123



Beveridge CA, Murfet IC (1996) The gigas mutant in pea is deficient

in the floral stimulus. Physiol Plant 96:637–645

Beveridge CA, Ross JJ, Murfet IC (1992) Mutant dn influences dry

matter distribution, assimilate partitioning and flowering in

Lathyrus odoratus L. J Exp Bot 43:55–62

Beveridge CA, Symons GM, Murfet IC, Ross JJ, Rameau C (1997)

The rms1 mutant of pea has elevated indole-3-acetic acid levels

and reduced root-sap zeatin riboside content but increased

branching controlled by graft-transmissible signal(s). Plant

Physiol 115:1251–1258

Beveridge CA, Batge SL, Ross JJ, Murfet IC (2001) Hormone

physiology of pea mutants prevented from flowering by muta-

tions gi or veg1. Physiol Plant 113:285–291

Beveridge CA, Weller JL, Singer SR, Hofer JM (2003) Axillary

meristem development. Budding relationships between networks

controlling flowering, branching and photoperiod responsive-

ness. Plant Physiol 131:927–934

Brewer PB, Dun EA, Fergusion BJ, Rameau CA, Beveridge CA

(2009) Strigolactone acts downstream of auxin to regulate bud

outgrowth in pea and Arabidopsis. Plant Physiol 150:482–493

Carabelli M, Possenti M, Sessa G, Ciolfi A, Sassi M, Morelli G,

Ruberti I (2007) Canopy shade causes a rapid and transient arrest

in leaf development through auxin-induced cytokinin oxidase

activity. Genes Dev 21:1863–1868

Casal JJ, Fankhauser C, Coupland G, Blázquez MA (2004) Signalling

for developmental plasticity. Trends Plant Sci 9:309–314

Cerdán PD, Chory J (2003) Regulation of flowering time by light

quality. Nature 423:881–885

Chatfield SP, Stirnberg P, Forde BG, Leyser O (2000) The hormonal

regulation of axillary bud growth in Arabidopsis. Plant J 24:

159–169

Cline M (1996) Exogenous auxin effects on lateral bud outgrowth in

decapitated shoots. Ann Bot 78:255–266

Cline M (2000) Execution of the auxin replacement apical dominance

experiment in temperate woody species. Am J Bot 87:182–190

Cline MG, Riley L (1984) The presentation time for shoot inversion

release of apical dominance in Pharbitis nil. Ann Bot 53:

897–900

Cline MG, Chatfield SP, Leyser O (2001) NAA restores apical

dominance in the axr3-1 mutant of Arabidopsis thaliana. Ann

Bot 87:61–65

Cook CE, Whichard LP, Wall ME, Egley GH, Coggon P, Luhan PA

et al (1972) Germination stimulants. II. The structure of strigol—

a potent seed germination stimulant for witchweed (Striga lutea
Lour.). J Am Chem Soc 94:6198–6199

Davies CR, Wareing PF (1965) Auxin-directed transport of radio-

phosphorus in stems. Planta 65:139–156

Devitt ML, Stafstrom JP (1995) Cell cycle regulation during growth-

dormancy cycles in pea axillary buds. Plant Mol Biol 29:

255–265

Doebley J, Stec A, Hubbard L (1997) The evolution of apical

dominance in maize. Nature 386:485–488

Doust AN (2007) Grass architecture: genetic and environmental

control of branching. Curr Opin Plant Biol 10:21–25

Doust AN, Devos KM, Gadberry MD, Gale MD, Kellogg EA (2004)

Genetic control of branching in foxtail millet. Proc Natl Acad

Sci USA 101:9045–9050

Dun EA, Ferguson BJ, Beveridge CA (2006) Apical dominance and

shoot branching. Divergent opinions or divergent mechanisms?

Plant Physiol 142:812–819

Dun EA, Brewer PB, Beveridge CA (2009) Strigolactones: discovery

of the elusive shoot branching hormone. Trends Plant Sci

14:364–372

Ferguson BJ, Beveridge CA (2009) Roles for auxin, cytokinin and

strigolactone in regulating shoot branching. Plant Physiol

149:1929–1944

Finlayson S (2007) Arabidopsis TEOSINTE BRANCHED1-LIKE1
regulates axillary bud outgrowth and is homologous to monocot

TEOSINTE BRANCHED1. Plant Cell Physiol 48:667–677

Foo E, Bullier E, Goussot M, Foucher F, Rameau C, Beveridge CA

(2005) The branching gene RAMOSUS1 mediates interactions

among two novel signals and auxin in pea. Plant Cell 17:464–474

Foo E, Morris SE, Parmenter K, Young N, Wang H, Jones A et al

(2007) Feedback regulation of xylem cytokinin content is

conserved in pea and Arabidopsis. Plant Physiol 143:1418–1428

Foucher F, Morin J, Courtiade J, Cadioux S, Ellis N, Banfield MJ,

Rameau C (2003) DETERMINATE and LATE FLOWERING are

two TERMINAL FLOWER1/CENTRORADIALIS homologs that

control two distinct phases of flowering initiation and develop-

ment in pea. Plant Cell 15:2742–2754

Gomez-Roldan V, Fermas S, Brewer PB, Peuch-Pagès V, Dun EA,

Pillot J-P et al (2008) Strigolactone inhibition of shoot branch-

ing. Nature 455:189–194
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