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Abstract The apple, Malus 9 domestica Borkh., is one

of the most important fruit trees grown worldwide. A

bacterial artificial chromosome (BAC)-based physical map

of the apple genome has been recently constructed. Based

on this physical map, a total of *2,100 clones from dif-

ferent contigs (overlapping BAC clones) have been

selected and sequenced at both ends, generating 3,744

high-quality BAC end sequences (BESs) including 1,717

BAC end pairs. Approximately 8.5% of BESs contain

simple sequence repeats (SSRs), most of which are AT/TA

dimer repeats. Potential transposable elements are identi-

fied in *21% of BESs, and most of these elements are

retrotransposons. About 11% of BESs have homology to

the Arabidopsis protein database. The matched proteins

cover a broad range of categories. The average GC content

of the predicted coding regions of BESs is 42.4%; while,

that of the whole BESs is 39%. A small number of BES

pairs were mapped to neighboring chromosome regions of

A. thaliana and Populus trichocarpa; whereas, no pairs are

mapped to the Oryza sativa genome. The apple has a

higher degree of synteny with the closely related Populus

than with the distantly related Arabidopsis. BAC end

sequencing can be used to anchor a small proportion of the

apple genome to the Populus and possibly to the Arabid-

opsis genomes.
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Abbreviations

BAC Bacterial artificial chromosome

BES BAC end sequence

SSR Simple sequence repeat

TE Transposable element

EST Expressed seqeuence tag

Introduction

The domesticated apple, Malus 9 domestica Borkh., is a

member of the Rosaceae family. The family consists of over

100 genera and 3,000 species, most of which are perennial

trees, shrubs, and herbs (Tatum et al. 2005). The apple is

self-incompatible and highly heterozygous diploid with a

base chromosome number of 17. Although the apple is a

diploid (2n = 34), it has an allopolyploid origin (Chevreau

et al. 1985). The apple is not only a major economic fruit

crop grown world-wide, but also serves as an important

model species for functional genomics research of woody

perennial angiosperms due to its relative small genome size

of 750 Mb/haploid (Tatum et al. 2005).

Bacterial artificial chromosome (BAC) libraries have

been extensively used in genomics research due to their

large DNA inserts, high cloning efficiency, and stable

maintenance of foreign DNA. In plants, BAC libraries have

been constructed for a variety of species such as Arabid-

opsis (Choi et al. 1995), rice (Wang et al. 1995), maize

(Yim et al. 2002), sorghum (Woo et al. 1994), soybean

(Shoemaker et al. 1996; Salimath and Bhattacharyya 1999;

Tomkins et al. 1999; Meksem et al. 2000), papaya (Ming

et al. 2001), and apple (Vinatzer et al. 1998; Xu et al.

2001). These libraries have made invaluable contributions

to plant genomic studies including map-based or positional

cloning of genes, genome-wide physical map construction
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(Mozo et al. 1999; Klein et al. 2000; Chen et al. 2002; Xu

and Korban 2002; Shultz et al. 2006; Han et al. 2007),

genome sequencing (The Arabidopsis Genome Initiative

2000; International Rice Genome Sequencing Project

2005), and comparative genomics (O’Neill and Bancroft

2000; Ilic et al. 2003).

Earlier, BAC end sequencing has been proposed as a

viable and efficient strategy for genome sequencing projects

(Venter et al. 1996). Since then, it has become an important

component of genomics research efforts as BESs are very

useful in genome assembly and chromosome walking. For

example, BESs can serve as sequence tag connectors (STCs)

for selecting minimum overlapping clones targeted for

genome sequencing (Mahairas et al. 1999). BAC end

sequence (BES) pairs combined with BAC-fingerprinted

contigs can serve as a primary scaffold for whole-genome

shotgun sequence assembly. BESs are useful for generating

comparative physical maps (Larkin et al. 2003; Shultz et al.

2007b). Moreover, BESs are valuable resources for the

development of genetic markers such as BAC-end sequence-

based microsatellite markers (Shultz et al. 2007a). In addi-

tion, analysis of BES data can provide an overview of the

sequence composition, including gene density and presence

of potential transposable elements (TEs) as well as micro-

satellites, of an unsequenced genome (Lai et al. 2006).

Recently, we have developed a genome-wide BAC

physical map of the apple (M. 9 domestica) (Han et al.

2007). In order to develop genetic markers to integrate the

physical and genetic maps, a total of *2,100 BAC clones,

selected from 1,767 different contigs, were sequenced at

both ends, and resulting in 3,744 BESs. These BAC clones

were selected from different contigs, thus suggesting they

were randomly distributed across the apple genome.

Hence, BESs derived from these BAC clones provided a

unique opportunity to gain insights into the organization of

the apple genome. Here, we report on the analysis of 3,744

BESs, and focus our attention primarily on microsatellite

content, repeat element composition, GC content, protein-

coding regions, and comparative mapping of BAC-end

sequence pairs to other sequenced plant genomes. These

BESs will serve as useful resources for genetic marker

development, integration of physical and genetic maps, and

whole genome sequencing of the apple.

Materials and methods

Source of BAC clones and BAC end sequencing

Two complementary BAC libraries (BamHI and HindIII )

from apple cv. GoldRush were used. The BAC vectors for

BamHI and HindIII libraries were pBeloBAC11 and

pIndigoBAC-5, respectively. BAC clones, picked from

384-well microplates, were inoculated in 96-deep well plates

containing 1.5 ml of 29 LB medium plus 12.5 ll/ml

chloramphenicol. Plates were incubated at 37�C with con-

tinuous shaking at 325 rpm for 20–24 h. BAC DNA was then

isolated using a modified alkaline lysis method. BAC end

sequencing was performed using an ABI Big Dye Termi-

nator v3.1 (ABI, CA, USA), and analyzed on an ABI 3730x1

instrument. Base-calling and sequence trimming were per-

formed with PHRED software (Ewing and Green 1998)

using the default parameters. The output of sequence data

was converted into a FASTA format, and vector sequences

were masked. Terminal vector sequences were then trim-

med, and BESs shorter than 100 bp were discarded.

Identification of simple sequence repeats

Five classes of simple sequence repeats (SSRs), including

mono-, di-, tri-, tetra-, and penta-nucleotide tandem

repeats, were scanned for all trimmed BESs larger than

100 bp in size. SSRs recorded for the final dataset included

monomers with at least 20 repeats and dimers to pentamers

with at least 15 bp in length.

Analysis of repetitive sequences

BESs were compared with The Institute for Genomic

Research (TIGR) plant repeat databases (ftp://ftp.tigr.

org/pub/data/TIGR_Plant_Repeats/) using BLAST at a cut-

off value of 10-5. Repetitive sequences were anno-

tated according to the best match in the repeat database,

and classified based on TIGR codes for plant repetitive

sequences (http://www.tigr.org/tdb/e2k1/plant.repeats/repeat.

code.shtml).

Annotation

To identify protein-coding regions, BESs with no homol-

ogy to the repeat sequence database were compared with

the protein database of Arabidopsis thaliana (ftp://ftp.

arabidopsis.org/home/tair/Proteins/) using BLASTX at a

cut-off value of 10-6. Those BESs significantly matched to

the Arabidopsis protein database were annotated based on

the original A. thaliana protein database annotation.

Comparative genome mapping

All pairs of BESs were compared with whole genome

sequences of Arabdopsis, rice (Oryza sativa) and poplar

(Populus trichocarpa) using TBLASTX at a cut-off value of

10-6. Whole genome sequence databases of A. thaliana, rice,

and poplar were downloaded from The National Center for

Biotechnology Information (NCBI; http://www.ncbi.nlm.

nih.gov/genomes/static/euk.html). If a pair of BESs had
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significant hits, separated by at least 10 kb and not more than

300 kb in the target genome, the tiled BAC was considered to

be potentially colinear with the target genome (Lai et al.

2006).

Results

BAC end sequencing

A total of 2,112 BAC clones from cv. GoldRush were

sequenced at both ends. Of these BAC clones, 62.2% and

37.8% were from BamHI and HindIII libraries, respec-

tively. Following trimming and vector sequence removal,

3,744 high-quality BESs were generated (Table 1). Of

these BESs, 1,717 were paired end reads. The size of these

BESs ranged from 100 to 910 bp with an average of

636 bp, thus corresponding to a total length of *2.4 Mb.

The G + C content of these BESs ranged from 11% to

66% with an average of 39%.

Simple sequence repeats

A total of 320 SSRs or microsatellites were discovered

within the BESs, and these contained a variety of repeat

types (Table 2). Di-nucleotide repeats were the most

abundant, accounting for 48.1% of all SSRs, followed by

penta- and mono-nucleotide repeats which accounted for

19.4% and 17.2%, respectively. Both tetra- and tri-nucleo-

tide repeats occurred relatively rarely and accounted for

6.9% and 8.4%, respectively, of all SSRs. Of the di-nucle-

otide repeats, AT/TA was the most abundant, accounting

for 56.5% of all di-nucleotide repeats; while, AG/CT, TC/

GA, GT/AC, and TG/CA repeats accounted for 18.8%,

11.0%, 9.1%, and 4.5%, respectively. No GC/CG repeats

were found in this study. Moreover, length distribution of

all SSRs indicated that the frequency of repeats decreased

with repeat length (Fig. 1). Among the monomer repeats,

A/T was predominant, while G/C occurred very rarely

(Table 2). Thus, AT/TA dimer repeats were the most

abundant SSRs in apple BESs. In addition, 19 pairs of SSRs

were clustered within the same BESs. Of the paired SSRs, 4

tetramers were clustered with both dimers and trimers, and

6 pentamers were clustered with both dimers and trimers.

Transposable elements

A total of 3,744 BESs were compared with the plant repeat

database revealing that 786 (20.9%) BESs were homolo-

gous to TEs (Table 3). Of these potential TEs, class I

transposons or retrotransposons represented the most

abundant repeats, accounting for 88.2% of TEs. Whereas,

class II transposons and miniature inverted repeat TEs were

relatively rare, and accounting for 10.9% and 0.9%,

respectively. Among the retrotransposons identified in

BESs, the total number of long terminal repeat (LTR)

retrotransposons, including Ty1-copia and Ty3-gypsy, were

2.8 times higher than those of non-LTR retrotransposons,

such as LINE and SINE (Table 3). In addition, more than

half of the retrotransposons (54.1%) and most of the

transposons (70.9%) could not be clearly assigned to a

specific type (Table 3).

Table 1 Statistical information and composition of apple BAC end

sequences (BESs)

Total number of BESs 3,744

No. of paired BESs 1717

No. of non-paired BESs 310

Total length (bp) 2,380,428

Minimum length (bp) 100

Average length (bp) 636

Maximum length (bp) 910

Sequence composition

Potential transposable elements (%) 20.9

Simple sequence repeats (%) 6.5

Protein coding regions (%) 10.9

Unknown genomic sequences (%) 61.7

Table 2 Distribution of simple sequence repeats in apple BESs

Repeat Type No.

Monomer A/T 54

G/C 1

Dimer AT/TA 87

AG/CT 29

GA/TC 17

AC/GT 14

CA/TG 7

Trimer AAT/ATA 5

ATT/TTA/TAT 4

AAG/GAA 5

CTT/TTC 4

ACA/CAA 3

GAT/GAC/CCT/TTG/GCG 6

Tetramer AAAT/AATA/ATAA 3

ATTA/TAAT/TTAT/TTTA 5

Other 14

Pentamer AAAAT/AATAA 7

ATATA/TAATA 2

TTTAT/TTTTA/TATTT 9

ATATT/TATAT/TTATA/TTTAA 4

Other 40

Total 320

Plant Mol Biol (2008) 67:581–588 583

123



Protein coding regions

A total of 2,958 BESs with no homology to the plant repeat

database was compared with the Arabidopsis nucleolar

protein database. Of the total BESs, 323 (8.6%) were

homologous to Arabidopsis proteins at an E-value of\1e-19.

Functional annotation of putative gene products was then

carried out using the Gene Ontology assignment of the

Arabidopsis proteome (http://www.arabidopsis.org/tools/

bulk/go/index.jsp). The predicted genes covered a broad

range of functional categories, such as cellular components,

metabolism, signal transduction, and response to stress

(Fig. 2). With 8.6% of BESs having homologous sequences

to the Arabidopsis protein database, this suggested that the

total coding region of the apple genome was approximately

64.5 Mb, based on an estimated genome size of 750 Mb

(Tatum et al. 2005). Given the assumption of an average

gene length of 2 kb, similar to that of Arabidopsis (The

Arabidopsis Genome Initiative 2000), the total gene content

of the apple was estimated to be *32,250. Moreover, the

average GC content of the predicted coding regions of BESs

was 43%.

Comparative mapping of apple BAC ends to other plant

genomes

In order to gain insight into the syntenic relationships

between apple and other plant species, apple BESs

were BLASTed against whole genome sequences of

three sequenced plants, including A. thaliana, poplar

(P. trichocarpa), and rice (O. sativa). If paired BAC ends

mapped to the target genome with a span of 10 kb to 300 kb

along with proper orientation, then they were deemed

potentially colinear with the target genome. A total of 894

BESs, including 107 BAC end pairs, had significant hits to

the Arabidopsis genome. Amino acid identities of these hits

ranged from 23% to 96% with an average of 49.1%. Of 107

BES pairs, 28 had the top BLAST hit to the same Arabidopsis

chromosome and three were mapped to the Arabidopsis

genome with a span of 69–300 kb (Table 4). Similarly, when

apple BESs were compared with the Populus genome, 1,110

BESs, including 154 BAC end pairs, had significant matches.

Amino acid identities of these matches ranged from 20% to

97% with an average of 53.3%. Among 154 BAC end pairs,

15 had the top match to the same Populus chromosome and

eight were mapped to the Populus genome with a span of

12–65 kb (Table 4). Moreover, BESs of the eudicot apple

were also BLASTed against the genome of the monocot

model plant rice. The results revealed that a total of 907

BESs, including 106 BAC end pairs, had significant hits to

the rice genome. The amino acid identities of these hits

ranged from 20% to 96% with an average of 48.6%. Of 106

BES pairs, 12 had the top hit to the same chromosome.

However, no pairs of apple BESs were mapped to the

same rice chromosome separated by more than 10 kb and

Fig. 1 Length distribution of different types of SSRs identified

within apple BESs

Table 3 Summary of potential

transposon contents in apple

BESs

Class Transposon type Number of BES

Retrotransposon Ty1-copia 190

Ty3-gypsy 62

LINE 65

SINE 1

Unclassified 375

Transposon Ac/Ds 4

CACTA, En/Spm 14

Mutator (MULE) 3

ping/pong/SNOOPY 4

Unclassified 61

Miniature inverted repeat

transposable element (MITE)

MITE-adh, type D 5

Micron 2

Total 786
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less than 500 kb. This suggested that the colinearity rela-

tionship between apple and rice has heavily eroded since the

divergence of eudicots from monocots.

Discussion

Analysis of BESs is an efficient approach for developing an

understanding of sequence content and complexity of an

unsequenced genome (Lai et al. 2006; Cheung and Town

2007). This approach relies on sequencing ends of BAC

clones randomly selected from BAC libraries. In this study,

we took advantage of the genome-wide BAC-based phys-

ical map of the apple, and collected a set of BAC clones.

Analysis of BESs from the BAC set has provided an early

glance at the apple genome before the whole genome

sequence becomes available. The results presented herein

indicate that the apple genome contains a large number of

potential TEs and microsatellites, and it has a higher degree

of colinearity with the Populus genome than with the

Arabidopsis genome.

Genomic GC content is one of the most important fea-

tures of a genome. Genomes with a low GC content are

expected to have shorter exons than those with a high GC

content (Xia et al. 2003). Based on comparisons of apple

BESs with the Arabidopsis protein database, the average

GC content of coding regions of the apple genome is

*43%, which is similar to that of the Arabidopsis genome

(*42.7%; The Arabidopsis Genome Initiative 2000).

Moreover, Arabidopsis and apple genomes represent sister

clades within the dicot subclass Rosidae. Therefore, it is

reasonable to assume that the average gene length of the

Fig. 2 Gene ontology annotation of apple BESs. (a) Cellular component; (b) Molecular function; (c) Biological process
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apple is similar to that of Arabidopsis. Based on this

assumption, the total number of apples genes is predicted

to be *32,250, which is rather consistent with results

obtained from analysis of our apple EST database (182,241

50 and 30 reads) indicating that the total gene content of

apple is *29,000 (unpublished data).

Plant genomes contain a variety of TEs such as trans-

posons, retrotransposons, and miniature inverted-repeat

TEs (MITEs). The most abundant TEs in plant genomes are

retrotransposons and MITEs (Feschotte et al. 2002). In this

study, TEs are identified in *21% of apple BESs. Of these

TEs, 88.2% belong to retrotransposons, thus suggesting

that the apple genome consists of abundant retrotranspo-

sons. The ratio of Ty3-gypsy to Ty1-copia retrotransposons

in apple BESs is 1:3, and it is different from those reported

for the Arabidopsis (1:1; The Arabidopsis Genome Initia-

tive 2000) and rice (2:1; International Rice Genome

Sequencing Project 2005) genomes. Moreover, *11.6% of

BESs contain unclassified TEs (Table 3), suggesting that

novel repeats constitute a significant portion of the apple

genome. On the other hand, MITEs have been reported and

are present in high copy numbers in the apple genome (Han

and Korban 2007). However, few MITEs have been iden-

tified in apple BESs. Similarly, few MITEs have been

found in papaya BESs (Lai et al. 2006). The detection of

MITEs in BESs may be significantly biased by either the

restriction enzyme used to generate the BAC library or the

secondary structures of MITEs influencing BAC end

sequencing.

SSRs constitute a special class of tandemly repeated

DNA. SSRs have several advantages over other molecular

markers, including high polymorphism due to the high

mutation rate affecting the number of repeat units, abun-

dance in whole eukaryotic genomes, and co-dominant

inheritance (Tóth et al. 2000; Katti et al. 2001). SSRs have

been extensively used for genome mapping in plants such

as rice (Coburn et al. 2002; McCouch et al. 2002), maize

(Sharopova et al. 2002), wheat (La Rota et al. 2005; Gao

et al. 2004), and papaya (Eustice et al. 2007). BESs are

useful resources for the development of SSR markers, and

BAC-end sequence-based SSRs have been successfully

used to develop genetic maps in cotton (Frelichowski et al.

2006) and soybean (Shultz et al. 2007a). In this study,

analysis of apple BESs has revealed that 6.5% BESs con-

tain SSRs. This suggests that the development of BES-

based SSRs is a potentially feasible approach for either

constructing or saturating the genetic map for apple.

Moreover, the most abundant SSRs identified in apple

BESs are A/T monomer and AT/TA dimer repeats. This is

in agreement with previous findings indicating that AT-rich

SSRs are predominant in Arabidopsis (Tamanna and Khan

2005), soybean (Shultz et al. 2007a), and papaya (Lai et al.

2006). In addition, most of the SSRs identified in apple

BESs are 20-40 bp in length, and very few SSRs are

larger than 50 bp in length (Table 1). The length distri-

bution of apple BES-based SSRs is consistent with a

previous finding that the frequency of repeats decreases

exponentially with repeat length (Katti et al. 2001).

SSR analysis has been reported for expressed sequence

tags (ESTs) from apple (Newcomb et al. 2006). Here, we

further compare the composition of BES-based SSRs with

that of EST-derived SSRs in apple. AT and AG repeats are

the most abundant of di-nucleotide repeats in both BES-

based and EST-derived SSRs. Both BESs and ESTs have

few GC repeats. However, the frequencies of different

types of repeats are different between BES-based SSRs and

EST-derived SSRs. For example, AT and AG repeats

account for *57% and 18.8% of di-nucleotide repeats

identified in BESs, respectively; while, AT and AG repeats

constitute 7.6% and 88% of di-nucleotide repeats derived

from ESTs, respectively (Newcomb et al. 2006). The

frequency of di-nucleotide repeats is higher than that of

Table 4 Comparative mapping of paired apple BAC ends to other plant genomes

Plant species Paired apple BAC ends Chromosomal location Coordinates (bp) Span (bp)

Arabidopsis thaliana KB01003X1C08r/KB01003X1C08f 1 5102253–4799732 302,521

KB01009X1B11f/KB01009X1B10r 1 5166190–5061215 104,975

KB01014X1D04r/KB01014X1D04f 2 1772675–1703340 69,335

Populus trichocarpa KB01008X1A11r/KB01008X1A11f VIII 226194–255183 28,989

KB01012X1A06r/KB01012X1A06f XVIII 1496344–1448318 48,026

KB01013X1A08r/KB01013X1A08f XI 1560563–1495884 64,679

KB01013X1D08r/KB01013X1D08f XIV 2875992–2836479 39,513

KB01019X1A12r/KB01019X1A12f I 38014–13132 24,882

KB01018X1G01f/KB01018X1G01r II 2693817–2711121 17,304

KB01020X1C01f/KB01020X1C01r VI 4640410–4628146 12,264

KB01154X1D07f/KB01154X1D07r VI 2427766–2441077 13,311
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tri-nucleotide repeats for BES-based SSRs; whereas, the

frequency of di- and tri-nucleotide repeats in EST-derived

SSRs is comparable (Newcomb et al. 2006). These

inconsistencies may be attributed to the fact that the

composition and frequency of SSRs are different between

genomic DNA and coding region sequences. Moreover, it

is worth mentioning that the minimum length used to

define SSRs is different between BES-based SSRs and

EST-derived SSRs. The minimum size of BES-based SSRs

is 15 bp; while, it is 12 bp for EST-derived SSRs. The

differences in the minimum length of SSRs may also

contribute to observed inconsistencies of SSR distribution

between BESs and ESTs.

Comparative genetic mapping studies have revealed

colinear chromosome segments among closely related spe-

cies such as Poaceae (Devos and Gale 2000), Solanaceae

(Tanksley et al. 1992), and Brassicaceae (O’Neill and Ban-

croft 2000). However, analysis of colinear chromosome

segments is not well suited for distantly related species

(Paterson et al. 1996). Recently, with the completion of

whole genome sequences of model plants such as

Arabidopsis and rice, an alternative analysis approach,

microsynteny, has been developed to investigate colinearity

among distantly related species. In this study, the extent of

colinearity between apple and each of the three sequenced

plant species, the eudicots Populus and Arabidopsis along

with the monocot rice, has been determined by mapping

apple BAC end pairs to the model plant genomes. A total of

154, 107, and 106 apple BES pairs have been identified to be

homologous to Populus, Arabidopsis, and rice genomes,

respectively. Among these BESs pairs, 8 (5.2%), 3 (2.8%),

and 0 BES pairs have been mapped to Populus, Arabidopsis,

and rice genomes, respectively, with a span of 10 to 300 kb.

The apple and Populus represent two sister orders within the

Eurosids I clade; whereas, Arabidopsis is a member of the

order Brassicales within the Eurosids II clade. Thus, results

presented in this study indicate that the apple has a higher

degree of synteny with the closely related Populus than with

the distantly related Arabidopsis. Therefore, in the future,

comparative genetic mapping can be carried out between

apple and poplar genomes using a microsynteny approach.

Moreover, 28 BES pairs of apple map to the same chromo-

somes of Arabidopsis. Among those, 25 map to the same

chromosome regions with a span of either\10 kb or more

than 300 kb. This finding suggests that the degeneration of

microsynteny between apple and Arabidopsis may be due to

extensive rearrangements of the Arabidopsis genome (Blanc

et al. 2000).
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Tóth G, Gáspári Z, Jurka J (2000) Microastellites in different

eukaryotic genomes: survey and analysis. Genome Res 10:

967–981

Venter JC, Smith HO, Hood L (1996) A new strategy for genome

sequencing. Nature 381:364–366

Vinatzer BA, Zhang H-B, Sansavini S (1998) Construction and

characterization of a bacterial artificial chromosome library of

apple. Theor Appl Genet 97:1183–1190

Wang GL, Holsten TE, Song WY, Wang HP, Ronald PC (1995)

Construction of a rice bacterial artificial chromosome library and

identification of clones linked to the Xa-21 disease resistance

locus. Plant J 7:525–533

Woo SS, Jiang J, Gill BS, Paterson AH, Wing RA (1994)

Construction and characterization of a bacterial artificial chro-

mosome library of Sorghum bicolor. Nucleic Acids Res

22:4922–4931

Xia X, Xie Z, Li W (2003) Effects of GC content and mutational

pressure on the lengths of exons and coding sequences. J Mol

Evol 56:362–370

Xu M, Korban SS (2002) A cluster of four receptor-like genes resides

in the Vf locus that confers resistance to apple scab disease.

Genetics 162:1995–2006

Xu M, Song J, Cheng Z, Jiang J, Korban SS (2001) A bacterial

artificial chromosome (BAC) library of Malus floribunda 821

and contig construction for positional cloning of the apple scab

resistance gene Vf. Genome 44:1104–1113

Yim YS, Davis GL, Duru NA, Musket TA, Linton EW, Messing JW,

McMullen MD, Soderlund CA, Polacco ML, Gardiner JM, Coe

EH Jr (2002) Characterization of three maize bacterial artificial

chromosome libraries toward anchoring of the physical map to

the genetic map using high-density bacterial artificial chromo-

some filter hybridization. Plant Physiol 130:1686–1696

588 Plant Mol Biol (2008) 67:581–588

123


	An overview of the apple genome through BAC end sequence analysis
	Abstract
	Introduction
	Materials and methods
	Source of BAC clones and BAC end sequencing
	Identification of simple sequence repeats
	Analysis of repetitive sequences
	Annotation
	Comparative genome mapping

	Results
	BAC end sequencing
	Simple sequence repeats
	Transposable elements
	Protein coding regions
	Comparative mapping of apple BAC ends to other plant genomes

	Discussion
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


