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Abstract
The past decade has witnessed significant advances in our understanding of skeletal homeostasis and the mechanisms 
that mediate the loss of bone in primary and secondary osteoporosis. Recent breakthroughs have primarily emerged from 
identifying disease–causing mutations and phenocopying human bone disease in rodents. Notably, using genetically–modified 
rodent models, disrupting the reciprocal relationship with tropic pituitary hormone and effector hormones, we have learned 
that pituitary hormones have independent roles in skeletal physiology, beyond their effects exerted through target endocrine 
glands. The rise of follicle–stimulating hormone (FSH) in the late perimenopause may account, at least in part, for the rapid 
bone loss when estrogen is normal, while low thyroid–stimulating hormone (TSH) levels may contribute to the bone loss in 
thyrotoxicosis. Admittedly speculative, suppressed levels of adrenocorticotropic hormone (ACTH) may directly exacerbate 
bone loss in the setting of glucocorticoid–induced osteoporosis. Furthermore, beyond their established roles in reproduction 
and lactation, oxytocin and prolactin may affect intergenerational calcium transfer and therefore fetal skeletal mineralization, 
whereas elevated vasopressin levels in chronic hyponatremic states may increase the risk of bone loss.. Here, we discuss the 
interaction of each pituitary hormone in relation to its role in bone physiology and pathophysiology.
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Ubiquity and distributed functions 
of pituitary hormones and their receptors

The pituitary gland orchestrates diverse physiological 
processes by secreting hormones that target various 
endocrine and non–endocrine tissues. These ancient 
hormones have acquired distributed somatic and sensory 
functions throughout evolution, and in mammals, have 
been shown recently to exhibit a complex array of actions. 
Pituitary hormones exert their effects via G–protein–coupled 
receptors (GPCRs) within the rhodopsin–like receptor class. 
Thyroid–stimulating hormone (TSH), follicle–stimulating 
hormone (FSH), and luteinizing hormone (LH) have 
originated from a common ancestral hormone, thyrostimulin, 

with their receptor evolving to accommodate distinct 
hormone functions in vertebrates [1].

A thyroid–stimulating hormone receptor (TSHR) family 
gene with a mammalian intron–exon structure is expressed 
widely in coelenterates, with a primitive nervous system, 
but without endocrine glands. In bony fish, TSHRs are 
expressed in abundance in the thyroid, but are also found 
in ovaries and several other tissues, including the heart, 
muscle, and brain [2]. TSHRs are also expressed in bone and 
bone cells, namely, calvaria–derived primary osteoblasts, 
preosteoblasts, human osteoblast–like cells, differentiated 
osteoclasts, and osteoclast precursors [2–6]. Furthermore, 
TSH secretion is not limited to pituitary glands: immune 
cells, including macrophages and lymphocytes, produce 
a splice variant of TSH, TSH–βv, which is regulated 
differently from pitutary–derived TSH [7–11].

Similarly to TSHR, the expression of FSHRs is not 
confined to gonadal tissue, but is widely distributed, 
including in bone tissue, as demonstrated by in  vivo 
imaging in live mice using a near–infrared fluorophore 
conjugated to FSH [12, 13]. Apart from the adenal gland, 
the receptor for ACTH, melanocortin receptor 2 (MC2R), 

 *	 Mone Zaidi 
	 mone.zaidi@mssm.edu

1	 Mount Sinai Center of Translational Medicine 
and Pharmacology, Icahn School of Medicine at Mount 
Sinai, New York, NY 10029, USA

2	 MaineHealth Institute for Research, Scarborough, ME 04015, 
USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s11102-024-01437-5&domain=pdf


	 Pituitary

is also expressed widely in tissues that include the brain, 
immune cells, adipose tissue, bone cells, and the pituitary 
itself. ACTH has therefore has been demonstrated to exert a 
variety of biological activities in addition to its primary role 
in regulating glucocorticoid hormone production [14, 15].

As for the posterior pituitary hormones, oxytocin 
(OXT) and vasopressin (AVP) genes have evolved from 
the ancestral mesotocin and vasotocin genes [16, 17]. 
The resulting nonapeptides have emerged during the 
expansion of mammals around 100–200 million years ago 
and subsequently acquired a diverse range of functions. 
Following gene duplication events in nematodes, the 
encoded OXT– and AVP–like peptides have become 
involved in behavioral adaptation as a means to ensure 
reproductive success. During this evolutionary period, 
the single receptor for OXT and three distinct GPCRs for 
AVP also evolved from ancestral mesotocin and vasotocin 
receptors to undertake widely distributed roles in modern 
mammals [18]. Both OXT and AVP act directly on bone 
through their respective GPCRs, the OXTR and AVPR1A 
[19–22]. In addition to its neurohypophyseal origin, OXT 
is produced by both human and murine osteoblasts and is 
regulated by estrogen [21, 23, 24].

The skeletal effect of growth hormone

Studies of GH and the human skeleton

While there is considerable clarity the skeletal phenotype of 
patients with GH deficiency or excess, interpreting human 
data is challenging due to the heterogeneity of the study 
designs and subjects, differences in the etiology, onset 
age, duration, concomitant pituitary hormone deficiencies, 
and hormone supplementation. GH deficiency is generally 
associated with a low bone mineral density (BMD), but 
the timing of onset––whether before or after the age of 
achieving peak bone mass––and sex have a significant 
impact on BMD accrual. Patients with childhood–onset 
GH deficiency typically exhibit Z-scores in the range of 
−1 to −2, whereas adult–onset patients are less affected 
(Z-scores typically between -1 and 0) [25–29]. Patients 
with adult–onset GH deficiency thus show 17% and 10% 
higher BMD at lumbar spine (LS) and hip, respectively, 
compared with childhood–onset disease [30]. These findings 
may be confounded by differences in body (bone) size. For 
example, a study using peripheral quantitative computed 
tomography (pQCT) in adult patients with childhood–onset 
GH deficiency showed only a mild decrease in cortical BMD 
(~ 2%) in the radius and normal trabecular BMD [31]. In 
the radius, cortical BMD is lower than in the control group, 
while trabecular bone is not affected [31]––suggesting that 

the GH/IGF-1 axis exerts differential effects on trabecular 
and cortical bone. There is also a sex–dependent difference 
in patients with GH deficiency. In adult men, BMD is lower 
at the lumbar spine (Z –2.03 vs. –0.57) and hip (Z –1.04 
vs. –0.24); women, however, did not show any difference 
despite lower bone turnover markers [32].

Conversely, GH excess in patients with acromegaly is 
associated with increased BMD in cortical–bone–rich areas, 
such as the femur, but not in trabecular-bone-rich vertebrae 
[33]. Conflicting data also exist where only 8% of patients 
display osteopenia at the femur compared with ~ 20% at 
the lumbar spine [34]––this difference might be related to 
concomitant hypogonadism. Most patients with osteopenia 
had concomitant hypogonadism and bone loss at the lumbar 
spine was associated with a longer duration of hypogonadism 
[34–36]. Similarly, when female patients were stratified 
by menstrual status, BMD at the lumbar spine, but not at 
other sites, was significantly higher in menstruating patients 
compared to controls [37].

What appears to to be clear from human data is that GH 
excess causes high bone turnover. Bone biopsies on patients 
with acromegaly show increased bone turnover [38, 39]. 
Serum osteocalcin and urinary hydroxyproline are elevated 
in acromegalic patients [33]. Likewise high bone turnover 
can also be seen in patients with GH deficiency after GH 
replacement therapy. Serum bone Gla protein (BGP) and 
bone-specific alkaline phosphatase (B-AP) were found to be 
lower in patients with childhood–onset GH deficiency, but all 
bone turnover markers, namely BGP, C–telopeptide (CTX), 
procollagen type 1 N-terminal peptide (P1NP), and B-AP, 
increased after 3 and 6 months of GH supplementation [40, 
41]. This increased bone turnover appears to be associated 
with a net anabolic effect on bone mass. GH replacement 
in adults with isolated GH deficiency increased spinal 
trabecular BMD by 5% after 6 months [42]. However, the 
response to GH replacement seemed to differ depending on 
the onset of the condition, wherein childhood–onset patients 
showed a more robust increase in osteocalcin compared to 
adult–onset disease [43].

There is also a relationship between GH action and 
PTH action. GH has anti–phosphaturic action, which leads 
to PTH secretion [44]. Untreated GH deficiency is also 
complicated with PTH insensitivity. 24–hour monitoring 
of PTH, phosphorus and bone turnover markers in 
GH–deficient patients showed elevated PTH with low serum 
phosphorus, together with suppressed P1NP and CTX levels 
[45]. A subgroup of patients with low BMD had suppressed 
nephrogenous cyclic AMP (NcAMP), reflecting reduced 
renal response to PTH action [46]. Conversely, GH treatment 
improved PTH sensitivity, resulting in decreased PTH levels 
and increased phosphate reabsorption [47, 48].

Mechanisms of GH action.
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GH acts  on  bone  pr imar i ly  by  secret ing 
insulin–like growth factors (IGFs) 1 and 2. Several 
genetically–engineered mouse models have thus been 
employed to dissect the IGF effects. Given the critical 
physiological importance of IGF-1 and IGF-2, mice 
with mutations in IGF-1R do not survive after birth. 
Surviving mice with disruptions in IGF-1 or -2 exhibit a 
40% smaller body size compared with wild type mice [49, 
50]. Interestingly, double mutants of IGF-1 and IGF-1R 
do not differ from IGF-1R single mutant mice, but mice 
with mutations in both IGF-1 and IGF-2 display a further 
decrease in body size compared with mice with mutations 
in either gene––suggesting an additive effect [50]. The 
importance of IGF-1 action in skeletal growth is indirectly 
demonstrated by disrupting the JAK/STAT signaling 
pathway. Disrupting Stat5b or both Stat5a and 5b, but not 
5a alone, causes decreased IGF-1 levels, as well as reduced 
body growth [51–53].

Given that, in addition to its secretion from the liver, 
IGF-1 is also produced locally by osteoblasts [54], there 
has been renewed interest in understanding the endocrine vs. 
paracrine skeletal actions of IGF-1. This becomes even more 
complex when considering the role of binding proteins. IGF 
binding protein-3 (IGFBP-3) and the acid labile subunit 
(ALS), which binds to ~ 80% of circulating IGF-1, prolong 
the half–life of IGF-1. Furthermore, IGFBP-3 expression 
in osteoblasts scavenges IGF-1 locally and, in doing so, 
affects its bioavailability [54, 55]. While liver–specific 
IGF-1 deficient mice, namely Alb-Cre+;Igf1fl/fl mice, 
achieved a ~ 75% decrease in serum IGF-1 levels, skeletal 
growth remained unaltered, suggesting that the relatively 
small quantity of IGF-1 from extrahepatic tissues may, 
in fact, be sufficient for normal growth [56]. Subsequent 
studies with  double mutant mice obtained by crossing 
Alb-Cre+;Igf1fl/fl mice with ALS-deficient mice showed a 
further decrease in IGF-1 to ~ 10% of normal levels––which, 
together with a concommitant rise in GH due to negative 
feedback––resulted in only a ~ 30% reduction in body size 
that was rescued by IGF-1 treatment with ~ 6% gain. Of 
note, these mice did not show compensatory upregulation 
of IGF-1 expression in bone [55].

While systemic IGF-1 is required for skeletal growth, 
local IGF-1 also  seems to play a critical role in bone 
growth and remodeling. Chondrocyte–specific Col2α1-
Cre+;Igf1fl/fl mice display reduced body and femoral length 
and total body BMD [57]. Furthermore, ablation of the 
IGF-1R in osteoblasts using Osteocalcin-Cre results in 
mice of normal size and weight, but with reduced bone 
remodeling. Namely, both osteoblast and osteoclast 
number was decreased, together with impaired trabecular 
and periosteal bone formation [58, 59]. Furthermore, the 
anabolic action of PTH was less prominent in these mice, 
suggesting that IGF-1 action is required for the osteoblastic 

action of PTH action [58]. Conversely, transgenic mice 
overexpressing IGF-1 locally (and not systemically) 
through an OC–IGF-1 chimeric fusion gene showed higher 
trabecular bone volume and thickness, as well as increased 
bone formation rate, without changes in body size [60].

In addition to local IGF-1 and IGF-2, tissue-specific 
expression of IGF binding protein (IGFBP) also exerts 
skeletal effects by sequestering bioavailable IGF-1. For 
example, upregulating the expressioj of IGFBP-4, which 
is abundant in bone, reduced bone formation and bone 
turnover by ~ 50% [61]. Of note is that IGFBP-5 levels were 
reduced in these transgenic mice, suggesting a compensatory 
mechanism to maintain IGF-1 bioavailability [61]. Similarly, 
IGFBP-5 overexpression resulted in decreased trabecular 
bone volume and reduced osteoblast bone formation [62].

Finally, a question arises––does GH display actions 
on bone that  are independent of IGF-1/2. Notably, 
GHR–deficient mice showed runting, decreased bone 
volume and density, as well as reduced bone turnover [52, 
63, 64]. However, these mice also had significantly lower 
levels of IGF-1 [64], and, importantly, IGF-1 treatment 
rescued the impaired bone growth and remodeling [52]. 
Similarly, mutant mice obtained by crossing Ghr−/− mice 
with mice overexpressing IGF-1 showed restored body 
length and normalized bone area and density [63]–– together 
suggesting that IGF-1 may be required for the actions of GH 
on the skeleton. However, there is evidence that GH may 
have an independent action, specifically on linear growth. 
Double knock-out mice (Ghr−/−;Igf1−/− mice) were noted 
to be shorter (~ 50%) compared with Ghr−/− (~ 25–35%) 
and Igf-1−/− mice (~ 35–45%), respectively [65]. In a 
hypogonadal state, such as in ovariectomized mice, 
sensitivity to GH increases, which appears to preserve bone 
through periosteal bone formation in the setting of systemic 
IGF-1 deficiency [66]. In rats, GH treatment also raises PTH 
levels, and those rats have heavier parathyroid glands [67], 
suggesting an indirect effect of GH exerted via PTH action.

TSH protects bone

Correlative, interventional and genetic studies

It is known since the time of von Recklinghausen, that 
patients with hyperthyroidism are at a higher risk of 
developing osteoporosis and sustaining fracture [68, 69]. 
Furthermore, it is well established that thyroid hormone 
stimulates bone resorption mainly via the thyroid hormone 
receptor (TR) α1 [70–74]. However, it is also clear that 
patients with subclinical hyperthyroidism, in whom T4/
T3 levels are normal but TSH is suppressed are also 
at a high risk for osteoporosis and fracture. Thus the 
question arises––whether TSH has direct effects on bone. 



	 Pituitary

In 2003, we discovered that TSH directly affects bone mass 
in mice, in the broader perspective, as the first conclusive 
evidence for the action of any pituitary hormone beyond its 
traditional unitary target [75].

Multiple observational studies have since shown 
strong correlations between low TSH levels and high 
bone turnover, low bone density, and a high fracture 
risk, importantly, independently of thyroid hormone 
levels [76]. In euthyroidal subjects, low TSH levels are 
associated with adverse skeletal phenotypes, including 
lower BMD or a higher risk of fracture [77–84]. 
Patients with subclinical hyperthyroidism, where TSH 
is suppressed and thyroid hormones are normal, show 
increased risk of osteoporosis and of fracture. For 
example, the Study of Osteoporotic Fracture (SOF), 
a large prospective study of postmenopausal women 
from the U.S., has documented that women with low 
TSH (< 0.1 mIU/L) have a higher risk of fracture [Hip 
(HR = 3.6, 1.0–12.9), vertebral (4.5, 1.3–15.6) and 
nonvertebral fracture (2.3, 0.8–6.8)] compared with 
women with normal TSH levels (0.5–5.5 mIU/L) [78]. 
A large female cohort from a health promotion center in 
Korea also noted almost threefold increase in the risk of 
osteoporosis in patients with TSH < 0.5 mIU/L compared 
with TSH 2.8–5  mIU/L [79]. Conversely, thyroid 
hormone supplementation in patients with subclinical 
hypothyroidism increased bone turnover, as reflected 
by elevated serum alkaline phosphatase and CTX, and 
urine deoxypyridinoline after 24 weeks. At 48 weeks 
of treatment, lumbar spine areal BMD decreased 1.2% 
compared with the placebo–treated group [85]. A 
recent study using peripheral quantitative computed 
tomography, however, did not show any difference 
in volumetric BMD or bone geometry parameter in 
levothyroxine–treated group vs. placebo [86]. Unlike 
subclinical hyperthyroidism, multiple epidemiology 
studies did not observe BMD changes or increased risk 
of fracture in patients with subclinical hypothyroidism 
[87–90].

Intervention using recombinant human TSH (rhTSH) 
suggest direct anti–resorptive and pro–anabolic actions 
of TSH based on acute changes in bone turnover 
markers. In patients with thyroid cancer, who underwent 
rhTSH–stimulated whole body scan, serum CTX and 
urinary CTX and NTX were decreased [91, 92]. Conversely, 
B-ALP and P1NP increased after rhTSH injection [92, 
93]. Finally, the Rotterdam Study and other studies from 
the U.K. and China have shown that individuals harboring 
gain–of–function TSHRD727E variants had increased bone 
density [83, 94, 95]. However, a study utilizing a Mendelian 
randomization did not find any effect of genetic variants on 
bone density [96].

Mechanistic studies

The independent role of TSH in the skeletal metabolism 
was revealed primarily through studies in genetically 
modified mice. Most notably, Tshr haploinsufficient 
mice with normal thyroid glands and unaltered thyroid 
function displayed significant bone loss [75]––in 
essence, separating the effect of reduced TSHR signaling 
from thyroid hormone action. Similarly, homozygotic 
Tshr–/– mice displayed low BMD despite being 
maintained in a euthyroid state using on thyroid hormone 
replacement from the birth [75, 97]. Furthermore, and 
importantly, when hyperthyroidism was induced by 
implanting T4 pellets, hyperthyroid Tshr–/– mice lost 
more bone than hyperthyroid wild type littermates, 
suggesting that TSHR signaling affords skeletal 
protection against thyroid hormone excess [98].

The decreased bone mass in Tshr–/– mice was primarily 
associated with increased osteoclastogenesis. In line 
with the observed decreases in bone resorption markers 
in humans after rhTSH injection, osteoclastogenesis 
was suppressed in mice upon exposure to an agonist 
anti–TSHR antibody [99, 100]. We find that the 
anti–resorptive action of TSH is mediated, in part, 
through the suppression of  pro–inf lammatory 
cytokines. TNFα, a well–known osteoclastogenic 
cytokine [101], was upregulated in Tshr−/− mice, and an 
anti–TNFα neutralizing antibody reversed the increased 
osteoclastogenesis [102]. Similarly, the bone loss with 
increased osteoclast differentiation in Tshr deficient mice 
was not noted in compound mutants with reduced or 
absent Tnfa expression, such as in Tshr−/−;Tnfα−/− mice 
[97]. The inhibition of Tnfa expression by TSH was 
medicated through the high–mobility group box proteins 
(HMGB). Notably, TSH downregulated HMGB–1 
and –2, in addition to attenuating JNK1/2 and IκBα 
phosphorylation and c-jun and p65 nuclear translocation 
[75, 103]. TSHR overexpression also decreased NFκB 
binding in response to RANKL and TNFα [102].

TSH is anabolic in addition to being anti–resorptive. In 
in vivo studies, intermittent low–dose rhTSH injections in 
wild type and ovariectomized mice increased bone formation 
and bone mass [4, 100]. TSH also promoted osteoblast 
differentiation and proliferation by activating protein kinase 
Cδ and upregulating the non–canonical WNT components 
FRZ and WNT5a in embryonic stem cell cultures [104]. 
However, in bone marrow stromal cell cultures TSH was 
found to downregulate osteoblast differentiation genes, as 
well as the VEGF receptor FLK-1 and the WNT co–receptor 
LRP5 [75].

Finally, it  is notable that CD11b + and other 
immune cells express the splice variant TSHβv [7]. 
This expression of local TSH could, in fact, amplify 
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the physiological effects of TSH on bone remodeling. 
Interestingly, immune cell–derived TSHβv is regulated 
differently from pituitary–derived TSH. TSHβv injection 
into mice increased T4 and T3 levels, yet T3 injection 
or TSH releasing hormone (TRH) treatment did not 
alter TSHβv expression in peripheral blood leukocytes, 
spleen, thyroid, or the pituitary gland [105]. Instead, 
pro–inflammatory cytokines upregulated intrathyroidal 
TSHβv expression, and traff icked immune cells 
expressing TSHβv to the thyroid gland [106, 107].

FSH directly causes bone loss

Human evidence

The independent skeletal effect of FSH can be inferred by 
observing specific groups clinically, such as women in the 
perimenopausal transition, patients with Turner syndrome, 
or even elderly cohorts. Notably, rapid and substantial 
bone loss occurs around three years prior to the final 
menstrual period, coinciding with relatively normal serum 
estrogen levels and escalating FSH levels [108, 109]. This 
rapid bone loss cannot conceivably be explained by low 
estrogen––which led us to evaluate FSH as a possible culprit.

Furthermore, a set of evolving epidemiologic studies 
have suggested that FSH is a stronger predictor of BMD 
loss than estrogen. Notably, the Study of Women’s Health 
Across the Nation (SWAN), a longitudinal cohort of 2375 
perimenopausal women (42–52 years old) showed a rise in 
FSH over 4 years predicted a decline in BMD [109]. The 
significant association between high serum FSH and bone 
resorption markers or BMD, particularly within the highest 
quartiles of serum FSH, was also noted in perimenopausal 
Chinese women [110–114]. The Bone Turnover Range 
of Normality (BONTURNO) Study also showed that the 
women with serum levels of FSH > 30 IU/l had higher bone 
turnover markers than age-matched women with FSH levels 
of < 30 IU/l [115]. Likewise, in NHANES III, high serum 
FSH was correlated with high bone turnover markers and 
low BMD [116]. Similarly, the AGES–Reykjavik Study of 
Older Adults from Iceland showed an inverse correlation 
between serum FSH and BMD in elderly women [116, 117].

Comparing patients with hypergonadotropic vs. 
hypogonadotropic hypogonadism, such as functional 
hypothalamic amenorrhea, has added another line of 
compelling evidence for the role of FSH in causing bone 
loss. Patients with amenorrhea with high levels of FSH 
(> 40 IU/L) had lower BMD than patients with lower FSH 
levesl (< 40 IU/L) [118], and unlike postmenopausal bone 
loss, functional hypothalamic amenorrhea is associated 
with mild to moderate bone loss [119]. Likewise, Turner 
syndrome is also characterized by hypergonadotropic 

hypogonadism with ovarian insufficiency. The biphasic 
pattern of elevated FSH during infancy and at puberty has 
been consistently observed in patients with monosomy 
(45, X) and in patients without spontaneous puberty 
[120, 121]. Expectedly, Turner syndrome patients have 
higher risk of osteoporosis and fracture, despite being 
on hormone replacement therapy. The areal BMD after 
correction for height and weight, and volumentric BMD 
are both low with increased bone resorption markers 
and decreased bone formation markers [122–124]. 
An observational study has further shown an inverse 
correlation between FSH levels and BMD Z-score 
in postpubertal Turner syndrome patients [125]. In 
addition, peripheral blood mononuclear cells (PBMCs) 
cultures from Turner syndrome patients with high FSH 
levels showed an increased number of TRAP–positive 
osteoclasts after M-CSF and RANKL treatment, and 
monocytes of those patients expressed higher levels 
of c-fos, RANK and TNF-α [123]–-all being surrogate 
markers of increased bone resorption.

In an interventional study, postmenopausal women 
were treated with a GnRH agonist, leuprolide acetate, 
or placebo, with both groups receiving the aromatase 
inhibitor, letrozole, to eliminate variations in endogenous 
estrogen levels as a confounder [126]. In the GnRH 
group, while suppression of FSH secretion did not reduce 
the levels of resorption markers, serum P1NP, a bone 
formation marker, was increased significantly by ~ 15% 
from baseline. The multiplicity of actions of the GnRH 
agonist on other hormones, such as LH, or the action of 
GnRH itself, might account for the unexpected action on 
resorption. But it is clear that lowering serum FSH does 
increase P1NP, a validated bone formation marker. This 
is in line with bone–forming actions of FSH inhibition 
in rodent models (below).

Finally, it is worth noting that women harboring an 
activating FSHRN680S variant display lower bone mass and 
high bone resorption markers [127]. Additionally, digenic 
combinations between wild type genotype of the 3’UTR 
and IVS4 markers for the CYP19A1 (aromatase) gene, and 
the BMP15 and FSHR genes have been described as being 
osteoprotective [128].

Mechanistic studies

Supporting the strong epidemiologic and genetic evidence 
for a role of FSH in bone mass regulation in humans is 
compelling evidence from rodents. We found earlier that 
haploinsufficient Fshb+/– mice displayed increased bone 
mass with no loss of ovarian function [5]. Furthermore, the 
injection of FSH or FSH antagonist in mice exacerbated 
and protected, respectively, the bone loss from ovariectomy 
[129, 129, 130, 130]. Likewise, the injection of the ovotoxin 
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4-vinylcyclohexene diepoxide in rats to mimic the human 
perimenopausal transition resulted in 10% bone loss during 
the high FSH––normal estrogen window [131].

FSH binding to bone tissue was shown in vivo using 
a near–infrared fluorophore conjugated to FSH [12]. 
FSH promotes osteoclast formation in all species studied 
through a distinct FSHR isoform lacking exon 9 [5, 111, 
112, 132–134]. Unlike granulosa cells, FSHRs in CD11b+ 
osteoclast precursors and osteoclasts are coupled with an 
inhibitory Gαi protein. Thus, the effect of FSH on osteoclasts 
was attenuated in Gαi

−/−cells [5]. FSHR activation in 
osteoclasts induces the nuclear localization of c-Fos and 
activates Erk1/2 and Akt phosphorylation [5].

FSH also acts indirectly to promote osteoclastogenesis 
by augmenting inflammatory pathways. For example, FSH 
was found to enhances the expression of RANK [135], as 
well as IL-1β, TNFα and IL-6 [101, 136]. In humans, FSH 
levels were positively associated with serum cytokine levels 
[136, 137]. The pro–osteoclastogenic response to FSH was 
not seen in mice lacking immunoreceptor tyrosine–based 
activation motif (ITAM) adapter signaling molecules [134], 
suggesting an interaction with immune receptors. Finally, 
FSHRs were found to be expressed on human osteoblast 
precursors and stromal cells isolated from mice [138]. 
Our anti–FSH antibody increased a number of osteoblast 
precursors, upregulated osteoblastogenic genes expression, 
and promoted bone formation [132, 138, 139].

FSH effects on adiposity

The FSHR is also expressed in fat tissue and adipocytes 
[140–142]. Full–length FSHR was identified in adipose 
tissues in mice, boar, and human by qPCR and Sanger 
sequencing, and immunostaining [141, 143, 144]. Like in 
osteoclasts and monocytes, FSHRs in adipocytes are coupled 
to Gαi protein, and, by decreasing intracellular cAMP levels 
[144], downregulate cAMP–mediated β3-adrenergic receptor 
signaling. This results in downregulation of UCP1–mediated 
beiging [144, 145]. In addition, FSH induces lipid synthesis 
by upregulating peroxisome proliferator-activated receptor 
gamma (PPARγ), CCAAT enhancer binding proteins (C/
EBPα), lipoprotein lipase (LPL), and fatty acid synthase 
(FAS) [141, 144].

In loss–of–function experiments, attenuating the action of 
FSH, either genetically in Fshr+/– mice or pharmacologically 
using our FSH–blocking antibodies in high–fat–diet–treated 
or ovariectomized mice, stimulated UCP1 expression and 
mitochondrial biogenesis, resulting in increased energy 
expenditure and reduced fat mass in a prevention setting [5, 
138, 144]. This suggests that FSH blockade in vivo could 
be a potential avenue for not only increasing bone mass, but 
also reducing body fat. Importantly, FSH blockade did not 

cause satiety; instead there were trends to increased food 
intake, despite which, the mice lost weight [144].

There is evidence from human studies that FSH is 
associated with increased adiposity. The SWAN study has 
shown that elevated FSH levels are positively correlated 
with waist circumference and fat mass during the 
perimenopausal transition, while estrogen levels remain 
stable [146, 147]. At menopause, when FSH levels remain 
high and estrogen levels plummet, serum FSH continues to 
serve as a better predictor of high fat mass than estrogen. 
The AGES–Reykjavik study shows that elderly women in 
the highest FSH quartile had higher bone marrow adiposity 
[117], and a Chinese cohort study reported that subjects 
with high FSH had high BMI [141]. Finally, there is also 
a positive association between FSH and fat mass in men. 
A population study conducted in China revealed a positive 
correlation between FSH levels and BMI in older men 
[141]. In patients with prostate cancer, surgical orchiectomy 
causing acute hypogonadal transition (low testosterone and 
high FSH) displayed greater weight gain and fat mass both 
in subcutaneous and visceral fat compartments, compared 
with patients who received GnRH agonist treatment causing 
secondary hypogonadism (low testosterone and low FSH) 
[148]. The evidence together suggests that FSH might 
contribute to obesity both in men and women.

FSH effects on cognition

Alzheimer’s disease (AD) disproportionately affects 
women in terms of life-time risk, rate of progression and 
symptom burden, suggesting that the female sex could be 
a major risk factor in developing AD, particularly after 
menopause [149–153]. It has been widely believed that 
estrogen deficiency may underlie the preponderance of AD 
in postmenopausal women. However, the evidence regarding 
the relationship between hormone replacement and AD is 
mixed with improvements, no effects or even deterioration of 
cognition [154–158]. In contrast, FSH levels in cerebrospinal 
fluid (CSF) increase almost threefold in postmenopausal 
women compared with premenopausal women [159], and 
FSHRs are abundant in the hippocampus, an AD–vulnerable 
brain region [160–162]. The SWAN and the Penn Ovarian 
Aging Study showed that cognitive performance specifically 
in cognitive processing speed, verbal encoding, and verbal 
episodic memory, declined during the perimenopause when 
FSH starts rising prior to the decline of estrogen [163–165]. 
Furthermore, FSH levels were positively correlated with the 
risk of dementia in both men [166, 167] and women [168]. 
Furthermore, women aged 40–65, gonadotropin, particularly 
FSH levels, were associated with higher Aβ load and lower 
gray matter volume in AD–prone brain regions [169]. 
Finally, GnRH agonist treatment in patietns with AD showed 
improvement in the cognitive functions [170, 171].
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We documented FSHR expression mainly in 
AD–vulnerable regions of mouse and human brains––these 
regions, namely the entorhinal cortex and the granular 
layer of the dentate gyrus of the hippocampus are involved 
in learning behaviors and memory [160, 161]. In a study 
using AD–prone 3xTg transgenic mice, we found that 
elevated FSH levels after ovariectomy or intraperitoneal 
FSH injections caused a rapid accumulation of Tau and 
Aβ with impaired spatial learning and memory retrieval. 
Consistent with the hypothesis that FSH promotes AD–like 
pathology and memory loss, the downregulation of the 
Fshr in the hippocampus or injection of our FSH–blocking 
antibody attenuated the memory loss and neuropathology 
in ovariectomized 3xTg mice [162]. Importantly, we found 
that Fshr deletion on a 3xTg background resulted in a 
gene–dose dependent rescue of spatial and recognition 
memory in 3xTg;Fshr+/− and 3xTg;Fshr−/− mice compared 
with 3xTg;Fshr+/+ mice [172]. FSH administration also 
exacerbated the AD–like pathology in ApoE4 knock–in 
mice, suggesting that FSH might have an additive effect 
on the known propensity of the ApoE4 phenotype in 
AD pathogenesis [173]. In a study using Ts65Dn mice 
recapitulating Down syndrome, a condition associated 
with high FSH and cognitive impairment, GnRH therapy 
improved cognitive performance by normalizing FSH levels 
[174].

Genetical ly,  a  polymorphism in the FSHR 
(FSHRA307,S680/A307,S680) has been linked to a lower risk of 
AD in women (OR = 0.36, 0.15–0.85) [175]. Individuals 
with Down syndrome also have an increased risk of 
developing AD, with males having a threefold higher risk 
compared to females [176]. Male patients with Down 
syndrome have been found to have higher gonadotropin 
levels, despite having normal testosterone levels [177, 178].

FSH as a therapeutic target for human diseases

Based on preclinical and human studies, FSH has become 
an actionable target for osteoporosis, obesity and AD. 
Our original polyclonal and monoclonal antibodies 
target a computationally–defined 13–mer epitope acids 
(LVYKDPARPKIQK) within the receptor–binding domain 
of human FSHβ[13, 138, 138, 144, 179]. These antibodies 
increase bone mass in both wild type and ovariectomized 
mice through both anti–resorptive and anabolic actions 
[13, 138, 138, 139, 179]. In addition, blocking FSH action 
prevented fat gain and induced beiging in all fat depots 
in mice on a high–fat diet or post–ovariectomy [144]. In 
studies from other labs, vaccination with tandem repeats 
of the same epitope in mice also prevented fat accrual 
and induced beiging [180]. Boars vaccinated with these 
tandem repeats gained less fat compared with castrated pigs 
where FSH levels are high [143]. Blocking FSH action also 

prevented the onset of AD–like neuropathology––Aβ plaque 
and neurofibrillary tangle formation––and memory loss in 
the ovariectomized 3xTg mouse [162]. Antibody treatment 
also reduced neuronal apoptosis while increasing dendritic 
spine and synapse number, and restoring spatial memory in 
the Morris Water Maze test [162].

Our lead humanized candidate, Hu6, was chosen from 
a panel of 30 humanized FSH antibody clones as one that 
displayed the highest binding affinity (KD) of 7.53 nM [139]. 
Using HEK cells overexpressing the FSHR, we found that 
Hu6, directly prevented FSH binding to the FSHR, and in 
doing so, attenuated osteoclastogenesis in a bone marrow 
cell culture assay, and inhibited the expression of beiging 
genes in vitro in 3T3-L1 adipocytes [139]. We also found 
that Hu6 stimulated bone formation in Thermo mice, as 
well as in C57BL/6 mice that has been ovariectomized and 
allowed to lose bone––consistent with an anabolic action 
[181]. We have also developed a clinical–grade formulation 
and performed a range of biophysical tests. We find that 
Hu6 displays thermal, monomeric, colloidal, structural and 
accelerated stability, as well as acceptable levels of viscosity, 
clarity and turbidity at an ultra–high concentration of up to 
150 mg/mL in formulation––which is suitable for human use 
[182, 183]. Finally, studies in African green monkeys have 
shown no evidence of acute effects on vital signs, serum 
chemistries or blood counts [181].

ACTH action on bone

ACTH has a direct effect on bone remodeling independent 
of glucocorticoids. We now know that prolonged 
glucocorticoid use in humans results in suppressed 
osteoblast differentiation, increased osteoclastogenesis, and 
osteocyte apoptosis [184]. But it remains unclear whether 
suppressed ACTH in this setting has any direct skeletal 
action, given that glucocorticoids are required for osteoblast 
differentiation in vitro [185], and ACTH receptor, MC2R, 
is expressed in both osteoblasts and osteoclasts [15, 186].

An observational study comparing patients with 
ACTH–independent adrenal Cushing’s syndrome (low 
ACTH and high cortisol) with ACTH–dependent Cushing 
disease (high ACTH and high cortisol) showed greater bone 
loss in the former group [187]. Mc2r−/− mice exhibited 
high bone formation, increased cortical bone mass, and 
unaltered trabecular microstructure, but this mice were 
confounded by adrenal insufficiency [188]. However, a 
cleat protective effect of ACTH was observed in a rabbit 
model of glucocorticoid–induced osteonecrosis. ACTH 
injections reduced necrotic surfaces, upregulated the 
osteoblastogenesis gene program, as well as Vegf and Tgfb 
in vitro [189–191].
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Table 1   In vivo evidence from genetically–modified mice

Genotype Skeletal phenotype

Tshr–/– with thyroid hormone supplement [75] Decreased BMD
Tshr+/– [75] Decreased BMD, with focal osteosclerosis
Tshr+/–;Tnfa–/– [97, 102] Increased BMD

Increased bone formation
Decreased bone resorption (vs. Tshr+/– mice)

Pax8–/– [217] Impaired cortical and trabecular microstructure
Decreased mineralization

Pax8–/– supplemented with T4 [217] “Catch-up” skeletal growth
Normalized bone mineralization
Improved trabecular abnormalities

TshrHyt/Hyt [217] Decreased BMD and BV/TV
Impaired cortical and trabecular microstructure
Decreased mineralization

TshrHyt/wt [217] Intact BMD (vs. WT)
Decreased mineralization

TshrHyt/Hyt and TshrHyt/wt [100] Up-regulation of osteoclastic gene expression
Thra1–/–;Thrb–/– [218] Intact BMD (vs. WT)
rhTSH administration [100] Preserved BMD after ovariectomy

Suppressed osteoclastic gene expression
Ghr−/−[52, 64] Developmental delay in ossification (35% normal size),

Trabecular bone volume, number, thickness not altered, decreased trabecular BFR
Reduced bone turnover

Igf1−/− [50, 219] Developmental delay in ossification (60% normal size)
Tibia (27% normal size), L1 (26% normal size), decreased cortical thickness (-17%), 

increased trabecular bone (+ 23% (M), + 88% (F))[220]
Igf2−/− [49] Developmental delay in ossification (60% normal size); otherwise normal and fertile
Igf1−/−;Igf2−/−

Igf1r−/−;Igf2−/−[50]
Developmental delay in ossification (30% normal size)

Ghr−/−;Igf1−/−[65] Shorter than Ghr−/− or Igf1−/−

 ~ 50% reduction in the length, ~ 60% reduction in the width
Igf1r−/− [50] Developmental delay in ossification (45% normal size)

Fatal, die at birth
Stat5ab−/− [52, 53] Significant reduction of IGF-1

Bone turnover is slightly higher (unlike Ghr−/− mice)
Dwarfism similar to Gh−/− or Ghr−/−

Stat5a−/− [53] No change
Normal IGF-1 level

Stat5b −/− [53] IGF-1 were reduced in male only
20%–30% smaller than their wild-type littermates

AlbCre+;Igf1fl/fl [56] No change; decreased IGF-1 (− 75%)
AlbCre+;Igf1fl/fl;Als−/− [55] Reduced size of growth plates; decreased BMD (~ 10%), decrease in periosteal circumference 

and cortical thickness (~ 35%); decreased IGF-1 (− 85 ~ 90%) with compensatory increase 
GH level (15–fold) and insulin (5-fold)

Col2α1Cre+;Igf1fl/fl [57] Decreased body length, bone width, and areal BMD
OcCre+;Igf1rfl/fl [59] Decreased BT/TV, Tb Th, Tb.N; decreased BFR, MAR, OB.N/perimeter and OC.N/

perimeter; normal size
Overexpression of IGF-1 in OB (OC-IGF-I 

chimeric gene) [60]
No change in areal or volumetric BMD
Increased BV/TV and Tb. Th; increased BFR and MAR; normal size

Overexpression of IGFBP-4 in osteoblasts [61] Decreased OB.N, BFR and MAR, size; retarded skeletal growth
Overexpression of IGFBP-5 in osteoblasts [62] Decreased BMD, Tb.V, Tb Th, Tb.N, MAR (despite normal OB. N); normal size
Fshb+/– and Fshr+/– [5] Increased bone mass (vs. WT) without any change in serum estrogen or testosterone levels
FSH–blocking antibodies [138] Rescue of ovariectomy–induced bone loss
Mc2r−/−[188] High bone formation, increased cortical bone mass, and unaltered trabecular microstructure 

(adrenal insufficiency)
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Oxytocin, prolactin and pregancy– 
and lactation–induced bone loss

During the pregnancy, ~ 80% of mineral that is pat of 
the fetal skeleton accrues during the third trimester of 
pregnancy, with intergenerational calcium transfer from 
mother at a rate of 300–350 mg/day. After delivery, the 
neonate requires 200 mg of calcium daily from milk during 
the first 6 months and 120 mg from milk during the second 
6 months [192]. Maternal skeletal adaptations to meet these 
needs leads to enhanced bone resorption and a negative 
calcium balance in the mother, particularly during the late 
pregnancy when fetal demand is at the peak [193–195]. For 
this reason, although it is uncommon, vertebral fracture and 
low bone mass have been reported during pregnacny and 
lactation [192, 196].

OXT and prolactin, both of which regulate lactation and 
parturition, may play a role in intergenerational calcium 
transfer during pregnancy and lactation along with other 
calcitropic hormones, such as parathyroid hormone–related 
protein (PTH-rP) [197]. Both Oxt−/− and Oxtr−/− mice showed 
age–dependent bone loss with reduced bone formation and 
impaired osteoblastogenesis [21]. Likewise, ovariectomized 
mice and rats had decreased OXT levels, and OXT injection 
reveresed bone loss [19]. Transcriptomic analysis identified 
the oxytiocin receptor (OXTR) pathway as a potential 
regulator of osteogenesis, wherein OXT and carbetocin (an 
OXT analogue) promoted osteoblast differentiation at the 
expense of adiopogenesis in multipotent adipose–derived 
stem (hMADS) cells [19]. Consistently, osteoblast–specific 
deletion in Col2.3–Cre+;Oxtrfl/fl mice resulted in low bone 
mass and reduced bone formation, whereas osteoclast-specific 
deletion in Acp5-Cre+;Oxtrfl/fl mice increased bone mass and 
reduced resorption [198]––– together suggesting anabolic 
and pro–resorptive actions of OXT. More importantly, with 
osteoblast–selective OXTR deletion, the normal maternal 
bone loss that occurs during pregnancy and lactation was 
attenuated and Oxt–/– fetuses showed decreased mineralization 
in trabecular bone [199], suggesting a role for OXT in the 

increased bone turnover required for intergenerational calcium 
transfer and fetal skeletal mineralization [24, 198].

Regarding prolactin action, an in vivo study using dams 
measured bone turnover after prolactin administration 
during pregnancy. Newborn pups from treated dams showed 
a ~ 30% decrease in alkaline phosphatase and reduced bone 
formation, without changes in serum calcium or PTH 
levels [200]. However, global prolactin receptor–deficient 
(Prlr–/–) mice showed lower BMD in both sexes. Bone 
formation parameters were suppressed based on dynamic 
histomorphometry. This observation might be confounded 
by hypogonadism, particularly as estrogen levels in female 
Prlr–/– mice were significantly lower compared with wild 
type littermates, although testosterone levels in males 
did not differ [201]. Conversely, hyperprolactinemia, 
which was induced by anterior pituitary transplantation, 
exacerbated bone resorption in the context of ovariectomy, 
potentially through decreased osteoprotegerin (OPG) 
expression in osteoblasts [202]. The mechanisms by 
which the rise of OXT and prolactin during pregnancy and 
lactation affect the maternal skeleton and how a potentially 
hypophyseal–bone interaction might lead to pregnancy– and 
lactation–associated osteoporosis need further study.

Vasopressin, water balance and bone

Chronic hyponatremia is associated with osteoporosis and 
fracture [203–205]. Vasopressin (AVP), a key regulator of 
serum osmolality and fluid status, has been implicated in 
bone remodeling based on animal studies. Avpr1α−/− mice 
had high bone mass with increased bone formation and 
decreased resorption [20, 22]. AVP or AVPR-1a antagonist 
(SR49059) reduced or increased bone mass, respectively, 
suggesting that AVP negatively regulates skeletal 
remodeling [22]. However, blocking AVPR2, the primary 
receptor in the kidney, by tolvaptan did not affect skeleton 
[20]. Since the skeleton is the largest reservoir for sodium, 
it is expected that sodium and calcium resorption from bone 

Table 1   (continued)

Genotype Skeletal phenotype

Oxt-/- [21] Profound age–dependent bone loss with reduced bone formation and impaired 
osteoblastogenesis

Oxtr-/- [21] Profound age–dependent bone loss with reduced bone formation and impaired 
osteoblastogenesis

Col2.3-Cre+;Oxtrfl/fl [198] Low bone mass and reduced bone formation
Acp5-Cre+;Oxtrfl/fl [198] Increased bone mass and reduced resorption
Avpr1α−/−[22] High bone mass with increased bone formation and decreased resorption
Avpr1α−/−;Oxtr−/− [20] Rescue of osteopenia of Oxtr−/− mice
Prlr–/– [201] Low BMD and bone formation
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are co–regulated, and high AVP levels may contribute to 
bone loss in the setting of chronic hyponatremia [206, 207].

The broader context

Discoveries that pituitary hormones, once thought to have 
single functions in regulating endocrine glands, have 
direct actions on bone, fat, and brain are of considerable 
physiological importance. These studies have been 
complicated by intricate feedback loops and dominant 
sex steroid effects. An evolving understanding of their 
independent role nonetheless continues to highlight multiple 
clinical implications. Furthermore, pituitary hormones and 
their receptors might be a potential therapeutic targets, in 
essence, highlighting the significance of undersatanding 
integrative physiology towards innovative drug development. 
In addition to the FSH–blocking antibody, described above, 
TSH has been shown to stimulate adipogenesis, adipocyte 
beiging, and lipolysis in various animal models, which may 
have clinical implications in altering body composition 
in patients with thyroid disorders [2, 208–211]. Likewise, 
oxytocin besides its central–mediated anorexigenic effects 
[212], also triggers peripheral beiging and thermogenesis 
[198, 213–215]. Clinical trials investigating the use of 
OXT for treating obesity in adults and adolescents are thus 
currently in progress [216].
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