
Vol.:(0123456789)1 3

Pituitary (2017) 20:33–45 
DOI 10.1007/s11102-017-0792-z

Biochemical investigations in diagnosis and follow 
up of acromegaly

Katharina Schilbach1 · Christian J. Strasburger2 · Martin Bidlingmaier3 

Published online: 6 February 2017 
© Springer Science+Business Media New York 2017

Since different commercially available assays do not agree 
very well, method specific interpretation of GH and IGF-I 
concentrations is required. This complexity in the interpre-
tation of hormone concentrations is not always appropri-
ately reflected in laboratory reports, but also not in clinical 
guidelines reporting decision limits not related to a specific 
analytical method. The present review provides an over-
view about methodological and biological variables affect-
ing the biochemical assessment of acromegaly in diagnosis 
and follow up.
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Introduction

Acromegaly is a rare disease, which, in more than 95% of 
the patients, is caused by a growth hormone (GH) secret-
ing pituitary adenoma. Diagnosis is frequently delayed due 
to the gradual onset of the disease with mostly unspecific 
symptoms [1]. As a result, the latency from first symp-
toms to diagnosis usually takes 7–10 years [2–5]. In spite 
of benignity of nearly all tumors, acromegaly is associ-
ated with increased morbidity and mortality. In addition to 
the characteristic changes in physiognomy, patients suffer 
from a variety of comorbidities affecting quality of life and 
reducing lifespan [3, 6–11]. Since most of these comor-
bidities are not, or only partially, reversible with treatment, 
early diagnosis and initiation of therapy is crucial to avoid 
long-term complications. Furthermore, surgery of pituitary 
adenomas is easier and the remission rate is higher when 
the tumor is still small and separated from surrounding tis-
sues [12–14]. Therefore, sensitive and specific biochemi-
cal makers of disease activity are important. According to 

Abstract Measurements of human growth hormone (GH) 
and insulin-like growth-factor I (IGF-I) are cornerstones in 
the diagnosis of acromegaly. Both hormones are also used 
as biochemical markers in the evaluation of disease activ-
ity during treatment. Management of acromegaly is par-
ticularly challenging in cases where discordant information 
is obtained from measurement of GH concentrations fol-
lowing oral glucose load and from measurement of IGF-
I. While in some patients biological factors can explain 
the discrepancy, in many cases issues with the analytical 
methods seem to be responsible. Assays used by endocrine 
laboratories to determine concentrations of GH and IGF-I 
underwent significant changes during the last decades. 
While generally leading to more sensitive and reproducible 
methods, these changes also had considerable impact on 
absolute concentrations measured. This must be reflected 
by updated decision limits, cut-offs and reference intervals. 
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current internationally recognized guidelines, the glucose 
tolerance test (OGTT) with 75 g glucose is the gold stand-
ard for diagnosing acromegaly, and the majority of experts 
in the field report to use the lowest GH concentration (GH 
nadir) after glucose load together with IGF-I as diagnostic 
criteria [15–17]. However, besides the general recognition 
of the value of GH and IGF-I measurements, the details 
of the biochemical evaluation of disease activity in initial 
diagnosis and during the course of therapy remain contro-
versial and challenging. This is particularly due to the bio-
logical and analytical variability associated with the bio-
chemical markers.

Physiologically, GH is secreted by the pituitary gland (or 
in case of acromegaly by a somatotropic adenoma), while 
IGF-I is primarily secreted by the liver following GH bind-
ing to hepatic GH receptors (GHR) [18]. Biochemically, 
quantification of GH provides a correlate of pituitary GH 
secretion, while measurement of IGF-I provides a biochem-
ical equivalent for the peripheral response of the organism 
to circulating GH because most of the biological effects of 
GH are mediated by IGF-I [19]. In other words, both bio-
chemical markers of the somatotropic axis provide us with 
different information. Furthermore, although the general 
concept is that IGF-I concentrations reflect the integrated 
GH secretory capacity of the pituitary, both components 
of the somatotropic axis can be modified independently 
by specific biological factors. Therefore, from a biologi-
cal point of view, discrepancies between the two are to be 
expected under specific clinical conditions. However, since 
both parameters often are being used together to biochemi-
cally define disease activity, such discrepancies can make 
the diagnosis and monitoring of acromegaly challenging. 
Beyond biology, the availability of different GH and IGF-I 
assays with different standardization and specificity can 
pose further difficulties on the biochemical investigation. 
This is of particular interest when comparing results from 
different studies with measurements from different labs, but 
also if analytical methods are changed by the laboratory 
during the course of follow up in a patient.

For this review, we searched the PubMed database for 
the following keywords: diagnosis of acromegaly, biochem-
ical diagnosis acromegaly, OGTT, acromegaly, discrepan-
cies growth hormone IGF-I, discordant growth hormone 
IGF-I, divergence growth hormone IGF-I, growth hormone 
assay, IGF-I assay. Further publications were identified 
through the references of the initially selected literature.

Divergence between GH and IGF‑I concentrations

There is an increasing number of reports where, in patients 
with active acromegaly, results from GH and IGF-I meas-
urement do not agree. Patients can present with either 

elevated GH but normal IGF-I, or elevated IGF-I but appar-
ently normal GH. The incidence of discrepant findings and 
the potential reasons to explain the discrepancy can be dif-
ferent at diagnosis and during treatment of the disease.

Recently, it has been reported that in 157 treatment naïve 
patients with clinically active acromegaly with elevated 
IGF-I levels investigated between 1996 and 2016, 31% had 
normal 24-h mean plasma GH levels [20]. Interestingly, the 
year of diagnosis had an influence on the incidence of dis-
cordant findings in this study: In the more recently diag-
nosed cases, the percentage of patients presenting with 
discordant laboratory findings was higher (49%) than dur-
ing the rest of the observational period, potentially indi-
cating the need to adjust reference intervals for the assays 
used [20]. In 2011 the same group had reported that in 40 
untreated patients with acromegaly 33% had a GH nadir 
below 1  ng/mL, and 18% (n = 7) had a GH nadir below 
0.4  ng/mL [21]. In another group of 25 newly diagnosed 
and untreated patients with acromegaly, five subjects with 
GH-secreting pituitary macroadenomas had basal GH lev-
els below 1 ng/mL, and the same five patients (out of 15 
patients who underwent an oGTT) also had a GH nadir 
below 1 ng/mL [22].

Discrepant findings were also found in patients with 
acromegaly after initiation of therapy. In 2008, data from 
the Belgian acromegaly registry (AcroBel) showed that 
discordant GH and IGF-I values can be found in approxi-
mately 35% of non-cured patients with acromegaly [23]. 
Another group reported persistent elevation of IGF-I 
despite GH nadir concentrations below 1 ng/mL in 13 out 
of 75 patients with acromegaly after treatment (surgery, 
radiotherapy and/or medical treatment) [24]. Tumor-size 
does not seem to have an influence on the incidence of dis-
cordant laboratory findings, but interestingly, discordant 
findings seem to occur more frequently after radiotherapy 
[20–22, 24, 25]. Furthermore, it has been suggested that 
one of the variants of the GHR (d3-GHR lacking exon 3) 
could have an impact on the frequency of discordant find-
ings during treatment: In a study with 84 surgically treated 
patients, 20% exhibited discordant IGF-I and GH values, 
and 71% of those patients were carriers of the GHR vari-
ant [26]. Treatment with somatostatin analogs increased the 
proportion of discordant values in the total cohort to 31%, 
and 69% of them were d3-GHR carriers [26]. On the other 
hand, one study suggested that the percentage of discordant 
laboratory findings is significantly lower in patients treated 
with dopamine agonists [27].

Further examples for studies reporting discordant find-
ings from IGF-I and GH measurements in untreated and 
treated patients with acromegaly are presented in Table 1. 
It is important for clinicans to be aware of the relatively 
high proportion of discordant biochemical findings and to 
reflect this in their diagnostic and therapeutic decisions. 
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Table 1  Studies reporting discordant findings from IGF-I and GH measurements

Subjects (n) Disease status Elevated 
IGF-I (%)

IGF-I assay GH asses-
ment modal-
ity

Designated 
GH cut off

Normal GH 
(%)

GH assay Year References

29 Post treat-
ment

100 RIA, Nichols GH nadir 
(100 g)

<1 ng/mL 50 2-site IRMA, 
DSL

2001 [28]

16 Untreated 100 2-site IRMA, 
DSL

GH nadir 
(100 g)

<1 ng/mL 50 ICMA, 
Nichols

2002 [29]

25 Untreated 100 RIA, DSL GH nadir 
(100 g)

<1 ng/mL 20 IRMA, DSL 2003 [23]

15 100 Basal GH <1 ng/mL 33
35 Post treat-

ment
100 2-site IRMA 

DSL
GH nadir 

(75 g)
<1 ng/mL 40 IRMA, BIO-

CODE
2004 [30]

51 Untreated 96 2-site IRMA 
DSL

Basal GH <2.5 ng/mL 10 ICMA, 
Immulite

2008 [31]
<1 ng/mL 4

58 Post surgery 95 <2.5 ng/mL 9
<1 ng/mL 9

42 Octreotide 
LAR

98 <2.5 ng/mL 31

229 Untreated 89 ICMA, 
Nichols

Basal GH 
(mean of 3 
values)

<2 ng/mL 24 ICMA, 
Nichols

2008 [20]

84 Post treat-
ment

100 ICMA, 
Immulite

Mean GH (5 
measure-
ments every 
30 min)

<2 ng/mL 20 ICMA, 
Immulite

2009 [26]

75 Post treat-
ment

17 (n = 13) 2-site IRMA 
DSL

GH nadir 
(75 g)

<1 ng/mL 100 IFMA, 
inhouse

2010 [24]

40 Untreated 100 2-site IRMA 
DSL

GH nadir 
(100 g)

<1 ng/mL 33 ICMA, 
Nichols

2011 [22]
<0.4 ng/mL 18

38 Untreated 100 2-site IRMA 
DSL

24 h mean 
plasma GH

<4.3 ng/mL 63 ICMA, 
Nichols

2011 [32]

100 GH nadir 
(100 g)

<0.4 ng/mL 5

33 (multiple 
tests)

Post treatment 
(medica-
tion)

36.6 Different 
assays

Basal GH <3.9 ng/mL 100 different 
assays

2011 [33]
10.8 GH nadir 

(75 g)
<1 ng/mL 100

27 Untreated 85 Different 
assays

GH nadir 
(75 g)

Depending on 
assay

4 Different 
assays

2012 [34]
111 Post treat-

ment (no 
medication)

92 22

89 Post treatment 
(medica-
tion)

86 13

22 Healthy 
subjects

100 ICMA, 
Immulite

GH nadir 
(75 g)

<0.4 ng/mL 18 ICMA, 
Immulite

2014 [35]

88 women Untreated 0 ICMA, 
Immulite

GH nadir 
(75 g)

<0.4 ng/mL 70 ICMA, 
Immulite

2015 [36]
72 men Untreated 100
70 women Untreated Basal GH 20
72 men Untreated 54
157 Untreated 100 Different 

assays
24 h mean 

plasma GH
<4.7 ng/mL 31 Different 

assays
2016 [147]
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Initially, it is important to not delay diagnosis and initiation 
of treatment. In the monitoring of disease activity during 
treatment, discordant findings remain an issue, and it is of 
particular importance to understand the potential impact of 
specific therapeutic interventions on laboratory results.

Notably, discrepancies between GH and IGF-I have also 
been described in the absence of acromegaly: In a group 
of individuals with clinical suspicion of acromegaly, but 
normal IGF-I, 30% of women (n = 70) exhibited GH nadir 
concentrations >0.4 ng/mL, whereas in all men GH nadirs 
were below 0.4 ng/mL. In the same group, random baseline 
GH was above 0.4  ng/ml in 80% of the women and 46% 
of the men, respectively. Acromegaly was ruled out in all 
cases by extended biochemical testing, MRI and long term 
follow up [36].

Factors explaining discrepancies between GH 
and IGF‑I

To explain discrepancies in the findings from measuring 
GH and IGF-I, methodological and biological factors have 
to be taken into account: The technical characteristics of 
the GH- and IGF-I assay used [37, 38], the use of differ-
ent reference intervals of variable quality for interpretation 
of IGF-I concentrations, the different testing modalities, 
particularly for GH (fasted and non-fasted random GH, 8-, 
12- and 24-h GH-profiles and the post glucose GH nadir) 
and, finally, biological confounders like comorbidities all 
can affect the agreement between GH and IGF-I concentra-
tions. Furthermore, the time point of testing in relation to 
onset of the disease or inititation of treatment can have an 
influence. In this context, not only the impact of specific 
therapeutic interventions is important, but also the fact that 
the criteria to biochemically define active disease at diag-
nosis might differ from the criteria used to define cure after 
treatment.

Issues with GH assays

Before the 1990s a basal GH below 5  ng/mL was used 
to define cure after treatment of acromegaly [39, 40]. 
With the development of newer assays lower cut-off val-
ues were suggested. In the mid to late 1990s a basal GH 
below 2.5 ng/mL and a GH nadir below 2 ng/mL follow-
ing oral glucose load were used as indication of success-
ful treatment. Notably, already at that time some authors 
(using some assays) had proposed even lower cut-offs for 
GH during OGTT (<1 ng/mL) to define cure [41, 42]. In 
2000, a consensus statement on diagnosis and treatment 
of acromegaly (“Cortina criteria”) was published. In this 
statement, random GH concentrations below 0.4  ng/mL 
or GH nadir during OGTT below 1 ng/mL, both together 

with normal age- and gender-adjusted IGF-I concentra-
tion, were defined as exclusion criteria for acromegaly 
[43]. 10  years later, a revised consensus statement was 
released defining “control of disease activity” following 
therapeutic intervention using random GH concentrations 
below 1 ng/mL and GH nadir below 0.4 ng/mL (in combi-
nation with normal IGF-I). Interestingly, the most recent 
Endocrine Society Clinical Practice Guideline suggests 
the lack of suppression of GH to <1  ng/mL (together 
with elevated IGF-I) as a criterium for diagnosis, while 
a random GH <1 ng/mL (together with normal IGF-I) is 
suggested as a therapeutic goal [15]. In contrast, different 
other groups have suggested lower cut-offs [44–47], some 
of them emphasizing the need for sex adjusted cut-offs. 
For example, cut-offs of 0.27 and 0.34 ng/mL for GH fol-
lowing OGTT have been reported for men and women, 
respectively [45].

The “evolution” of cut-off values to a large extent 
reflects the “evolution” of the analytical methods: Newer 
GH assays tend to be more sensitive, are based on mono-
clonal antibodies with higher specificity compared to older 
polyclonal antisera, and finally, most modern GH assays are 
calibrated against the latest international recombinant refer-
ence preparation IRP 88/624 or 98/574 (as opposed to the 
pituitary derived IRP 80/505 previously used). All these 
factors generally lead to lower absolute GH concentrations 
reported by the laboratories.

Until the early 90s, many of the traditional competi-
tive GH assays exhibited quantification limits between 0.5 
and 1 µg/L. The development of novel, non-isotopic two-
site antibody assay allowed to reliably measuring GH at 
very low concentrations. Some of the assays demonstrated 
remarkable sensitivity down to 0.002 µg/L, leading to the 
discovery of the very low GH nadirs following OGTT in 
healthy subjects [48]. Apart from differences in the sen-
sitivity, there were also changes in the specificity of the 
assays: From the 90s onwards many of the commercially 
available GH assays were based on high affinity monoclo-
nal antibodies, while older assay had employed polyclonal 
antisera. Human growth hormone is an example of a pro-
tein that occurs in different molecular isoforms. Healthy 
pituitaries as well as pituitary adenomas mainly secrete 
the 22 kD GH isoform. However, a 20 kD GH isoform and 
other minor variants exist in considerable amounts. Fur-
thermore, the isoforms form dimers and heteromers, lead-
ing to a broad spectrum of molecules that together consti-
tute what is known as “growth hormone” [49]. The higher 
the specificity of the antibodies, the more likely they will 
recognize and bind only a certain subset of the molecular 
isoforms. This explains why different antibodies translate 
very different percentages of total GH into an assay signal, 
and therefore, why different GH assays can report very dif-
ferent concentrations of GH for the same sample.
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The differential recognition of molecular isoforms by 
different GH assays also aggravated another problem in 
the standardization of GH assays: Traditionally, GH assays 
were calibrated against a poorly defined but internationally 
recognized reference preparation of pituitary origin (IRP 
80/505). Apart from minor contaminations with other pitui-
tary derived proteins this IRP contained a mixture of the 
various GH isoforms, although there had been an attempt 
to enrich the main 22 kD isoform. With the availability 
of a new international reference preparation 88/624 based 
on pure recombinant 22 kD human GH, some of the GH 
assays on the market were recalibrated. Because of the 
higher potency of the pure 22 kD GH in many of the immu-
noassays, GH concentrations reported for patients samples 
dropped. Meanwhile, the first recombinant preparation 
88/624 has been replaced by a new preparation with identi-
cal physicochemical properties named 98/574 which is rec-
ommended to be used in all GH assay. The universal adop-
tion of this standard is one key component of the attempts 
to improve standardization across GH assays [50–52].

The impact of assay methods on the absolute GH con-
centrations reported by the laboratory and, as a conse-
quence, on clinical decisions has been reported repeatedly 
during the last decades [53–55]. Unfortunately, there has 
been little progress in standardization (or at least harmo-
nization) of GH assays over time. Therefore, although to 
date the cut-offs for GH following oral glucose load most 
widely used by endocrinologists might be 0.4  ng/mL as 
suggested by the Cortina criteria [44] or 1 ng/mL as sug-
gested by the latest Endocrine Soceity Practice Guideline 
[15], an universal adoption of these cut-offs is problematic 
in view of the huge methodological differences between 
GH assays. Given that many laboratories today are using 
modern sensitive GH assays from a methodological point 
of view the lower cut-offs (e.g. 0.4  ng/mL as opposed to 
1.0  ng/mL) might be considered more widely applicable. 
However, recent studies repeatedly have demonstrated that 
in the same cohort of patients with acromegaly the deci-
sion whether GH is elevated or not after OGTT largely 
depends on the GH assay used [56], and that such depend-
ency on the analytical methods severely limits the applica-
bility of diagnostic criteria from consensus guidelines [57]. 
It remains important to recognize that any cut-off values 
mentioned in guidelines or consensus statements must be 
seen in the context of the analytical methods used to define 
them. For the most commonly used commercial assay 
methods published data on ideal method specific cut-offs 
for GH in well-defined patient populations must become 
available (and must be implemented by laboratories and 
clinicians).

Apart from the methodological issues it must not be for-
gotten that there is increasing evidence from recent stud-
ies that cut-off values for GH nadirs might also need to be 

adjusted for biological factors including gender. Table  2 
lists mean GH nadirs reported from studies investigating 
the GH response to OGTT in healthy subjects by differ-
ent GH assays. It is striking that almost all of the studies 
in healthy subjects published during the last 5 years report 
extremely low GH nadir concentrations. Although none 
of the studies specifcally addressed gender differences in 
a larger cohort, several studies suggest significant differ-
ences between women and men, with lower concentra-
tions consistently reported for males. Furthermore, one 
study reported higher GH nadir concentrations in women in 
midcycle (0.44  ng/mL), making an influence of estrogens 
likely.

Issues with IGF‑I assays

Many of the analytical issues discussed for GH assays 
above also apply to IGF-I assays [52, 63], For example, 
the change from competitive assays based on polyclonal 
antisera to sandwich type immunoassays based on mono-
clonal antibodies has modified not only sensitivity, but also 
specificity of the IGF-I assays. In case of IGF-I assays, 
epitope specificity and assay setup can have dramatic 
impact on measured IGF-I concentrations because of the 
presence of several high affinity IGF-I binding proteins. 
These binding proteins interfere with different assays to a 
different degree, and not all assays have implemented the 
same, effective measures to prevent interference from bind-
ing proteins [37]. Furthermore, standardization of IGF-I 
assays has been an issue because a reference preparation 
used by many assays in the past (and still being used by 
some manufacturers) was impure and poorly defined [64]. 
Changing the reference preparation to a newer, recombi-
nant standard [65] is recommended by consensus guide-
lines, but the change in absolute concentrations reported by 
re-calibrated assays needs to be taken into account. Such 
changes need to be reflected by new reference intervals for 
correct interpretation of IGF-I values, which have to be 
implemented by laboratories and communicated to clini-
cians. Unfortunately, there is indication that the latter steps 
are frequently omitted; this makes different interpretations 
of the same IGF-I values generated by the same analytical 
methods in different local laboratories an issue [57]. Given 
all these potential analytical and methodological pitfalls, it 
is not surprising that—in a clinical setting—classification 
of patients with acromegaly and agreement between inter-
pretation of GH and IGF-I results can be different depend-
ing on the IGF-I assay used [66].

Reference intervals are of particular importance for 
correct interpretation of IGF-I concentrations measured 
by any assay method. Given the methodological differ-
ences between assays, it is obvious that such reference 
intervals have to be established for each analytical method 
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separately. They need to be based on large cohorts selected 
from an appropriate, carefully characterized background 
population. The recent consensus statement called for 
transparency in a sense that origin and characteristics of 
the reference population, number of individuals in each 
age cohort as well as all mathematical and statistical proce-
dures involved in the generation of reference intervals need 
to be published in peer-reviewed journals. The availability 
of such publications does not remove the differences related 
to analytical methods, but allows a direct comparison of 
quality and appropriateness of the reference intervals used. 
As demonstrated in a recent multicenter study to establish 
method specific reference intervals for a new automated 
IGF-I assay [67], in very large cohorts the impact of geo-
graphic origin, medications and comorbidities on the 

robustness of the reference intervals becomes negligible. 
In smaller studies, however, such factors can significantly 
impact on the definition of “normal” IGF-I. Furthermore, 
a compilation of IGF-I reference intervals from studies 
published during the last decades (Supplemental Table  1 
in [67]) revealed not only significant differences regarding 
size and composition of the cohorts investigated, but also 
regarding statistical methods used to calculate the reference 
intervals. This is remarkable because the “normal range”—
even if calculated from the same reference population—can 
be significantly different when different statistical meth-
ods are employed. Interestingly, a very recent study [68], 
which used samples from the same cohort of approximately 
1000 adults to establish reference intervals for four differ-
ent IGF-I assays, revealed that—even when using the same 

Table 2  GH nadir concentrations during OGTT in healthy controls and patients with impaired glucose tolerance* and diabetes mellitus**

WHO IS World Health Organization International Standards from the National Institute of Biological Standards and Controls (NIBSC, Hertford-
shire, UK), NHPP Preparations from the National Hormone and Pituitary Program (NHPP, Torrance, USA), EIA Enzyme immunoassay, ICMA 
Immunchemiluminometirc assay, RIA Radio immunoassay, IRMA Immunradiometric assay, IFMA Immunfluorometric assay, ELISA Enzyme 
linked immunosorbent assay

Mean GH nadir (ng/mL) n GH assay GH calibrator Year References

f m f m

0.15 37 EIA, inhouse NHPP HS2243E 1990 [58]
0.13* 20*
0.14** 22**
0.25 0.029 6 9 ICMA, Nichols WHO IS 80/505 1994 [48]
0.84 25 RIA, inhouse NHPP AFP-4793B 1998 [47]
0.09 IRMA, DSL WHO IS 88/624
0.04 ELISA, DSL WHO IS 88/624
0.09 0.08 20 26 IRMA, DSL WHO IS 88/624 2001 [28]
0.1 0.06 30 26 IFMA, inhouse NHPP AFP-4793B 2002 [59]
0.14 39 43 IRMA, Sorin not mentioned 2003 [60]
0.08 46 IRMA, DSL WHO IS 88/624 2004 [46]
0.087 0.051 44 50 IRMA, BIOCODE WHO IS 88/624 2004 [30]
<0.34 <0.27 25 25 ICMA, Nichols WHO IS 98/574 2006 [45]
0.11 0.02 38 34 IFMA, AutoDELFIA WHO IS 80/505 2006 [53]
0.19 0.05 35 25 ICMA, Siemens (Immulite 2000) WHO IS 80/505
0.3 0.11 120 80 IFMA, AutoDELFIA WHO IS 80/505 2008 [61]
0.6 0.25 120 80 ICMA, Immulite WHO IS 98/574
0.2 0.1 120 80 IRMA, DSL WHO IS 88/624
0.13 147 66 Immulite 2000 WHO IS 98/574 2008 [56]
0.06 ICMA, Nichols WHO IS 98/574
0.015 ELISA, DSL WHO IS 88/624
0.097 3 5 IFMA WHO IS 98/574 2010 [24]
0.1 0.05 31 14 IFMA, AutoDelfia 2011 [32]
0.12 follicular phase 0.096 13 11 ICMA, Immulite 2000, Siemens 2011 [62]
0.44 midcycle

0.19 late luteal phase

0.07 0.04 18 7 ICMA, IDS-iSYS WHO IS 98/574 2012 [33]
0.11 0.08 ICMA, Immulite 2000
0.07 0.05 21 20 Ultrasensitive ICMA, Beckman Coulter WHO IS 98/574 2013 [35]
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statistical approach—the reference intervals are signifi-
cantly different between the assays. This was not only true 
for absolute concentrations (which could be explained by 
differences in assay calibration), but also for the shape of 
the centiles and the width of the reference intervals in dif-
ferent age groups: some assays gave significantly broader 
reference intervals with particularly higher “upper limits of 
normal” than other assays. Whether this is related to dif-
ferences in the method employed to remove interference 
from binding proteins or to differences in specificity (lead-
ing to differences in the recognition of IGF fragments) is 
unknown. However, it clearly demonstrates that reference 
intervals and standard deviation scores (SDS) cannot be 
mathematically converted between assays.

Different testing modalities for GH

Baseline fasting or random GH, mean GH in day profiles 
and nadir GH during OGTT all have been suggested for 
the diagnosis of acromegaly as well as for evaluation of 
treatment success. Multi-point sampling for day profiles 
requires a lot of time, personnel and resources, and is not 
practical for outpatient care. In patients with elevated IGF-
I, it has been suggested that basal GH above 5  ng/mL in 
men and 10 ng/mL in women provide sufficient specificity 
to diagnose acromegaly without further multi-point meas-
urements [69]. Although simple and fast, such an approach 
bears the risk of misclassifying patients. High GH peaks 
can occur physiologically, with stress, after physical exer-
cise or in the fasting state. Falsely elevated IGF-I values 
are not uncommon. Therefore, although suggested as diag-
nostically relevant in the past, the diagnosis of acromegaly 
should not be solely based on measurement of random GH. 
The pulsatile nature of GH secretion makes random GH 
values less specific, making multi-point measurement such 
as an OGTT or mean GH from GH profiles necessary for 
robust diagnosis [60, 70–72]. The relevance of mean GH 
concentrations assessed over various time periods is also 
controversial. Although generally correlated to IGF-I and 
GH nadir [29, 73–76], mean GH concentrations can remain 
within the normal range particularly in mild cases of acro-
megaly [29]. Furthermore, not only secretion of very high 
concentrations of GH, but also tonic secretion of compa-
rably low GH concentrations can result in elevated IGF-I 
[77–79]. Therefore, an apparently normal mean GH in a 
profile does not rule out acromegaly. To better reflect the 
impact of pulsatile versus continuous GH secretion, one 
group suggested to complement mean GH concentrations 
by analysis of minimum GH from a GH day profile. The 
combination of both parameters showed good correlation 
with IGF-I [34].

The majority of experts in the field prefer to diagnose 
or rule out clinically suspected acromegaly on the basis of 

age- and gender adjusted IGF-I in combination with the GH 
nadir during OGTT [15–17]. The OGTT is an easy, cost-
effective diagnostic procedure, which rarely leads to com-
plications and is applicable to nearly all patients. It can be 
diagnostically relevant even in patients with impaired glu-
cose metabolism if metabolic state is controlled: In diabetic 
patients without acromegaly several studies have shown 
suppression of GH following oral glucose intake, and none 
of the patients encountered test-related complications [36, 
58]. In turn, performing an OGTT in suspected acromeg-
aly has the advantage that at the same time of diagnosing 
acromegaly one can also diagnose disturbances in glucose 
metabolism. Such disturbances are common in patients 
with acromegaly, and should be treated early. The useful-
ness of GH nadir concentrations during OGTT has also 
been demonstrated in the evaluation of success of surgical 
procedures. Normalization of GH nadirs can be observed 
as early as 1 week postoperatively while normalization of 
IGF-I can be delayed up to 12 months [80–83].

Biological factors modifying GH and IGF‑I 
concentrations

Under physiological conditions, GH is secreted in a pulsa-
tile fashion. Amplitude and frequency of GH pulses vary 
with time during the day, gender, age, menstrual cycle, 
nutrition, exercise and body composition [84, 85]. Con-
sequently, adjustment of clinical decision limits for GH 
based on gender, age and body mass index has been dis-
cussed [56, 62]. In contrast to GH, IGF-I is secreted con-
tinuously, has a longer half-life and exhibits more stable 
concentrations in blood [86, 87]. These properties make 
IGF-I an excellent surrogate marker of GH action and the 
best biomarker for disease activity in acromegaly [88]. 
Nevertheless, IGF-I levels can be modified by a variety of 
physiological and pathological factors. Understanding the 
biological variables affecting each of the two components 
of the GH/IGF axis is crucial for correct interpretation of 
biochemical findings in a patient.

GH concentrations generally are higher in healthy pre-
menopausal women and change with phases of the men-
strual cycle [72, 89, 90]. GH is highest during mid-cycle in 
younger woman [62, 91]. It has also been shown that GH 
nadir concentrations during OGTT are higher in younger as 
compared to older women [30, 45, 48, 53, 56, 59, 61, 92]. 
In 2001, a comparison of GH nadirs following oral glucose 
load in 26 men and 20 women revealed higher basal GH 
in women, but no significant difference in the nadir [28]. 
Treatment with oral estrogens (oral contraceptives or hor-
monal replacement therapy) generally increases GH levels 
[28, 93–95].

Sex specific differences have been reported in some, 
but not all studies in patients with acromegaly. One 
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study in patients with acromegaly did not find any differ-
ences related to sex in basal GH and GH nadir [28], while 
another study in 151 patients (79 women and 72 men, age 
19–77  years) clearly demonstrated higher GH nadir con-
centrations in women [96]. In this study, basal GH and 
GH nadir concentrations were also negatively correlated 
with age in both sexes. Although this had not always been 
observed in studies investigating healthy subjects beyond 
the age of 50 [53, 61, 96], the age-dependent decline in 
mean GH pulse amplitude and pulse duration has already 
been described more than 20  years ago [90]. Consistent 
with this, in 2006 one group suggested the use of age-
adjusted cut-off values for mean GH (in a diurnal profile) 
and for the GH nadir to determine remission after surgical 
therapy of acromegaly [13].

In contrast to higher GH levels in women, lower IGF-I 
levels compared to men of the same age have been reported 
in some studies. However, while more important dur-
ing childhood, the impact of sex on IGF-I concentrations 
is minor beyond puberty [52, 67]. The sex-related differ-
ences have been explained by a mild hepatic GH resistance 
caused by estrogen [72, 90, 97, 98]. Interestingly, in women 
on estrogen therapy the route of estrogen administration 
significantly influences IGF-I concentrations: While oral 
estrogens reduce IGF-I levels and increase IGF-I binding 
proteins, transdermal estrogens have no impact on IGF-I 
levels [94, 99]. In patients with acromegaly, lower IGF-I 
levels in women compared to men have also been described 
[96, 100, 101]. Before more specific treatment options 
became available, the IGF-I suppressive effect of oral estro-
gens had been used to ameliorate signs and symptoms of 
acromegaly [102, 103]. Parenteral administration of testos-
teron, in turn, can increase IGF-I [104]. The multiple influ-
ences of sex steroids on the GH/IGF axis, and the changes 
in sex steroids with age further support the use of gender- 
and age-specific reference values [105].

Several studies have demonstrated that GH nadir con-
centrations during OGTT in healthy subjects can be sig-
nificantly <1 ng/mL, but the degree of suppression depends 
on sex and body mass index (BMI) [75–79]. Recently, the 
impact of age, sex and BMI on 24-h pulsatile GH secretion 
has been demonstrated in a group of 130 healthy adults (85 
women, 45 men, 20–77 years, BMI 18.3–49.8 kg/m2) [72]. 
Age was negatively correlated with basal and pulsatile 24-h 
GH secretion, while BMI was negatively correlated only 
with basal GH. Another study in 200 healthy adults did not 
find a correlation of BMI and GH nadir [61], but all sub-
jects had comparably low BMI (BMI 18.5–27  kg/m2). In 
healthy obese subjects, but also in obese patients with acro-
megaly, lower concentrations for basal and nadir GH have 
been reported before [56, 106]. A number of other studies, 
however, did not confirm the correlation between BMI and 
GH [28, 30, 45, 48, 92].

The impact of body composition on IGF-I is com-
plex. However, in severe obesity IGF-I seems to be sig-
nificantly reduced, an effect which is reversible after 
weight loss [107–109]. Similarly, prolonged fasting 
and malnutrition have also been shown to reduce IGF-I 
[99, 110–112]. This effect, however, was not observed 
in patients with acromegaly [113]. Overall, fasting and 
nutrition differentially affect GH and IGF-I: In states 
of acute and chronic malnutrition as well as in anorexia 
nervosa GH is increased and IGF-I decreased due to the 
peripheral GH resistance [114–117].

Several diseases have an impact on circulating GH and 
IGF-I. In chronic renal failure increased GH release and 
reduced GH clearance lead to higher GH concentrations 
[118, 119]. However, although GH is increased, IGF-I is 
unchanged or even decreased. It has been shown that ure-
mia leads to GH resistance due to impaired JAK/STAT 
signaling at the GH receptor [120, 121]. Additionally, 
IGF-I binding proteins have been shown to be elevated in 
patients with chronic kidney disease [122, 123], potentially 
reducing bioavailability of IGF-I.

In patients with type 2 diabetes and insulin resistance, 
suppression of GH release by glucose is impaired, resulting 
in higher GH concentrations compared to patients with nor-
mal insulin sensitivity [124]. Elevated GH concentrations 
have also been reported in patients with type 1 diabetes, 
most likely related to a reduction in somatostatin release 
and therefore increased GH secretion [125–127]. Fur-
thermore, it has been demonstrated that insulin treatment 
enhances spontaneous pulsatile GH secretion, explaining 
increased random GH levels without underlying acromeg-
aly [36, 128]. On the other hand, chronic hyperglycemia 
has been shown to be associated with a suppression of GH 
release. Differential effects of acute and chronic hyper-
glycemia have to be taken into account when GH secre-
tion is studied in diabetic patients [129]. The neuropeptide 
galanin has been reported to paradoxically decrease GH 
in active acromegaly independent of disorders of glucose 
metabolism [130, 131]. Therefore, if available, the galanin 
test could be helpful in diagnosing acromegaly in patients 
with diabetes mellitus. Recent reviews have also discussed 
the important interactions exist between insulin levels and 
hepatic GH receptor expression and hepatic GH sensitivity 
[132].

As already indicated by its name, IGF-I shares almost 
50% homology to insulin in amino acid sequence. It is not 
surprising that the IGF-I level is influenced by glucose 
metabolism [133], Insulin induces hepatic IGF-I synthesis 
via modulation of the GH receptor [134], and insulin can 
decrease IGF-I binding proteins and thereby increase free 
IGF-I [135]. However—despite these mechanisms poten-
tially leading to higher IGF-I—IGF-I concentrations usu-
ally are within the lower part of the age- and sex-adjusted 



41Pituitary (2017) 20:33–45 

1 3

reference intervals. This is due to the coexisting hepatic 
GH resistance, which reduces IGF-I synthesis [124, 136].

Finally, in acute critical illness GH concentrations can be 
increased due to higher peaks, higher pulse frequency and 
peripheral GH resistance which, in turn, leads to a decrease 
in IGF-I levels [137–141]. In contrast, in chronic critical 
illness pulse amplitude and frequency can be reduced and 
GH levels can be normal [142, 143]. Dissociation of GH 
and IGF-I with high GH and low IGF-I due to GH resist-
ance can occur in states of systemic inflammation, chronic 
liver disease and cirrhosis [144–146]. The GH resistance 
seen in cirrhosis has been attributed to a significant reduc-
tion of hepatic GH receptor mRNA [31].

Conclusion and expert opinion

In clinical practice, the occurrence of divergent findings 
for GH and IGF-I in diagnosis and monitoring of acro-
megaly provides problems. Understanding how “numbers” 
reported by laboratories depend on the analytical methods 
employed, but also how the differences in analytical meth-
ods can be handled by application of appropriate method 
specific decision limits and reference intervals is important. 
Modern GH assays generally report much lower concen-
trations than assays previously used, requiring continuous 
adaptation of traditional cut-offs. Reference intervals for 
IGF-I can be very different depending on the methods used, 
and clinicians should demand from laboratories to provide 
transparent, method specific reference intervals from appro-
priately sized studies. Furthermore, since a wide spectrum 
of potential biological factors differentially can modify GH 
and IGF-I concentrations, it remains crucial for the clini-
cian to base any interpretation of laboratory data on the 
clinical information available for the patient. While there 
is good evidence showing that—beyond puberty—sex and 
a wide range of BMIs only marginally affect IGF-I, recent 
findings suggest to develop assay-specific cut-off values for 
GH during OGTT adjusted for sex and BMI. Finally, spe-
cific therapeutic interventions and comorbidities must be 
taken into account in the assessment of laboratory findings.
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