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Abstract The activity of the pituitary–adrenal axis can

profoundly impact on body composition. This is dramati-

cally seen in Cushing’s syndrome (CS) but changes in body

composition are also implicated in depression and alcoholic

pseudocushing’s. The pathophysiological mechanisms

underlying these changes remain poorly understood. Chan-

ges to body composition in CS include increased fat mass,

decreased bone mass, thinning of the skin and reduced lean

mass. Why these tissues are affected so dramatically is

unclear. Additionally, the change in body composition

between individuals varies considerably for reasons which

are only now becoming evident. This paper reviews the

phenotypic changes with altered pituitary–adrenal axis

activity and discusses the mechanisms involved. The pri-

mary focus is on adipose, bone, muscle and skin since the

most dramatic changes are seen in these tissues.
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Introduction

The activity of the pituitary–adrenal axis can have a pro-

found impact on body composition. This is most

dramatically seen in patients with Cushing’s syndrome

(CS) but changes in body composition are also implicated

in other conditions such as depression and alcoholic

pseudocushing’s where pituitary–adrenal axis activity is

abnormal. The pituitary–adrenal axis might also play a role

in determining body composition in otherwise healthy

individuals. Despite the changes in CS being well recog-

nized the pathophysiological mechanisms that cause these

changes remain poorly understood. Changes to body

composition in CS include increased fat mass, decreased

bone mass, thinning of the skin and reduced lean mass

(Fig. 1) [1, 2]. Why these particular tissues are affected so

dramatically by glucocorticoids remains unclear. Addi-

tionally, the relative changes in body composition between

individuals can vary considerably for reasons which are

only recently becoming evident. This paper will review the

phenotypic changes in various tissues that occur with

altered pituitary–adrenal axis activity and discuss the

pathophysiological mechanisms involved. The primary

focus will be on adipose, bone, muscle and skin since the

most dramatic changes are seen in these tissues. These are

also tissues which originate from a common developmental

precursor and for which endogenous glucocorticoids are

likely to play a critical role in differentiation.

Effects of excess pituitary–adrenal axis activity on

adipose tissue

Most clinicians will be aware of the changes in fat distri-

bution that occur in states of endogenous and exogenous

glucocorticoid excess. These changes are predominantly

characterized by redistribution of adipose tissue from

peripheral to central parts of the body, with a greater

increase in visceral fat [1] and loss of subcutaneous fat
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from the limbs. This redistribution of fat leads to the typ-

ical clinical features of a rounded ‘moon’ face, increased

fat around the neck with prominence of the dorsal and

supraclavicular fat pads ‘buffalo hump’. It has also been

reported that there is an overall increase in total body fat

mass [2] and a common issue in clinical practice is the

discrimination of generalized adiposity due to simple

obesity from that of CS. In studies that examined the dif-

ferences between CS and simple obesity a small reduction

in total lean tissue, but not an increase in total body fat, was

seen in patients with CS relative to patients with obesity. A

reduction in fat and lean tissue mass in the upper limbs

were found to be the most discriminatory finding in CS

patients compared to people with simple obesity [3].

Increased visceral fat accumulation (measured by waist

circumference) has also been reported in patients with

adrenal incidentaloma (who may also have ‘subclinical’

Cushing’s with low levels of cortisol excess). Even patients

that have minimal increases in serum cortisol levels are

susceptible to changes in adipose tissue distribution [4].

Hepatic steatosis (the abnormal deposition of fat within

the liver) appears to be a common feature in CS. Using CT

scanning in a large series of patients with active CS a

prevalence of 20% was observed [5]. The presence of

steatosis was correlated with impaired glucose tolerance

and increased visceral fat mass. The extent to which the

steatosis is related to the patient’s obesity, body fat dis-

tribution or altered hormonal profile is unclear. Patients

with hepatic steatosis in the context of type II diabetes have

been reported to have abnormally increased activity of the

pituitary–adrenal axis compared with matched controls

suggesting a possible causative role of high cortisol levels

[6].

Mechanisms underlying changes in adipose tissue

The mechanisms by which high levels of cortisol alter adi-

pose tissue distribution are unclear. Changes in adipocyte

function, e.g. lipoprotein lipase (LPL) activity, preadipocyte

differentiation and survival, and altered adipokine secretion

have all been implicated as explanations of this phenomenon

[7]. In patients with CS, LPL activity seems to be higher in

retroperitoneal fat than in subcutaneous adipose tissue and

this may be a reason for the tendency to central fat accu-

mulation [2]. This had been previously reported in women

with CS, where the enlargement of abdominal fat depots

were at least partially due to elevated adipocyte LPL activity

and low lipolytic activity in abdominal adipose but not

femoral subcutaneous tissue [8]. Lipolysis was found more

pronounced in the abdominal fat depots [9]. In humans adi-

pocytes cultured in vitro, glucocorticoids increase LPL

activity as well as LPL mRNA expression [10]. Pharmaco-

logical doses of glucocorticoids have been shown to

stimulate lipolysis in vivo [11, 12].

Studies in vitro have confirmed the stimulatory effects

of cortisol upon the differentiation of adipose stromal cells

to mature adipocytes [13, 14]. Glucocorticoids can induce

exaggerated adipocyte formation and hypertrophy [8, 15].

In the presence of insulin GCs promote preadipocyte dif-

ferentiation and favour cellular lipid accumulation [16, 17].

The effects of glucocorticoids on fat mass may be

indirect in vivo, acting via hormones released from fat or

other tissues. For example, circulating levels of leptin and

IL-1 receptor antagonist (IL-1ra) has been implicated in the

abnormal fat distribution seen in CS. In patients with CS

there is an association between total body fat and IL-1ra

levels and enhanced levels of IL-1ra could contribute to the
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leptin resistance in CS [18]. The decrease in fat mass after

successful treatment of CS is associated with a decrease in

leptin and IL-1ra levels [18]. Leptin gene expression is

enhanced by GC and insulin in adipose tissue cultures

in vitro [19].

Expression and activity of the 11b-hydroxysteroid dehy-

drogenase type 1 (11b-HSD1) enzyme has been implicated

in the accumulation of visceral adipose tissue both in simple

obesity and in CS [20]. This enzyme interconverts hormon-

ally inactive cortisone with its active counterpart cortisol and

in most settings appears to be a net generator of active glu-

cocorticoid. 11b-HSD1 is highly expressed in both adipose

stromal cells and mature adipocytes [14]. It was originally

proposed that excessive activity of this enzyme in visceral

adipose tissue would increase adipose tissue levels of glu-

cocorticoids and thus drive central fat accumulation in some

individuals in a similar manner to that seen in CS [21].

Transgenic over-expression of this enzyme in adipose tissue

in the mouse appeared to support this hypothesis since this

resulted in an increased accumulation of central fat due

primarily to an increase in adipocyte size [22]. Studies in

humans have been more controversial with some studies

showing a positive association between obesity and 11b-

HSD1 expression and activity [23–25] whereas others have

suggested that obesity is associated with a reduction in 11b-

HSD1 expression [26]. The reasons for these apparently

contradictory results are currently unclear but might be

explained by dynamic changes in 11b-HSD1 activity and

expression across differentiation. Although 11b-HSD1

activity is usually considered to be an activator of gluco-

corticoids preadipocytes have been reported to have a

predominantly inactivating capacity when first isolated. This

capacity to switch from an inactiving to an activating enzyme

appears due to variable expression of a cofactor generating

enzyme that is needed for glucocorticoid generation [27].

Another mechanism invoked to explain the preferential

expansion of visceral adipose tissue relative to peripheral

fat is the differential expression or sensitivity of the glu-

cocorticoid receptor (GR). The GR is expressed in human

adipose tissue—initial reports suggested a density higher in

visceral than in subcutaneous adipose tissue [28, 29] but

more recent studies have refuted this [30]. Although

genetic polymorphisms may result in altered HPA axis

activity and altered abdominal fat accumulation [31] the

relevance of these genetic variants in explaining the phe-

notypic variation in CS has not been explored.

Role of pituitary adrenal activity in idiopathic obesity

Modest increases in cortisol secretion have been linked to

increased body fat and rate of fat accumulation [32, 33]. In

children, even after urinary GC excretion was corrected for

body surface area (BSA), a significant part of the variability

in body fatness could be explained by GC excretion. GC

excretion adjusted for BSA has been reported to predict BMI

during growth [33]. The association of urinary cortisol out-

put appears stronger with central obesity [34]. The direction

of causality however is not clear. In obesity, peripheral

cortisol production is suggested to be increased [35], and the

HPA-axis is abnormally regulated [36]. Whether increased

cortisol production causes obesity or increased obesity

affects cortisol production is still unclear.

Despite this association of cortisol production with

obesity, there is a weak, negative association of circulating

cortisol concentrations and various measures of adiposity

including weight, BMI, waist-hip ratio and waist circum-

ference in community-dwelling men [37]. Additionally,

changes in cortisol levels and adiposity measures are also

negatively associated. In obese patients, there is elevated

cortisol secretion, but circulating cortisol levels are typi-

cally lower among overweight or obese people [37]. An

altered pattern of cortisol secretion with increased ampli-

tude of secretory bursts has been reported in obese subjects

despite normal mean circulating levels. An association of

obesity with relative insensitivity to glucocorticoid feed-

back has also been suggested [38].

Cortisol production rates (CPR) and plasma free (non-

protein bound) cortisol levels have been examined in

individuals of various body weights and ages. Increasing

body weight is associated with increasing CPR, which is

balanced by enhanced cortisol clearance, resulting in daily

plasma free cortisol levels that are invariant to increasing

body size. These data suggest that obesity is not charac-

terized by a dysregulation of the HPA axis. CPR/BSA is

strongly positively associated with 24 h plasma free cor-

tisol levels suggesting that activation of the HPA axis is a

determinant of increased central fat distribution [39].

In summary it appears most likely that idiopathic obesity

is associated with increased cortisol production but not the

features of CS. This is probably because the increased

production of cortisol is matched by an equivalently

increased cortisol metabolism and clearance.

Effects of excess pituitary-adrenal axis activity on bone

GC excess has profound effects on the skeleton leading to

loss of bone mineral density (BMD) and an increased risk

of fracture. The prevalence of osteoporosis (defined as a

dual energy absortiometry (DXA) T-score \-2.5) is very

high among patients with CS being present in 55% of

women with CS [40]. Fractures were reported in 19–50%

of CS patients [40, 41] with an overrepresentation of

fractures of vertebrae and ribs [42, 43].

Epidemiological studies have examined the relationship

between fracture risk and exposure to therapeutic oral
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glucocorticoids. The risk of developing fractures in patients

under treatment with glucocorticoids is increased substan-

tially at all skeleton sites but this was most evident at the

spine with at least a fivefold increased risk of fracture [44].

After stopping oral glucocorticoids fracture risk fell rapidly

back towards baseline. In this time scale it is unlikely that

BMD would return to normal so this suggests that fracture

risk with glucocorticoids is in part independent of BMD [45].

On average, BMD is decreased in patients with CS

measured by either DXA or quantitative ultrasound [46].

This deficit in BMD is most striking when adjusted for

BMI since simple obesity is associated with an increase in

BMD [3]. Although BMD is often decreased throughout

the entire skeleton [47] bone loss tends to be higher at sites

rich in trabecular bone such as the lumbar spine [43, 46,

48–51]. The loss of BMD during exogenous glucocorticoid

treatment is often rapid in the first 6–12 months of treat-

ment and then continues at a slower rate [52].

The aetiology of the CS may play a role in the type and

extent of bone loss. Bone density was reported to be two-

fold lower in patients with adrenal CS than in patients with

Cushing’s disease even when the differences in age at

presentation were taken into account. BMI was higher in

women with pituitary disease, which could explain the

results [40]. However this difference was not found in other

studies [48, 53]. Reasons for these differences may include

differences in DHEAS levels between adrenal and pituitary

CS and the increased risk of hypogonadism in patients with

CS of pituitary origin.

Despite a rapid reduction in fracture risk in patients who

cease to use oral glucocorticoids, BMD changes very little

in the first 6 months after cure, despite a rapid restoration

of bone forming capacity. Thereafter however a remarkable

improvement of BMD can be observed in almost all

patients [54]. A study on a pair of identical twins, one of

whom developed Cushing’s in adolescence demonstrated a

dramatic difference in BMD initially that eventually nor-

malized but only many years after successful cure [55].

Despite this improvement in BMD patients cured from CS

have an increased prevalence of spine damage, probably as

a result of fractures that occurred during the active CS [56].

As with changes in fat mass subtle glucocorticoid excess

seen in patients with adrenal incidentalomas have also been

linked to bone loss and altered bone turnover markers [46].

An unexpectedly high prevalence of subclinical cortisol

excess has been found in patients with idiopathic osteo-

porosis further suggesting a role for endogenous

glucocorticoids in bone loss and fracture [57].

Mechanisms of bone loss

Biochemical markers of bone turnover indicate that CS is

associated with a profound decrease in bone formation.

Osteocalcin, alkaline phosphatase and PICP (N terminal

propeptide of type 1 collagen), are all significantly

decreased [49, 58, 59]. Osteocalcin appears to be the most

sensitive marker of the effects of endogenous hypercorti-

solism [60]. The role of bone resorption is controversial but

most studies find that resorption is either increased or

inappropriately normal for the degree of reduced forma-

tion. The urinary cross-linked N-telopeptides of type 1

collagen, a marker of bone resorption was reported to be

high in CS, suggesting increased resorption [49]. No dif-

ferences were found in bone resoprtion parameters between

CS and adrenal incidentaloma [60].

Glucocorticoids probably exert their effects on bone

through several mechanisms. Glucocorticoid excess redu-

ces sex steroid levels, induces loss of muscle mass and

strength and encourages secondary hyperparathyroidism

due to reduced calcium absorption and decreased calcium

reabsorption in the kidney [43, 51, 61]. Most CS patients

have a degree of hypogonadotropic hypogonadism, either

directly because of a mass effect in pituitary CS or via

inhibition of gonadotropin secretion by glucocorticoids.

Women with CS and hypogonadism have significantly

decreased BMD in the femoral neck compared to those

who are eugonadal. In premenopausal women with a recent

diagnosis of CS who continue to menstuate BMD is not

reduced compared to healthy controls [62]. Despite these

mechanisms the dominant action of glucocorticoid excess

on bone appears to be direct effects on bone cells.

Glucocorticoids have complex actions on osteoblasts,

the cells responsible for bone formation. They appear to be

important in the differentiation of osteoblasts from their

uncommitted precursors but also reduce the proliferation of

osteoblasts, impair the function of terminally differentiated

osteoblasts and induce apoptosis of osteoblasts and osteo-

cytes. The net consequence of glucocorticoid excess is a

decreased number of mature osteoblasts [63–65].

Why glucocorticoids appear to be essential for osteo-

blast differentiation but in excess have detrimental actions

is unclear. Recent insights have come from studies exam-

ining local generation of glucocorticoids by 11b-HSD1.

During differentiation this enzyme is switched on and its

activity is able to induce osteoblast differentiation [66].

Importantly the enzyme activity decreases in mature oste-

oblasts and is only increased again during inflammatory

states [67]. It is possible that the presence of high doses of

glucocorticoids throughout osteoblast differentiation

impairs this coordinated pattern of differentiation.

Clinical experience suggests that some people are rela-

tively resistant to the effects of glucocorticoids on bone

whereas some patients with CS present with marked bone

loss and fractures without the accompanying features of

glucocorticoid excess. The only marker which has been

reported to account for such differences is 11b-HSD1. The
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activity of this enzyme, measured in the urine, predicts the

change in bone formation markers in response to prednis-

olone in healthy males suggesting it is an important

mediator of individual susceptibility to glucocorticoid-

induced osteoporosis [58].

Effects of excess pituitary–adrenal axis activity on

muscle

Proximal muscle weakness is seen in 56–90% of cases of CS

[68] and combined with thin skin, easy bruising and osteo-

porosis is one of the discriminating features to clinically

distinguish true CS from pseudo-CS. Harvey Cushing noted

muscle weakness in his original patients with Cushing’s

disease, but, it was Muller and Kugelberg [69] who per-

formed the first systematic study of the myopathy associated

with CS. Several clinical studies have subsequently exam-

ined muscle function, histology and metabolism in patients

with CS. The effects of GC on muscle are related to dose,

type of steroid (9a-fluorinated steroids such as dexametha-

sone being particularly harmful to muscle) [70], duration of

exposure and muscle fibre type [71].

Muscle fibres can be divided into slow twitch oxidative

(type I), fast twitch oxidative (type IIa) and fast twitch

glycolytic (type IIb) fibres. Type I fibres contain high levels

of slow isoform contractile proteins, high volumes of

mitochondria, high levels of myoglobin and capillary

densities and high oxidative enzyme capacity. Type IIa

fibres are characterized by fast contraction with high oxi-

dative capacity and type IIb fibres are characterized by low

volumes of mitochondria, high glycolytic enzyme activity,

high myosin ATPase activity, increased rate of contraction

and low fatigue resistance.

Type II fibre atrophy is the classically described histo-

logical abnormality reported in glucocorticoid mediated

myopathy [72, 73] however other authors have also

described a decrease in type I fibres and an increase in type

II fibre number in CS but many of these type II fibres were

atrophic [8]. This predominant type II fibre myopathy and

atrophy is also seen in hypothyroidism (also conversion of

type II fibre to type I fibre) and thyrotoxicosis (also con-

version of type I fibre to type II fibre) [74]. In CS a reduced

type II mean fibre area and plasma creatinine kinase

activity, a myopathic electromyogram and a raised 24 h

urinary 3-methylhistidine/creatinine ratio were found [72].

There are a number of ultrastructural changes seen in the

muscles of people with myopathy complicating CS [75],

these include pronounced mitochondrial damage, with

thickening and deep invaginations of the sarcolemmal

basement membrane and thickening of the basement

membrane of capillaries. Muscle fibres also showed

marked disarray and wide interfibrillar spaces containing

large vacuoles which represented degenerated mitochon-

dria [75]. Khaleeli et al. [72] reported a sarcolemmal

accumulation of glycogen and mitochondria with small

deposits of lipofuscin pigment.

Khaleeli et al. [72] also reported that muscle histologi-

cal abnormalities were more pronounced in the group of

patients taking exogenous glucocorticoids for inflammatory

conditions such as dermatomyositis. This could be

explained by the high cumulative exposure of prednisone

(8 mg/day for a mean of 10 years), but an alternative

possibility is an induction of 11b-HSD1 which is present

and biologically active in human skeletal muscle [76, 77].

11b-HSD1 enzyme activity (and thus increased tissue

conversion of inactive cortisone to active cortisol) might be

increased in muscle in inflammatory conditions as shown

in fat and bone [67, 78].

Mechanisms underlying glucocorticoid mediated

myopathy

Many factors have been described as being important in the

development of glucocorticoid-induced myopathy includ-

ing abnormalities in protein metabolism, myostatin

expression, collagen metabolism, mitochondrial function

and myosin heavy chain isoform expression.

Glucocorticoid excess increases the rate of whole body

proteolysis even during short-term treatment. Glucocorti-

coids inhibit protein synthesis and amino acid transport

into muscle. Leucine concentration in plasma, metabolic

clearance rate, turnover and incorporation into protein were

all significantly reduced in patients with CS compared with

controls. Leucine oxidation rate was similar in both groups

suggesting that muscle wasting in CS is primarily due to

reduced protein synthesis [79]. Glucocorticoid excess

inhibits protein synthesis and stimulates protein degrada-

tion in skeletal muscle and is an important factor in the

development of muscle atrophy in various catabolic con-

ditions. Glucocorticoid stimulated muscle protein

breakdown is primarily caused by ubiquitin-proteasome-

dependant proteolysis although calcium-dependent protein

degradation may also be involved [80]. Glucocorticoids

have also been shown to regulate the concentrations of

mRNAs encoding some proteases in muscle cells.

Myostatin (a member of the transforming growth factor-

b family) is a potent inhibitor of muscle growth and dis-

ruption of the myostatin gene in mice resulted in increased

muscle mass due to both muscle hypertrophy and hyper-

plasia. In rats treated with dexamethasone to induce muscle

atrophy, myostatin mRNA expression and protein con-

centrations were significantly increased [81]. Subsequently

myostatin knock out mice were shown to resist glucocor-

ticoid induced muscle atrophy, in association with

increased IGF-I and II mRNA expression [82].
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Glucocorticoid induced muscle wasting has been found

to be greater in aged compared to young rats. They also

have more rapid wasting and slower recovery of muscle

function following glucocorticoid withdrawal [83]. Protein

synthesis was more greatly depressed in old rats and this

was associated with activation of the ubiquitin-proteasome

proteolytic pathway. This change in protein metabolism

might also be explained by leucine resistance on muscle

protein synthesis in older rats and the time to recovery of

leucine responsiveness following dexamethasone with-

drawal was significantly slower in old rats [84]. In rodent

models there also appears to be a sexual dimorphism with

glucocorticoids leading to increased levels of MyoD1,

myogenin and myf-5 in male rats but a decrease in myf-6 in

female rats [85].

Glucocorticoids also have a potent effect on myosin

heavy chain levels. Glucocorticoid treatment in rats resul-

ted in degradation of muscle contractile proteins and the

myosin heavy chain (MyHC) IIB isoform and a decrease in

MyHC types II, IIA and IIB synthesis rate [86]. Mito-

chondrial function is also altered by glucocorticoid therapy.

In a micro-array study of 501 human mitochondrial-related

genes several were altered by glucocorticoids, the most

significantly upregulated gene being monoamine oxidase

A. Monoamine oxidase A metabolizes catecholamines and

dietary amines and an upregulation in glucocortcoid treated

cells leads to an increase in MAO-A mediated hydrogen

peroxide production which in turn could lead to muscle cell

damage [87].

After correction of hypercortisolism in patients with

Cushing’s disease there is an increase in overall muscle and

type II mean fibre area [73]. The findings suggest that the

increase in muscle mass which may follow surgery is due

to an increase in individual cell size. In the early recovery

from hypercortisolism the observed decrease of body

weight is attributed to a loss of body fat, but the low body

cell mass does not normalize within the first 6 months after

successful pituitary surgery [88].

Chronic glucocorticoid excess is associated with a

number of changes to GH secretion including a decrease in

24 h GH concentrations, decrease peak GH height and

decrease peak GH area but normal GH pulse frequency.

Despite this patients with CS often have a normal IGF-I

concentration (which may be explained by increased tissue

sensitivity to GH or by a decrease in GH binding protein)

[89]. The deleterious effects on protein metabolism of

pharmacologic doses of glucocorticoids administered dur-

ing a short period, can be prevented by the concomitant

administration of GH in normal volunteers (measuring

nitrogen balance and isotope dilution techniques) [90].

IGF-I gene transfer into glucocorticoid treated rats also

prevented glucocorticoid induced muscle atrophy [91].

IGF-I has been shown to inhibit many proteolytic pathways

including lysosomal, protease dependant and calpain

dependant proteolysis and regulate the ubiquitin system.

These findings provide a potential rationale for the treat-

ment of patients who are recovering from CS with GH and

there is some data that this improves the recovery of

muscle strength [92].

Effects of excess pituitary–adrenal axis activity on skin

Another discriminating feature of CS is a change in com-

position and appearance of skin. GC excess results in skin

atrophy and fragility leading to striae, easy burning and

poor healing [93]. Some skin features depend on the aeti-

ology of CS. In women with pituitary CS, ACTH

stimulation of androgen secretion results in hirsutism, male

pattern alopecia and acne, and in ectopic ACTH syndrome

excessive pigmentation can be seen [93]. In a study

involving children and adolescents, the skin manifestations

of CS were: purple striae (77%), hirsutism (64%), acne

(58%), acanthosis nigricans (28%), ecchymoses (28%),

hyperpigmentation (17%) and fungal infections (11%). No

correlation between glucocorticoid levels and the severity

of skin manifestations were seen. The symptoms and signs

decreased dramatically postoperatively and progressively

disappeared within a year with the exception of light col-

oured striae [94].

Mechanisms underlying skin changes in CS

Glucocorticoids increase the catabolism of proteinaceous

skin components such as collagen causing skin atrophy

[93]. The microscopic findings on skin biopsy are non-

specific, with some signs of angiopathy and vasculitis [95].

Abnormalities of dermal collagen are seen with no evi-

dence of elastin destruction [96]. The cell type most likely

to be affected is the skin fibroblast. This cell type is

important in collagen production and tissue repair. Inter-

estingly prior exposure to elevated glucocorticoid

concentrations is not associated with persistent adverse

effects on skin fibroblasts and may also have a beneficial

outcome in some aspects of cell physiology including

increased proliferative capacity in vitro [97].

Mechanisms underlying variability in phenotype in CS

Although the changes in body composition with CS are

sometimes obvious then can often be very subtle. Addi-

tionally features may be pronounced in some tissues and

absent in others even within the same patient. There is also

a tendency for children and adolescents with CS to present

differently to adults. Some of these differences may relate
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to variation in levels and dynamics of cortisol secretion, the

duration of disease and the modifying effects of excess or

deficiency of related pituitary or adrenal hormones. An

additional possibility is that there is between and within

individual variability in tissue sensitivity to glucocorti-

coids. Explanations for these differences in sensitivity

include differences in GR sensitivity and intracellular

metabolism of glucocorticoids.

Mutations in the GR that abolish activity are incom-

patible with life. Attention has therefore been on subtle

genetic polymorphisms with the GR gene or its promoter.

Several polymorphisms have been demonstrated that can

result in either increased or decreased sensitivity to glu-

cocorticoids [98]. Interestingly the phenotype of patients

with these mutations is not marked and is certainly not

similar to CS. This is almost certainly because the pitui-

tary–adrenal axis is able to control the level of cortisol in

the circulation such that the overall stimulation of GR is

similar to that seen in people with normal GR variants. The

subtle changes in body composition that are seen tend to

support a role of glucocorticoids in body composition with

a slight increase in visceral fat, and reductions in BMD and

lean mass seen in patients with receptor variants that make

the GR more sensitive to glucocorticoids.

Another example of differential sensitivity to gluco-

corticoids that may affect the expression of the features of

CS is the 11b-HSD enzyme system. Expression of 11b-

HSD1 is likely to amplify the local tissue of glucocorti-

coids so it is likely that tissues with high 11b-HSD1 will be

preferentially affected in states of glucocorticoids excess.

Conversely individuals with low levels of 11b-HSD1 may

have partial protection against developing the features of

CS. A case has been reported of a woman who developed

biochemically proven CS with very few changes in body

composition [99]. Biochemical testing after successful cure

demonstrated a relatively low total body activity of 11b-

HSD1 as assessed by urinary steroid metabolite measure-

ments. A low expression of 11b-HSD1 will have endocrine

consequences with the reduced half-life of cortisol poten-

tially being able to offset the increased amount of cortisol

produced in CS. 11b-HSD1 expression has now been

described in adipose, bone, muscle and skin tissue thus a

lack of amplification of glucocorticoid action in these tis-

sues may account for a relative resistance to glucocorticoid

induced changes in these tissues.

Developmental explanation of changes in body

composition in CS

The changes in body composition seen in CS are primarily

due to the abnormal proliferation, differentiation or func-

tion of cells that arise from a common precursor.

Adipocytes, osteoblasts, myoblasts and fibroblasts all

derive from mesenchymal stem cells (as do chondrocytes,

themselves dramatically affected by glucocorticoids in CS)

(Fig. 2) [100]. Glucocorticoids have an important role in

the differentiation of mesenchymal stem cells along these

different pathways and are important for differentiation

in vitro. Glucocorticoids appear to have a permissive role

in differentiation with tissue specific factors determining

along which pathway cells differentiate [101]. How much

these cells rely on circulating glucocorticoids or locally

generated glucocorticoids for differentiation in vivo

remains unexplored. Additionally the embryological ori-

gins of mesenchymal stem cells in the body axis are

distinct to those of the limbs and this may have implica-

tions for regional disparities in the effects of

Adipocytes
LPL activity (viseral)

Hypertrophy
Altered adipokine production

Myoblasts
protein synthesis

protein degradation
Altered fibre type distribution

Osteoblasts
collagen synthesis

matrix production

proliferation

apoptosis

Mesenchymal
stem cell
differentiation/
committment

Skin fibroblasts
proliferation

collagen synthesis

Chondrocytes
proliferation

proteoglycan synthesis

Fig. 2 Effects of

glucocorticoids on cells derived

from mesenchymal stem cells
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glucocorticoids on body composition. Interference with the

developmental pathway of meschymal stem cells may thus

explain why changes in adipose, bone, muscle and skin

tissue are the prominent findings in states of systemic

glucocorticoid excess.

Conclusions

This review illustrates that the pituitary–adrenal axis has an

important role in the determination of body composition in

normal individuals and in patients with CS. The reasons

why some tissues are more affected by glucocorticoids are

becoming clearer and are probably related to a role for

glucocorticoids in the normal differentiation of these tis-

sues. An improved understanding of the relationship

between pituitary–adrenal axis activity and body compo-

sition could lead to better approaches to limit the adverse

effects of glucocorticoids and could lead to improved

diagnostic approaches in CS.
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