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Abstract. In recent years the demonstration that human

pituitary adenomas are monoclonal in origin provides fur-

ther evidence that pituitary neoplasia arise from the repli-

cation of a single mutated cell in which growth advantage

results from either activation of proto-oncogenes or inac-

tivation of tumor suppressor genes. However, with the ex-

ception of one RAS mutation identified in a single unusu-

ally aggressive prolactinoma resistant to dopaminergic in-

hibition that resulted to be lethal, no mutational changes

have been so far detected in prolactinomas. In the absence

of genetic changes, modifications in the level of expres-

sion of oncogenes or tumor suppressor genes have been

detected in these tumors, although it is unknown whether

these changes have a causative role or are a secondary

event. Indeed, our knowledge on the molecular events in-

volved in lactotroph proliferation is even more limited

in comparison to the other tumor types, since these tu-

mors are very infrequently surgically removed and there-

fore available for molecular biology studies. In this respec,

it is worth noting that the molecular and biological ab-

normalities so far described in prolactinomas mainly con-

cern aggressive and atypical tumors and likely do not ap-

ply to the typical prolactinomas, that are characterized by

good response to medical treatment and a very low growth

rate.
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Introduction

The pathogenesis of pituitary tumors has been con-
troversial for many years and the respective role and
importance of intrinsic alterations of the pituicytes
themselves, hypothalamic dysregulation and locally
produced growth factors is still under debate [1–4].
Although the demonstration that the majority of pitu-
itary adenomas is monoclonal in origin indicates that
pituitary neoplasia arise from the replication of a single
mutated cell, the genetic events able to confer growth
advantage to pituicytes are still largely undefined [5,6].
Indeed, the only mutational change so far unequivo-
cally identified in pituitary adenomas, i.e. activating
mutations of the guanine nucleotide binding α-subunit
1 gene (GNAS1), termed gsp for Gs protein [7,8],
occurs in about 30–40% of GH-secreting adenomas
and in 5–10% of other tumor types. In the absence of

genetic mutations, changes in the expression of proto-
oncogens or tumor suppressor genes (TSG) have been
observed. However, it is presently unknown whether
these changes have a causative role or represent a
secondary event. Moreover, animal models of pituitary
tumorigenesis only partially recapitulate the processes
occurring in humans. In particular, although pituitary
tumors may be induced in the mice by overexpressing
or knocking out specific protooncogenes or tumors
suppressor genes, respectively, these manipulations
generally cause tumor formation almost exclusively in
female animals and are preceded by a long-standing
phase of cell hyperplasia.

As far as the patogenesis of prolactimonas is con-
cerned, our knowledge on the molecular events in-
volved in lactotroph proliferation is even more limited
in comparison to the other tumor types. Indeed, al-
though prolactinomas are the most frequent pituitary
tumor, they are very infrequently surgically removed
and therefore the few molecular biology studies mainly
concern aggressive and atypical prolactinomas. More-
over, several clinical observation suggest the existence
of multistep processes in prolactinoma formation. The
fact that high resolution neuroradiological imaging “in-
cidentally” detects pituitary microadenomas, that fre-
quently are microprolactinomas, in about 20% of sub-
jects without signs or symptoms of pituitary disorders,
a value about 1.000-fold higher than the clinical preva-
lence of the disease [9,10] suggest that a second hit is
required for tumor formation. Finally, the molecular de-
fects responsible for lactotroph proliferation are likely
to be heterogenous. Indeed, long term follow up of pa-
tients with microprolactinomas suggest that these tu-
mors have a low, if any, tendency to growth over time.
The natural history of microprolactinomas is in striking
contrast to the rapid growth that characterizes some
macroprolactinomas, that appear to be resistant to any
therapeutical approach. In this review we will summa-
rize the different molecular alterations that have been
proposed to be involved in the formation of human pro-
lactinomas.

Address correspondence to: Anna Spada, Institute of Endocrine
Sciences, University of Milan, Ospedale Maggiore IRCCS, Via
Francesco Sforza 35, 20122, Milano, Italy. Tel.: 39-02-50320613;
Fax: 39-02-50320605; E-mail: anna.spada@unimi.it.



8 Spada et al.

Table 1. Gain-of-function events in pituitary tumors

Gene Defect
Human pituitary
adenomas

Cyclin E Increased expression ACTH-omas
Cyclin D1 Increased expression Aggressive adenomas
PTTG Increased expression All types (including

PRL-omas)
FGFR4 Alternative transcription

initiation
All types (including

PRL-omas)

Gsα Somatic mutations GH-omas
Gi2α Somatic mutations NFPA, GH-oma
Ras Somatic mutations Pituitary carcinomas

metastases; aggressive
PRL-oma

FGFR4, fibroblast growth factor receptor 4; PTTG, pituitary tumor trans-

forming gene; NFPA, nonfunctioning pituitary adenoma.

Alterations of Proto-oncogenes

Common protooncogenes

Pituitary tumors may originate from either gain of func-
tion mutations or overexpression of ubiquitously ex-
pressed protooncogenes that are components of com-
mon proliferative pathways. The common protoonco-
genes that have been extensively analyzed in pituitary
tumors include proteins involved in signal transduc-
tion, growth factors and their receptors, and cell cy-
cle proteins (Table 1). To date very few protoonco-
genes have been found to be mutated or overexpressed
in prolactinomas. The exception is represented by the
point mutation (Gly12Val) in the RAS gene, a gene cod-
ing for a GTP binding protein mainly involved in the
transduction of growth factor signalling. This mutation
was identified in one single unusually aggressive pro-
lactinoma resistant to dopaminergic inhibition, that re-
sulted to be lethal [11]. However, although RAS muta-
tions are present with relatively high frequency in hu-
man malignancies they are uncommon in pituitary tu-
mors. In fact, subsequent studies on large series of func-
tioning and non functioning pituitary tumors failed to
find RAS mutations [12]. Consistent with the view that
this mutational change is associated with unusual ma-
lignant feature and probably represents a late event,
RAS mutations have been detected in metastases of 3
pituitary carcinomas, but not in the primitive tumors
[13].

As far as other coupling proteins involved in signal
transduction are concerned, no mutations in the het-
erotrimeric GTP binding proteins have been identified
in prolactinomas. The lack of mutations in Gq and G11,
two G proteins that participate in growth factor and
hormone mediate generation of Ca2+/calmodulin and
phospholipid-dependent protein kinase C (PKC) activa-
tion is common to all pituitary tumors [14,15]. By con-
trast, the lack of mutations in the Gs gene seems to be
specific of prolactinomas. Indeed, mutations of Gs (the

so called gsp oncogene) have been deteced in 30–40% of
GH-secreting adenomas and 5–10% of nonfunctioning
and ACTH-secreting adenomas. Therefore, although so-
matotrophs and lactotrophs derive from the same cell
lineage, the activation of the cAMP pathway resulting
from the expression of the gsp oncogene seems to be
a proliferative signal only for GH-secreting adenomas
[16,17]. This observation is consistent with the notion
that while in somatototrophs GHRH exerts potent dif-
ferentiative and proliferative effetcs, that are mediated
by cAMP production, no neurohormone signals through
this pathway in lactotrophs.

Growth factors and receptors

The normal pituitary and pituitary tumors produce a
wide number of substances with secretory, differenti-
ating and proliferative potentials and express specific
receptors. Transforming growth factor-α (TGF-α), epi-
dermal growth factor (EGF) and their common tyrosin
kinase receptor (EGF-R) are overexpressed in pitu-
itary adenomas, particularly in those with high aggres-
siveness [18–21]. Moreover, it has been demonstrated
that FGF expression is induced by the pituitary tu-
mor transforming gene (PTTG), an estrogen-inducible
gene with high transforming properties found in sev-
eral human neoplasia, including pituitary adenomas
[22,23].

Among the different growth factors produced by the
pituitary, evidences obtained from both in vitro and
in vivo in experimental animal models suggest that
lactotroph cells secrete nerve growth factor (NGF)
together with prolactin [24]. Subsequent studies in
patients affected with microprolactinomas confirmed
that NGF is released in the bloodstream paralleling
prolactin secretion, this secretion being modulated
by a neurotransmitter-regulated mechanism. In fact,
the normalization of prolactin elicited by the D2
dopamine receptor agonist cabergoline was associ-
ated with a significant decrease of serum NGF [25].
Interestingly, the same authors demonstrated that
cells obtained from prolactinomas resistant to medical
treatment do not express D2R receptors and do not
secrete NGF [26]. However, NGF administration is
able restore the responsiveness to dopamine agonist in
“non responder” prolactinomas cells by inducing D2R
expression via p75(NGFR) and NF-kappaB [27]. These
data seems to suggest that alterations in the expression
and function of the NGF-mediated autocrine loop
in lactotroph cells could be involved in the devel-
opment of prolactinomas with different degrees of
malignancy.

Among the four receptors mediating FGF signalling,
the aberrant expression of a N-terminally truncated
FGF receptor-4, that is constitutively phosphorylated
and causes transformation in vitro and in vivo,
has been reported in about 40% of pituitary adeno-
mas, including prolactinomas [28]. Moreover, it has
been demonstrated that overexpression of the trun-
cated receptor induces prolactinomas in female and
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male transgenic mice while the wild type receptor
is ineffective [28]. Interestingly, this truncated FGF
receptor-4 diminish cell adhesiveness by disrupting
neural cell-adhesion molecule/N-cadherin signaling,
a mechanism possibly involved in pituitary tumor
pathogenesis [29]. It is worth noting that in contrast
to previous models of pituitary tumorigenesis, the
expression of the truncated receptor in the pituitary
of transgenic mice results in tumor formation in
the absence of massive hyperplasia, a phenomenon
similar to that observed in human pituitary adenomas
[28,30].

Proteins involved in cell cycle progression

Previous studies investigated changes of early imme-
diate genes, such as JUN, FOS and MYC in pituitary
adenomas, including prolactinomas [31,32]. More
recent studies, carried out to evaluate the expression
of proteins regulating cell progression through G1
of the cell cycle, reported overexpression of cyclin
D1 in pituitary adenomas, that was mainly related to
the aggressiveness of the tumor, while cyclin E was
preferentially detected in corticotroph adenomas [33].
No specific pattern of expression has been observed
in prolactinomas. However, it is worth noting that
surgically removed prolactinomas are likely to be
not representative of the prolactinoma per se, par-
ticularly when indices of cell cycle progression are
considered.

All pituitary adenoma subtypes, including prolacti-
nomas and particularly invasive hormone-secreting
ones, express PTTG (Pituitary Tumor-Transforming
Gene), that was first isolated from rat GH-secreting
cells by differential RNA display [34–36]. The human
PTTG homolog (PTTG1) is a member of a gene fam-
ily, maps on chromosome 5q33 and causes in vitro

cell transformation and in vivo tumor induction [37,38].
It is expressed at low levels in most normal human
tissues while it is highly expressed in malignant hu-
man cell lines and in pituitary and non pituitary tu-
mors [34,39,40]. Structural characterization has identi-
fied PTTG as a member of the securin family that regu-
lates the separation of sister chromatids during mitosis
[23,41]. Due to the critical role of PTTG in participating
in cellular responses to DNA damage and in maintain-
ing genomic stability, it has been proposed that PTTG
overexpression may be, at least in part, responsible for
the aneuploidism frequently observed in pituitary tu-
mors [42–45]. Moreover, PTTG regulates endocrine tu-
mor cell division and survival [46].

The role of PTTG in pituitary tumorigenesis has been
investigated particularly in rat prolactinoma develop-
ment [45]. In this model, that emphasizes the impor-
tance of estrogen in lactotroph proliferation and there-
fore does not necessary apply to human proactinomas,
estrogen induced PTGG overexpression results in the
stimulation of fibroblast growth factor-2 (bFGF) ex-
pression, that in turn modulates angiogenesis, tumor

formation and progression [47–53]. Accordingly PTTG
induction, that occurs early in pituitary transformation,
correlate with bFGF expression and secretion [21,22].
As estrogens inducs PTTG and PTTG expression co-
incides with early lactotrophic hyperplasia, angiogene-
sis and prolactinoma development, a paracrine growth
factor-mediated mechanism for pituitary tumor patho-
genesis can be envisaged.

Subsequent studies investigating the direct effects of
PTTG on hormonal phenotypes of pituitary tumor cells
showed that overexpression of PTTG1 C-terminal pep-
tide in rat PRL- and GH-secreting GH3 cells silences
PRL gene expression. In contrast, mutations at the
PTTG1 C-terminal peptide inactivate PRL gene suppres-
sion, suggesting that targeted inhibition of PTTG1 ac-
tion may be a potential subcellular tool for therapy of
prolactinomas [54].

Overexpression of high-mobility group A nonhistone
chromosomal proteins (HMGA), that play a role in de-
termining chromatin structure, has been found to be
overexpressed in several human carcinomas such as
thyroid, prostate and pacreatic carcinomas. As far as
the possible involvement of HMGA2 in pituitary tumor
pathogenesis is concerned, it has been demonstrated
that overexpression of HMGA2 induces GH- and PRL-
secreting adenomas in 80% of female transgenic mice
by 6 month of age, while the transgenic males develop
the same phenotype with a lower penetrance and a
longer latency period [55]. Consistent with these obser-
vations, high levels of HMGA2 protein have been found
in human prolactinomas, the highest expression being
observed in those tumors not responsive to dopamine
agonist therapy [56].

Pituitary specific proto-oncogenes

Pituitary function is under the control of hypothalamic
neurohormones that are required for pituitary cell com-
mitment and growth as well as hormone synthesis and
release. Therefore, they may be considered pituitary
specific growth factors. As fas as lactotrophs are con-
cerned, it is well established that dopaminergic tone
is the most important regulator of prolactin secretion.
However, other neuropeptides, such as TRH, may have
a stimulatory role on lactotroph function, as indicated
by the presence of mild hyperprolactinemia in patients
with primary hypothyroidism due to the upregulation
of TRH gene expression induced by thyroid hormone
defect.

Previous studies carried out on large series of func-
tioning and nonfunctioning adenomas indicate that
genes encoding receptors for stimulatory hormones
are normal in almost all tumors. In particular, TRH re-
ceptor gene has been found unaltered in a large series
of secreting and nonsecreting adenomas while pro-
lactinomas generally express a truncated TRH receptor
characterized by a reduced binding to the ligand [57].
Although TRH administration typically fails to increase
serum prolactin levels in patients with prolactinomas,
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TRH receptors are overexpressed in these tumors
[58,59]. These data are consistent with the observa-
tion that TRH is able to increase intracellular Ca2+
levels in adenomatous lactotrophs, suggesting other
defects responsible for the in vivo unresponsiveness to
TRH [60].

In addition to the hypothalamic neurohormones, al-
teration in the peripheral milieaux may influence lac-
totroph function and eventually proliferation. In par-
ticular, it has been suggested that estrogens may play
a role in promoting lactotroph growth. This hypothe-
sis mainly derives from the observation that estrogen
administration rapidly causes the appearance of huge
prolactinomas in female rats. However, although pro-
lactinomas are more frequent in women than in men, no
direct relationship between the exposure to estrogens,
even at high doses, and the occurrence of prolactino-
mas seems to be present in humans. Indeed, lactotroph
hyperplasia in estrogen treated male-to-female trans-
sexual patients seems to be a rare event [49]. Moreover,
the sex difference in prolactinoma incidence mainly
concerns microprolactinomas. As far as the expression
of estrogen receptor in pituitary tumors is concerned,
in vitro studies demonstrate that the expression of es-
trogen receptor alpha and several of its messenger ri-
bonucleic acid alternate splice variants is restricted to
prolactinomas and gonadotroph tumors [61]. However,
little is known about the impact of these variants on cell
growth.

Alterations of Tumor Suppressor Genes

Pituitary cell proliferation may results from the inac-
tivation of either common tumor suppressor genes or
specific inhibitors of pituitary cell function and growth.
Contrary to oncogenes that cause the tumoral pheno-
type also when present in only one allele, tumor sup-
pressor genes are recessive and the inactivation of both
alleles is believed to be required to cause the loss of an-
titumoral action [62,63].

Common tumor suppressor genes

The role of loss of tumor suppressor genes in causing
pituitary tumors has been clearly demonstrated in ro-
dents, in which knocking out retinoblastoma gene (RB)
or p27Kip1, a cyclin-dependent kinase inhibitor that in-
duces G1 arrest by RB hypophosphorylation, results in
intermediate lobe hyperplasia and ACTH-secreting ade-
noma by few months of age in the mouse [64–66]. How-
ever, data in human pituitary tumors are not conclu-
sive. Indeed, although loss of heterozygosity (LOH) on
chromosome 13q, where RB gene is located, is a rela-
tively frequent event particularly in invasive or malig-
nant tumors [67,68], no mutational changes in RB or
p27Kip1 genes have been identified while the reduced
expression at the protein levels seem to be restricted to
p27Kip1 in ACTH-secreting adenomas, recurrent pitu-
itary tumors and pituitary carcinomas [69,70]. A similar

Table 2. Loss-of-function events in sporadic pituitary

tumors

Gene Defect Human pituitary tumor

RB Promoter methylation Aggressive adenomas
p16INK4a Promoter methylation All types (including

PRL-omas)
p27Kip1 Reduced expression ACTH-omas
TRβ Inactivating mutations TSH-omas
GR LOH ACTH-omas
D2R Reduced expression Resistant PRL-omas
Sst2 Reduced expression Resistant GH-omas

RB, retinoblastoma; LOH, loss of heterozygosity; D2R, dopamine receptor

type 2; sst2, somatostatin receptor type 2; TRβ, thyroid hormone receptor

β; GR, glucocorticoid receptor.

reduced expression affects p16INK4a, another cyclin-
dependent kinase inhibitor that prevents RB phospho-
rylation [71,72] (Table 2).

Finally, no mutations have been found in the gene
encoding p53, a proapoptotic signal that is frequently
alterated in human neoplasia while the significance of
p53 overexpression detected by immunohistochemistry
in invasive nonfunctioning pituitary tumors and corti-
cotropinomas remains elusive [73–75]. As far as pro-
lactinomas are concerned, it has been recently demon-
strated by using conformation-specific antibodies and
immunocytochemistry that in bromocriptine-resistant
prolactinoma cells p53 adopts a mutant conformation
that precludes its nuclear translocation and transcrip-
tional activity. Interestingly, this phenotype is reverted
by NGF administration which results in p53 refolds
into wild-type tertiary structure, promoting its nuclear
translocation, and restoring its DNA-binding activity
[76].

Since pituitary tumor is part of the multiple en-
docrine neoplasia type I (MEN-I) syndrome, the gene
responsible for the disease has been thought to be im-
plicated also in the genesis of sporadic pituitary adeno-
mas [77]. The gene whose mutation is responsible for
MEN1 encodes a 610 amino acid protein, menin, which
is able to interct with several proteins and transcrip-
tion factors involved in the control of cell proliferation
[78]. Accordingly, mice heterozygous for MEN1 knock-
out develop parathyroid, pancreatic ß-islet and pitu-
itary tumors, largely recapitulating human MEN1 syn-
drome [79–84]. Although LOH in the region 11q13, the
region where MEN1 gene is located, is present in 10–
20% of sporadic pituitary adenomas [74,85] subsequent
studies failed to find either mutations in MEN 1 gene
in the retained allele or reduced mRNA levels in most
pituitary tumors [86–89]. The LOH in several other loci
in addition to 11q13 and 13q, such as 10q26, 11p, 22q13,
suggest the involvement of other still unknown tumor
suppressor genes in the genesis of human pituitary ade-
nomas [2].

Different studies have investigated the presence of
differences in prolactinoma behavior in MEN1 patients
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vs non-MEN1, and it was assumed that there were no
clinical or histopathological differences between the
two groups [90–94]. However, a recent study reporting
the first large systematic analysis of pituitary tumors
in patients with MEN1 vs patients without suggests
that pituitary tumors in MEN1 patients may be more
aggressive as assessed by size and responsivity to
treatments [95]. The tumor size difference was evi-
denced by a doubled prevalence of macroadenoma
(85% vs 42%) and the greater resistance to treatment
was deduced because only 42% of tumors in MEN1
cases reduced prolactin levels within the normal
range during dopaminergic treatment, compared with
90% without MEN1. These unexpected differences, if
confirmed by further investigations, have clinical impli-
cation and raise interesting issues about tumorigenesis
mechanisms in prolactinomas.

Pituitary specific tumor suppressor genes

Genes coding for membrane and nuclear receptors that
physiologically inhibit pituitary hormone secretion may
be considered as possible targets for inactivating mu-
tations leading to hormone hypersecretion and even-
tually tumor growth. This is the case of the dopamin-
ergic D2 receptor (D2R) that mediates the inhibitory
effect of dopamine on prolactin secretion at the pitu-
itary level. In fact, it has been demonstrated that D2R-
deficient mice present hyperprolactinemia and massive
lactotroph hyperplasia at 9 to 12 months of age. More-
over, the same D2R-deficient mice subsequently de-
velop pituitary lactotroph adenomas that are often 50-
fold larger than normal glands with marked suprasel-
lar extension and invasion of brain [96,97]. Although
this model indicates that loss of dopamine inhibition
induces neoplastic transformation, its relevance to the
human situation is questionable. In fact, up to now no
mutation in the D2R gene has been reported, although
it is worth noting that the number of screened tumors
is low since patients with this tumor type rarely un-
dergo pituitary surgery [98]. However, little is known
about the possible involvement of D2R polymorphisms
in the pathogenesis of prolactinomas. In particular, it
has been demonstrated that the TaqI A DRD2 minor
(A1) allele, which has been found to be linked to alco-
hol, cocaine, nicotine and opioid dependence [99,100],
is associated with a reduced brain dopaminergic func-
tion. Interestingly, a reduction of D2R mRNA, and par-
ticularly of the shortest isoform that is more efficiently
coupled to phospholipase, has been frequently demon-
strated in prolactinomas resistant to dopamine agonist
treatment [101].

In addition to the defect in D2R splicing and expres-
sion, the absence of D2R protein despite the retention
of D2 transcript has been observed in metastases of a
malignant prolactinoma resistant to different dopamine
agonists [102], suggesting that alterations in protein sta-
bility or degradation may contribute to the failure of
medical therapy and eventually to lactotroph growth.

Conclusion

In the past years several candidate factors have been
implicated in the genesis and progression of prolacti-
nomas. To date, the only mutational change so far un-
equivocally identified in pituitary adenomas is the gsp
oncogene, that has been identified in about 30–40% of
GH-secreting adenomas, in 5–10% of non-functioning
pituitary adenomas and ACTH-secreting adenomas, but
in none prolactinoma. Overexpression of protoonco-
genes, that include cell cycle progression molecules,
growth factors or receptors, such as PTTG, HMGA2,
FGF-R type 4, has been observed in prolactinomas, al-
though it is presently unknown whether these changes
have a causative role or represent a secondary event.
Similarly, the low expression of tumor suppressor
genes has been implicated in lactotroph proliferation,
although no genetic mutations of candidate genes have
been so far identify, despite the frequent presence of
LOH in several loci.

Several questions arise when studying the patho-
genesis of human prolactinomas. In particular, animal
models of prolactinomas only partially recapitulate the
processes occurring in humans. In fact, estrogens, that
are the most potent stimulus for lactotroph prolifera-
tion in the rat, have a poor, if any, relevance for human
pituitary tumorigenesis. Moreover, overexpressing or
knocking out specific protooncogenes or tumors sup-
pressor genes in the mice cause tumor that are pre-
ceded by a long-standing phase of cell hyperplasia, a
phenomenon typically absent in human prolactinomas.
Finally, although prolactinomas are the most frequent
pituitary tumor, they are very infrequently surgically re-
moved and therefore few molecular biology studies are
available and, most importantly, they mainly concern
aggressive and atypical prolactinomas.
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