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Abstract The immune system is one of the main

defence mechanisms of the human body. Inadequacy

of this system or immunodeficiency results in

increased risk of infections and tumours, whereas

over-activation of the immune system causes allergic

or autoimmune disorders. A well-balanced immune

system is important for protection and for alleviation

of these diseases. There is a growing interest to

maintain a well-balanced immune system, especially

after the Covid-19 pandemic. Many biological

extracts, as well as natural products, have become

popular due to their wide array of immunomodulatory

effects and influence on the immune system. Triter-

penes, one of the secondary metabolite groups of

medicinal plants, exhibit immunomodulatory proper-

ties by various mechanisms. Different triterpenes,

including components of commonly consumed plants,

can promote some protection and alleviation of

disease symptoms linked with immune responses

and thus enhance overall well-being. This review

aims to highlight the efficacy of triterpenes in light of

the available literature evidence regarding the

immunomodulatory properties of triterpenes. We have

reviewed widely investigated immunomodulatory

triterpenes; oleanolic acid, glycyrrhizin, gly-

cyrrhetinic acid, pristimerin, ursolic acid, boswellic

acid, celastrol, lupeol, betulin, betulinic acid, gan-

oderic acid, cucumarioside, and astragalosides which

have important immunoregulatory properties. In spite

of many preclinical and clinical trials were conducted

on triterpenes related to their immunoregulatory

actions, current studies have several limitations.

Therefore, especially more clinical studies with opti-

mal design is essential.
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CD Cluster of differentiation

Con A Concanavalin A

COX Cyclooxygenase

DCs Dendric cells

ERK Extracellular signal-regulated kinases

HMGB1 High mobility group box 1 protein

IFN İNterferon

Ig Immunoglobulin

IL Interleukin

iNOS İNducible nitric oxide synthase

JNK C-Jun N-terminal kinases

LPS Lipopolysacharides

MAPK Mitogen-activated protein kinase
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MCP-1 Monocyte chemoattractant protein 1

MMP Matrix metalloproteinase

NF-jB Nuclear factor kappa-light-chain-enhancer

of activated B cells

NK Natural killer

Nrf2 Nuclear factor erythroid 2–related factor

PBMC Peripheral blood mononuclear cells

PGE Prostoglandin E

PLA2 Phospholipase A2

RORct RAR-related orphan receptor gamma

SOCS3 Suppressor of Cytokine Signaling 3

STAT Signal transducer and activator of

transcription

Th T helper

TLR Toll like receptor

TNF Tumor necrosis factor

Introduction

The immune system comprises two lines of defense,

i.e. innate immunity and adaptive immunity. Natural

killer cells (NK), complement systems, macrophages,

antigen-presenting cells, and neutrophils are parts of

the innate immune system. These cells produce a non-

specific response when encountering antigens. Mature

T and B lymphocytes responsible for adaptive immu-

nity carry surface molecules called Clusters of

Differentiation (CD). These molecules functionally

define different T-cell subsets, namely CD4? T helper

cells (Th) and CD8? T cytotoxic cells. Th cells have

different subpopulations, including Th1, Th2, Th17,

and Treg (McComb et al. 2019; Songu and Katılmış
2012). Th1 cells, which play a role in cellular

immunity, activate macrophages and destruction

intracellular pathogens. Th2 cells induce

immunoglobulin differentiation and antibody secre-

tion and thus contribute to humoral immunity. The

primary role of Th17 cells in immunity is the defense

against infections caused by pathogens. Treg cells

cause suppression of the immune system by prevent-

ing excessive T cell response. CD8? T cytotoxic cells

increase apoptosis in antigen-loaded cells (McComb

et al. 2019).

Cytokines are cellular signaling molecules and their

secretion following the activation of Th cells. Other

cells that can produce cytokines include macrophages,

B lymphocytes, and mast cells. Cytokines provide

intercellular communication in the immune response

and stimulate the migration of cells towards sites of

inflammation, infection, and trauma. Cytokines have

normal physiological functions, including growth and

differentiation of hematopoietic, lymphoid, and mes-

enchymal cells, and regulation of host defense mech-

anisms. Conversely, their uncontrolled or

inappropriate production can lead to the formation of

autoimmune and inflammatory diseases. They are

divided into four groups as Th1(IL-2, IFNc, TNFa),
Th2 (IL-4, IL-5, IL-6, IL-9, and IL-13), Th17 (IL-17,

IL-21, IL-22), and Treg (TGFb, IL-10, IL-35) cytoki-
nes according to the place where they are produced

(Gulati et al. 2016). According to their effects,

cytokines are clustered in three classes as pro-inflam-

matory, anti-inflammatory, and those showing both

effects (Wahab and Hussain 2013; Shokryazdan et al.

2017). The main pro-inflammatory cytokines that

induce inflammatory reactions are tumor necrosis

factor-a (TNF-a), interleukin-1 (IL-1), IL-12, IL-17,

and IL-18. TNF-a stimulates the acute phase of the

immune response by increasing production of chemo-

kine ligands with a Cys-X-Cys motif (C-X-C motif)

[i.e. CXCL1, CXCL2, and CXCL5] and migration of

neutrophils and macrophages to the site of inflamma-

tion. IL-1, which has three forms, IL-1a, IL-1b, and
IL-1Ra, is produced and released in the early stages of

the immune response. The effects of IL-1 are similar to

TNF-a. IL-1b affects histamine release in mast cells,

leading to vasodilation and localized inflammation.

IL-17A/F alone are not potent inflammatory cytoki-

nes, but their effects are enhanced in the presence of

other pro-inflammatory cytokines and they show

potent inflammatory activity. IL-17A/F activates neu-

trophils and monocytes and generates an immune

response against pathogens. Major anti-inflammatory

cytokines are IL-1 receptor antagonist, IL-4, IL-10 and

IL-13 (Shokryazdan et al. 2017). IL-4 provides Th

cells to differentiate into Th2 cells. It induces the

growth of differentiated Th2 cells, resulting in an

antibody response (Arango Duque and Descoteaux

2014; Wahab and Hussain 2013; Songu and Katılmış
2012). Some cytokines may show anti-inflammatory

or pro-inflammatory properties in different situations.

These cytokines include leukemia inhibitory factor,

interferon (IFN)-a, IL-6, and transforming growth

factor (TGF-b) An exaggerated immune reaction

demonstrated by over-production of pro-inflammatory
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cytokines too quickly is known as a cytokine storm. A

cytokine storm may can be life-threatening and lead to

multiple organ failure (Shokryazdan et al. 2017).

The production of both protein mediators and

inducible enzymes in the immune system is associated

with the induction of transcription factors such as

Nuclear Factor kappa B (NF-jB), Nuclear factor of
activated T-cells, and Signal transducer and activator

of transcription (STAT). Toll-like receptors (TLR)s

are signal transduction membrane proteins that play an

important role in the activation of NF-jB. Different
adapter proteins (myeloid differentiating factor 88

(MyD88), TRIF, etc.) bind to TLRs, leading to NF-jB
activation and induction of the release of inflammatory

cytokines (Kawai and Akira 2007). NF-jB is involved

in the expression of genes encoding proinflammatory

cytokines, chemokines, inducible enzymes such as

cyclooxygenase (COX)-2 and inducible nitric oxide

synthase (iNOS), growth factors and immune recep-

tors, as well as adhesion molecules including inter-

cellular cell adhesion molecule 1 (ICAM-1), vascular

cell adhesionmolecule 1 (VCAM-1) (Napetschnig and

Wu 2013). The STAT protein family is another

effective pathway in the regulation of immunoregula-

tion. Different STAT proteins alter cytokines levels

and various proteins including janus kinases proteins

(JAK), GATA3 (a transcription factor that regulates

Th2 cytokine production) and RAR-related orphan

receptor gamma (RORct-Th17 transcription factor)

involve in this process (O’Shea and Plenge 2012).

Immunomodulators which are biological or syn-

thetic agents that have the ability to stimulate,

suppress or modulate any aspect of the immune

system and boost or suppress the host defense

response, are classified as immunoadjuvant, immunos-

timulants, and immunosuppressants (Mohamed et al.

2017; Shantilal et al. 2018).

Immunostimulants are agents enhance the activity

of immunsystem. Immunoadjuvants are specific

immune stimulatory molecules that enhance the

efficacy of vaccines or provoke tumor-specific

immune responses. Immunosuppressants which are

the molecules that activate or induce the mediators or

components of the immune system and inhibit the

immune system, can be used to control the patholog-

ical immune reaction following organ transplantation,

or in the treatment of infection-associated

immunopathology, hypersensitivity reactions, and

autoimmune diseases. Immunomodulators are

monoclonal antibodies or chemical compounds used

to help regulate or normalize the immune system

(Jantan et al. 2015).

Previous studies showed that natural products with

immunomodulatory activity had been used in the

treatment of autoimmune diseases, inflammatory

disorders, and cancer. Plant secondary metabolites

such as triterpenoids, flavonoids, diterpenoids, and

alkaloids, as well as some polysaccharides are known

to promote immunomodulatory activity, whereas

others, such as curcumin, capsaicin, quercetin, resver-

atrol, andrographolide, epigallocathecin-3-O-gallate,

colchicine, and genistein are known to exhibit signif-

icant activities in different immune pathways in vitro

(Harun et al. 2020; Rı́os 2010).

Triterpenes are secondary metabolites consisting of

30 carbon atoms formed by the combination of six

isoprene units. As a result of the cyclization and

oxidation of two C15 units, squalene, or related acyclic

30-carbon C30 precursors, different triterpenes can be

formed. Based on this, triterpenes are divided into two

main groups as tetracyclic (dammarane, cucurbitane,

lanostane and cycloartane types) and pentacyclic

triterpenes (oleanane, ursane, lupane, friedelane,

hopane, and taraxastane types). Apart from these

structures, there are nor triterpenoids formed in

tetracyclic triterpene precursors by oxidation and

degradation. Compounds in this group have less than

30 carbon atoms in their main structure. Nortriter-

penoid compounds are classified into two groups as

limonoids (C26) and quassinoids (C20 and C19). In

preclinical studies, it was shown that triterpenes have a

wide range of pharmacological effects including anti-

cancer, antioxidant, anti-inflammatory,

antiatherosclerotic, antiviral, hepatoprotective, and

immunomodulatory activities (Battineni et al. 2018;

Ghiulai et al. 2020) (Fig. 1).

It has been reported that the anti-oxidant, anti-

tumor, anti-microbial, and anti-inflammatory activity

mechanisms of triterpenes result from their modula-

tion of the immune system (Harun et al. 2020; Rı́os

2010). In general, there are limited review articles that

compile the immunomodulatory studies of compounds

with triterpene structure. The present study aims to

review the immunomodulatory activities of triterpenes

isolated from natural sources until today.

According to this aim, we searched international

databases (Science Direct and PubMed) and academic

search engines (Google Scholar) were used to access
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the information and resources presented in this review.

The following keyword combinations were used for

the search: ‘‘immunomodulator’’ or ‘‘immunosuppres-

sant’’ or ‘‘immunostimulant’’ or immunoadjuvant’’

‘‘immune system’’ or ‘‘immune response’’ and ‘‘triter-

penes’’. While searching, no filter was applied and no

time interval was determined. The article language

was restricted to English. In addition, references listed

in selected articles were examined to identify addi-

tional reports not included in the databases. We

selected recent accessible studies investigating the

immunomodulatory effect of triterpene compounds in

preclinical and clinical trial models and discussing

possible mechanisms of action through specific

cytokine-mediated signaling pathways. Preclinical

studies with high doses which are not applicable to

human consumption were excluded. In the presence of

more than one study that reached the same conclusion,

current sources were taken as basis.

Dammarane Cycloartane

Lanostane Cucurbitane

Oleanane Ursane Friedelane

Lupane Hopane Taraxastane

Fig. 1 Structures of some

tetracyclic and pentacyclic

triterpene skeletons
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Oleanane type triterpenes

Oleanolic acid

Oleanolic acid (3b-hydroxyolean-12-en-28- oic acid)

(Fig. 2) is a pentacyclic triterpenoid compound that

takes its name from the plant Olea europaea L. and is

commonly found in the Oleaceae family. Olive fruit,

apple peel, ginseng, papaya fruit and dark plums are

rich sources of oleanolic acid, indicating it occurs

widely in many plant families like Rosaceae, Arali-

aceae, and Caricaceae. Studies have shown that the

compound has anti-oxidant, anti-inflammatory, anti-

viral, anti-cancer and immunomodulatory effects (Sen

2020).

There are many studies investigating the effects of

oleanolic acid on the immune system in the literature.

In one study, oleanolic acid (50 lmoles/kg body

wt/dose/animal, 5 days, i.p) was shown to increase

total white blood cells (13.575 ± 6.4%), a-esterase
positive cells (35.48 ± 6.3%), bone marrow cell

counts (91.3 ± 8.6%) and plaque-forming cells in

the spleen (148.4 ± 5.4%) in BALB/c mice. In this

study, the production of specific antibodies increased

after antigen administration in animals treated with

oleanolic acid. In addition, oleanolic acid inhibited

delayed-type hypersensitivity reaction (88%)

(Raphael and Kuttan 2003). Córdova et al. (2014)

reported that administration of oleanolic acid (50 mg/

kg body weight/day, i.p) downregulated the expres-

sion levels of IL-13 and IL-33 in serum and conjunc-

tival tissue in a Ragweed pollen-specific allergic

conjunctivitis mouse model. IL-13 and IL-33 are Th2

cytokines that play a role in diseases mediated by

hypersensitivity reactions such as asthma, allergic

conjunctivitis, and rhinitis. It was determined that

phospholipase A2 type-IIA (sPLA2-IIA) levels were

lower in mice administered oleanolic acid. sPLA2-IIA

which is an acute phase reactant associated with

autoimmune and allergic diseases plays a role in the

activity and migration capability of eosinophils and

mast cells to tissues. Moreover, oleanolic acid reduced

mast cell degranulation and eosinophil infiltration in

conjunctival tissue and suppressed eotaxin andMCP-1

(monocyte chemoattractant protein 1) levels in serum

and conjunctiva (Córdova et al. 2014). Jehangir et al.

(2019) orally administered zinc and iron complexes of

oleanolic acid at a dose of 2 mg/kg body weight to rats

in an ovalbumin-induced asthma model and studied

the effect of these compounds on the immunopatho-

genesis of asthma. It was found that leukocyte,

eosinophil, neutrophil, and lymphocyte counts were

significantly decreased in serum and bronchoalveolar

lavage fluid of rats treated with both complexes.

Treatment with zinc ? oleanolic acid and

iron ? oleanolic acid reduced the expression of IL-

4, IL-5, IL-13, IL-17, and TNF-a (Jehangir et al.

2019). In another in vivo study, it was reported by an

experimental autoimmune myocarditis model in mice

that oleanolic acid (50 mg/kg body weight/day, ip)

decreased the IL17A/IL-35 ratio by suppressing IL-

17A production and increasing IL-35 levels in mice an

experimental autoimmune myocarditis model.

Oleanolic acid inhibited IL-6 production and induced

IL-10 production. Accordingly, a significant decrease

in the IL-6/IL-10 ratio was observed. In this model,

oleanolic acid did not affect the number of CD3?,

CD4? and CD8? T cells, CD14? macrophages/mono-

cytes, and CD19 ? B cells. In contrast, it significantly

increased the frequency of CD4? CD25? Forkhead

box P3 (Foxp3?) Treg cells (Martı́n et al. 2014). Kim

et al. (2020) administered oleanolic acid (10 and

30 mg/kg, orally) to C57BL/6 mice in an experimental

autoimmune encephalomyelitis model. In conclusion,

oleanolic acid was found to inhibit Concanavalin A

(Con A) and myelin oligodendrocyte glycoprotein

induced T cell proliferation. Oleanolic acid reduced

the accumulation of inflammatory cells and CD68 ?

macrophages in the spinal cords of mice (Kim et al.

2020). Numerous in vivo studies have reported that

oleanolic acid lowers allergen-specific antibody levels

(immunoglobulin (Ig)E, IgG, IgG1 and IgG2a) and

suppresses general immune responses (Córdova et al.

2014; Choi et al. 2016; Martı́n et al. 2014, 2012).Fig. 2 Structure of oleanolic acid
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Oleanolic acid blocks the activation of NF-jB and

related signaling pathways (Jehangir et al. 2019; Choi

et al. 2016; Hwang et al. 2014; Kang et al. 2021).

Oleanolic acid inhibited the expression of NF-jB
target genes, including genes encoding TNFa, cIAP2,
and IkBa, in RAW 264.7 macrophage cells. It

significantly suppressed MafK (a transcriptional reg-

ulator that modulates NF-jB activity) expression and

MafK-mediated p65 acetylation. It also induced the

expression of nuclear factor erythroid 2–related factor

2 (Nrf2, transcription factor that inhibits inflamma-

tion) and Nrf2 target genes including NAD(P)H:qui-

none oxidoreductase 1 (NQO1) and heme oxygenase-

1 (HO-1) (Hwang et al. 2014). Martı́n et al. reported

that oleanolic acid (5–15 lM) reduced the activity and

phosphorylation of extracellular signal-regulated

kinases (ERK) 1/2 and ribosomal protein S6, which

are key components of mitogen-activated protein

kinase (MAPK) and the mechanistic target of

rapamycin signal transduction pathways, respectively,

in mouse BV2microglial cells. In addition, it inhibited

proliferative response and phagocytosis in BV2

microglial cells (Martı́n et al. 2012). Studies have

shown that oleanolic acid suppresses the production of

COX-2 and iNOS enzymes, reducing prostaglandin E2

(PGE2) and nitric oxide (NO) levels, respectively, and

inhibiting matrix metalloproteinase (MMP)-1 and

MMP3 synthesis (Hwang et al. 2014; Martı́n et al.

2012; Jehangir et al. 2019; Choi et al. 2016).

Oleanolic acid blocked TLR-3 activation and

inhibited mRNA expression levels of target molecules

associated with the TLR3 signaling pathway, includ-

ing MCP-1, IL-1b, IL-8, VCAM-1 and ICAM-1.

Oleanolic acid significantly suppressed IKKa/b phos-

phorylation and reduced the degredation of inhibitor

of jB (IjB). It is suggested that oleanolic acid

inhibited TLR3 signaling, especially by interacting

with IKKa/b (Lim et al. 2019). It also suppressed the

protein levels of TLR2, MyD88, interleukin 1 recep-

tor-associated kinase (IRAK)-4, TNF receptor associ-

ated factor 6 and p-IjBa (Kim et al. 2020). Oleanolic

acid (1–25 lM) blocked STAT1 and STAT3 activity

in 3T3-L1 adipocytes. Tyk2 (an upstream kinase of

STAT) signal activation was significantly suppressed

in the presence of 5 lM oleanolic acid. In addition,

Suppressor of Cytokine Signaling 3 (SOCS3) expres-

sion was reduced by oleanolic acid (Kim et al. 2013a).

To support this finding, Kang et al. (2021) reported

that oleanolic acid inhibits STAT1 phosphorylation

and activation both in vivo and in vitro (Kang et al.

2021). Kim et al. showed that oleanolic acid upreg-

ulates Foxp3, and downregulates GATA-3 and (RAR-

related orphan receptor gamma) RORct (Kim et al.

2014).

In general, oleanolic acid decreased pro-inflamma-

tory cytokine levels and reduced or inhibited inflam-

mation-related factors. The compound suppressed the

production of antigen-specific antibodies in experi-

mental animals. Possible mechanisms of action

involved in immunomodulation are thought to be the

inhibition of NF-jB and related signaling pathways,

STAT, and GATA-3 signaling pathways.

Glycyrrhizin and glycyrrhetinic acid

Glycyrrhizin (glycyrrhizic acid or glycyrrhizinic acid)

which is a major triterpenoid of Glycyrrhiza glabra L.

(Fabaceae), is metabolized through the gastrointesti-

nal tract to produce glycyrrhetinic acid (enoxolone),

which also naturally occurs in G. glabra. Both

compounds are pentacyclic triterpenoids (Fig. 3) and

have a wide range of biological effects including anti-

cancer, anti-inflammatory, hepatoprotective, antiviral

effects. Glycyrrhetinic acid exists as the a and b
isomer, with the latter being the major isomer. Hence,

there are more studies on b-glycyrrhetinic acid and in

this paper, this isomer is indicated as glycyrrhetinic

acid whereas the other isomer as a-glycyrrhetinic acid
(Graebin 2017). Glycyrrhizin is used as an intravenous

injection for the treatment of hepatitis in some Asian

countries. This compound has been attracting attention

recently as a promising agent for the treatment of Sars-

Cov-2 (Bailly and Vergoten 2020).

Glycyrrhizin induces both T- and B-lymphocyte

proliferation (Chavali et al. 1987). This compound

also affects the maturation and function of dendritic

cells (DCs). It enhanced the expression of surface

markers including CD40, CD80, CD83, and CD86 on

DCs. Glycyrrhizin also stimulated IL-12 secretion by

treated DCs, resulting in strong stimulation of T cell

growth and differentiation. DCs treated with gly-

cyrrhizin also increased IFN-c and IL-10 and reduced

IL-4 production, suggesting that it modulates immune

responses toward a Th1 subset (Bordbar et al. 2012;

Hua et al. 2012). Interestingly, glycyrrhetinic acid

developed a greater Th1 immune response than Th2

response. This compound has been stated as beneficial

in the treatment of Th1-disordered diseases due to
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Candida albicans (Kim et al. 2013b). Glycyrrhetinic

acid enhanced antibody titers of IgG and IgM in

chicken immunized with Newcastle diseases vaccine

and also promoted lymphocyte proliferation and the

proportions of CD4 ? and CD8 ? in a dose- and

time-dependent manner. Moreover, when this com-

pound was encapsulated with liposomes, its effect was

significantly improved (Zhao et al. 2012). 18a-
glycyrrhetinic acid upregulated the expression of

maturation markers on splenic DCs in vitro, inhibited

the maturation of DCs and reduced the expression of

CD40 and major histocompatibility complex-II in

mice at 10 lg/g. Furthermore, when isolated DCs

were used for the mixed lymphocyte reaction assay as

a continuation of the same in vivo study, it reduced

DCs activation of T cells and IFN-c secretion. The

inconsistency of data obtained by the same group has

been explained as ‘18a-glycyrrhetinic acid may have

different effects on in vivo and in vitro immune

parameters possibly depending on the time point and

dose of treatment’ (Ebrahimnezhad et al. 2016).

Glycyrrhizin also modulates the cell-mediated

immune response. It enhanced NK cell activity,

antibody titer, and antibody-dependent cell-mediated

cytotoxicity in Balb/c mice bearing metastatic tumors.

It decreased the elevated levels of IL-6 and IL-1b. It
also ameliorated the decreased levels of IL-2. It also

increased bone marrow cellularity and total white

blood cell count (Raphael and Kuttan 2003, 2008).

TLRs are playing an important role by modulating

several immune responses, especially during infec-

tion. Glycyrrhizin especially alters TLR-4, a key

receptor of the innate immune signaling responses,

particularly against respiratory viruses. It suppressed

TLR4/MD-2-mediated innate immune responses. It

inhibited lipopolysaccharide (LPS) binding to the

TLR4/MD-2 complex. Glycyrrhizin also inhibited

LPS-triggered TLR4 internalization. Of note, this

triterpene inhibits not only TLR4- but also TLR9-

mediated inflammatory responses by reducing CpG-

DNA uptake in RAW264.7 mouse macrophages

(Honda et al. 2012; Schröfelbauer et al. 2009).

Glycyrrhetinic acid induced the expression of TLR4

and its downstream signaling molecules, expression of

IFN-b and IL-6 through the adaptor molecule MyD88

in Ana-1 murine macrophages (Peng et al. 2011).

Glycyrrhizin also modulates the immune system by

altering some chemokines. It reduced the H5N1 virus-

induced production of chemokine CXCL-10, and

chemokine (C–C motif) ligand (CCL)5. Further, it

down-regulated TNFa- and IL-4-induced eotaxin 1

production via NF-jB and STAT3 in human lung

fibroblasts (Matsui et al. 2006; Michaelis et al. 2010).

Glycyrrhizin decreased the production of inflam-

mation-related cytokines, IL-1b, IL-3, IL-5, IL-6, IL-
10, IL-12, IL-13 IFN-c, TNF-a, and IL-17. In addition,
it inhibited some other inflammatory molecules like

high mobility group box 1 (HMGB1), iNOS, and

COX-2 (Chen et al. 2017; Han et al. 2017; Liu et al.

2014; Wang et al. 2015a, b). Treatment with 50 mg/kg

glycyrrhetinic acid for 5 days decreased IL-10 and IL-

4 levels but enhanced IL-12, IFN-c, and TNF-a levels

associated with differentiation of Th2 to Th1. NF-jB
activation involves the induction of the production of

pro-inflammatory mediators (Ukil et al. 2011). Several

studies proved the anti-inflammatory actions of gly-

cyrrhizin, a and b- glycyrrhetinic acid. These com-

pounds inhibited PLA2/arachidonic acid pathway

metabolites including PGE 2, prostacyclin 2, throm-

boxane 2, and leukotriene B4. They also decreased

ICAM-1 and MMP-9. Additionally, these triterpenes

boosted the antioxidant defense system by enhancing

the activity of superoxide dismutase, glutathione

peroxidase, and catalase, which in turn, increased

glycyrrhizin glycyrrhetinic acid

Fig. 3 Structures of

glycyrrhizin and

glycyrrhetinic acid
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total antioxidant capacity. Inhibition of MAPK path-

way components including JNK, p38, and ERK as well

as NF-jB pathway involves in anti-inflammatory

actions of these triterpenes (Honda et al. 2012; Li

et al. 2011; Wang et al. 2015a, b). HMGB1 has been

suggested to contribute to the pathogenesis of various

chronic inflammatory and autoimmune diseases. It is

therefore a therapeutic target for some central nervous

system diseases. Glycyrrhizin not only inhibits the

expression of HMGB1, but also translocation, and

release of HMGB1 in astrocytes as well as microglia

(Li et al. 2018).

Glycyrrhizin attenuated the increased IL-4 level

and restored the immune balance of Th1/Th2 cells in a

dose-dependent manner. Moreover, it attenuated the B

cells that produce allergen-specific IgE and IgG1 in

three models of allergic reaction in vivo and in vitro. It

inhibited mast cell degranulation and decreased vas-

cular permeability by inhibiting the expression of

calcium channel proteins and blocking extracellular

Ca2? influxes (Han et al. 2017).

Effect of glycyrrhizic acid ammonium salt, a

glycyrrhizin derivative was tested by using an

immune-mediated hepatitis model. 50 mg/kg or

100 mg/kg glycyrrhizic acid ammonium salt treat-

ment for 10 days alleviated Con A-induced liver

injury and increased the survival rate of mice.

However, these doses may not be reached in human

applications. It reduced increased inflammatory fac-

tors like IL-1b, IL-6, TNF-a, IFN-c, and IL-17A and

regulated the balance of Th1/Th2/Treg/Th17, some

immunoregulators, in the liver cells. Further, gly-

cyrrhizic acid ammonium salt also inhibited hepato-

cyte apoptosis via inhibition of Janus kinase (JAK1)/

signal transducers and activators of transcription

(STAT1)/(Interferon Regulatory Factor 1) IRF1 (Tian

et al. 2019).

The ability of glycyrrhetinic acid to inhibit potas-

sium channels (Kv1.3channels) may also contribute to

its anti-inflammatory and immunomodulatory actions

(Fu et al. 2013).

There are several clinical trials on glycyrrhizin and

glycyrrhetic acid related to their anti-inflammatory or

immunomodulatory actions. Effects of glycyrrhizin on

liver function and cellular immunity of children with

infectious mononucleosis complicated liver impair-

ment were assessed in 62 children. Volunteers were

divided into a healthy group, a control group, and a

glycyrrhizic acid group. Both control and glycyrrhizic

acid groups were treated with conventional therapy,

but the glycyrrhizic acid treated group, was given

additionally once a day IV glycyrrhizic acid for

2 weeks. CD3?, CD4?, CD8?, and CD4? /CD8? ratio

with were assessed. In addition to conventional

therapy, glycyrrhizin altered markers almost similar

to the levels of healthy groups (Zong-xin et al. 2006).

In a randomized clinical trial, the effect of

glycyrrhizin in patients with chronic urticaria was

evaluated. 84 patients with urticaria were randomized

in two groups: 50 mg glycyrrhizin 3 times daily and

levocetirizine was administered for four weeks. At the

end of the study, it was concluded that glycyrrhizin

treatment gave better results than levocetirizine treat-

ment. In another clinical trial on 39 children with

Henoch-Schonlein purpura, glycyrrhizin altered IL-

17. However, it did not change TGF-b and IL-10

serum levels after the treatment (Graebin 2017). It is

suggested that pro-inflammatory cytokines might play

a crucial role in the pathophysiology and treatment of

depression. In a study conducted on 56 patients with

depression treated with either selective serotonin

reuptake inhibitor ? glycyrrhizin or selective sero-

tonin reuptake inhibitor ? placebo. After 4 weeks of

treatment, TNF-a level reduced and symptomatic

improvement existed in patients with high-inflamma-

tion (baseline CRP[ 3 mg/L) rather than those with

low-inflammation (baseline CRP B 3 mg/L) in the

glycyrrhizin group (Cao et al. 2020). Psoriasis is an

inflammation-related immune system disease and a

meta-analysis suggested that glycyrrhizin in combi-

nation with conventional therapy enhances clinical

response without any additional risk in the treatment

of psoriasis (Yu et al. 2017). Allergic rhinitis is an IgE-

mediated inflammatory reaction. In a clinical trial,

patients with allergic rhinitis were treated with

glycyrrhetic acid or mometasone furoate nasal spray

for 60 days. At the end of the study, the findings

showed that nasal endoscopic signs, perception of

symptoms, and nasal functions were significantly

improved without significant differences from the

mometasone furoate group. Moreover, glycyrrhetic

acid is better tolerated (Gariuc et al. 2020). However,

there are several limitations of clinical trials. Espe-

cially subject groups are relatively small. Therefore,

properly designed clinical studies are needed.

Overall, glycyrrhizin and glycyrrhetic acid modu-

late the immune system by different mechanisms

related to anti-inflammatory effect, mainly via
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inhibition of NF-jB and MAPK pathways. Hence,

they are suggested as potential candidates for the

prevention of cytokine storms.

Friedelane type triterpenes:

Celastrol

Celastrol is a pentacyclic triterpenoid belonging to the

quinone methide (Fig. 4) class isolated from the roots

of Tripterygium wilfordii Hook F (Celastraceae). It

exhibited immunosuppressant, anti-inflammatory, and

anti-tumoral activities (Hou et al. 2020).

Administration of celastrol (1 mg/kg/day, i.p)

reduced the number of CD4 ? T and CD8 ? T cells

in the joints in the rat adjuvant arthritis model

(p\ 0.05) (Astry et al. 2015). Moreover, celastrol

treatment (1 mg/kg/day, i.p) decreased the CD3 ? T

lymphocyte count (celastrol: 6.80 ± 0.90, vehicle:

22.70 ± 1.38, p\ 0.001) in rats with autoimmune

encephalomyelitis (Abdin and Hasby 2014).

Celastrol reduced the Th17/Treg cell balance by

inhibiting the differentiation of Th17 cells and induc-

ing differentiation of Treg cells. Celastrol suppressed

the expression of Th17 specific genes such as STAT3,

SOCS3, and RORct (regulates Th17 cell differentia-

tion) (Astry et al. 2015; Wang et al. 2015a, b). Zhang

et al. (2018) reported that celastrol increased Treg

differentiation by inducing Foxp3 expression and

altering their metabolism. It suppressed glycolysis and

promoted fatty acid metabolism, both of which play an

important role in organelle biogenesis in T cells

(Zhang et al. 2018).

In one study, human hepatocellular carcinoma cells

were incubated with celastrol at concentrations rang-

ing from 0.5 to 5 M. In addition to STAT3 inhibition,

activation of protein kinases including c-Src kinase,

JAK-1, and JAK-2 were also inhibited in a dose-

dependent manner (Rajendran et al. 2012). Celastrol

inhibited the NF-jB signal pathway. It significantly

blocked cytokine-induced signal cascades, including

IjB-kinase activation, IjB degradation, p65 phospho-

rylation, and p65 DNA binding activity leading to NF-

jB activation (Ju et al. 2015).

Celastrol suppressed the productions of IL-1b, IL-
6, IL17 (Th17 specific cytokine), and TNF-a by

inhibiting phosphorylation of MAPK/ERK1/2 and

activation of NF-jB (Jung et al. 2007; Wang et al.

2015a, b). Celastrol decreased mature IL-1b release by
inhibiting caspase-1, serine protease, and MMP-9

enzymes, which are involved in the production and

release of mature IL-1b from proIL-1b (Astry et al.

2015). This compound also inhibited cytokine-in-

duced iNOS, COX-2, MMP-1, MMP-3, MMP-13, and

CCL2 expressions in different experimental models

(Ding et al. 2013; Ju et al. 2015). Celastrol downreg-

ulated TLR2 expression and suppress TLR4 activation

by inhibiting the binding of LPS to the TLR4/MD2

myeloid differentiation factor 2) complex (Abdin et al.

2014; Lee et al. 2015).

Celastrol exerted an immunosuppressive effect by

changing the Th17/Treg balance. The most likely

mechanism for reducing the Th17/Treg balance is NF-

jB inhibition. Celastrol suppressed the expression of

genes associated with pro-inflammatory cytokines

(TNF, IL-1, IL-6, IL-17) and chemokines, inflamma-

tory enzymes (COX-2, 5-LOX), and iNOS. It also

inhibited TLRs. The underlying mechanism of these

effects is inhibition of the NF-jB signaling pathway.

Pristimerin

(20a)-3-hydroxy-2- oxo-24-nor-friedela-1(10),3,5,7-

tetraen-carboxylic acid- (29)-methyl ester namely

pristimerin (Fig. 5) is a triterpenoid quinone methide

found in Celastraceae and Hippocrateaceae families

and known for its anti-inflammatory activity.

The activity of pristimerin on the iNOS system was

investigated in LPS-induced RAW 264.7 macro-

phages. It reduced nitrite accumulation, a parameter

for NO synthesis, dose-dependently (IC50:0.2–0.3 -

lM) in supernatants of LPS-stimulated macrophages

through a mechanism involving inhibition of NFjB
activation and it may also affect various other gene

products regulated by NFkB (Dirsch et al. 1997). JinFig. 4 Structure of celastrol
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et al. (2016) performed another study demonstrating

the inhibitory effect of pristimerin onMAPKs and NF-

jB inflammatory pathways and demonstrated the

inhibitory effect of pristimerin on the translocation

of NF-jB from the cytoplasm to the nucleus after

ovalbumin challenge in a dose-dependent manner.

This is important because NF-jB activity is controlled

by chemical modifications like phosphorylation and

interactions with other proteins, particularly members

of the IjB family (Jin et al. 2016). Activation of innate

immunity-related TLR signals leads to activation of

NF-jB and the expression of pro-inflammatory gene

products such as cytokines and iNOS. Kim et al.

(2019) found that pristimerin suppresses iNOS expres-

sion induced by MALP-2 (TLR2 and TLR6 agonist),

Poly[I:C] (TLR3 agonist), or LPS (TLR4 agonist).

Pristimerin suppressed T lymphocyte proliferation

associated with the inhibition of IL-2 induced Jak/

STAT and Erk1/2 signaling pathways. Inhibition of

the NF-jB pathway also involved the suppression of

IL-2 induced T lymphocyte proliferation by pris-

timerin (Liu et al. 2016).

Tong et al. (2014) found that pro-inflammatory

cytokines (IL-6, IL-17, IL-18, and IL-23) and IL-6/IL-

17-associated transcription factors (pSTAT3 and

ROR-ct) were reduced as well, while IL-10 (an

immunomodulatory cytokine) and IFN-c (that inhibits
IL-17 response) were increased in pristimerin-treated

rats.

All in all, pristimerin suppresses T cell responses by

inhibition of the NF-jB pathway and IL-2 induced

activation of the Jak1/STAT5 and Erk1/2 signaling

pathways.

Ursane type triterpenes:

Ursolic acid

Ursolic acid (3b-hydroxy-urs-12-en-28-oic acid) is a

ursane-type pentacyclic triterpenoid (Fig. 6). The

compound was isolated from different organs of plants

such asRosmarinus officinalisL.,Origanummajorana

L., Thymus vulgaris L., Malus domestica Borkh.,

Lavandula angustifolia Mill., and Sambucus nigra L.

And the compound was found to have antioxidant,

anti-inflammatory, and anti-cancer activities (Hussain

et al. 2017).

Ursolic acid has been shown to affect immune

functions in different experimental animal models.

Raphael and Kuttan (2003) reported that ursolic acid

(50 lmoles/kg body wt/dose/animal, 5 days, i.p)

increased the number of total white blood cells

(91.48 ± 4.6%), a-esterase positive cells

(19.3 ± 2.3%), and plaque-forming cells in the spleen

(201 ± 3.1%) in BALB/c mice. A significant

enhancement in specific antibody production was

observed following antigen administration in animals

treated with ursolic acid. In addition, ursolic acid

inhibited the delayed-type hypersensitivity reaction

(76%) (Raphael and Kuttan 2003). Xu et al. (2015)

studied the effect of ursolic acid (20 and 100 mg/

kg/day, i.p) on immune functions in an experimental

autoimmune myasthenia gravis model. Ursolic acid

induced apoptosis by upregulating Fas expression in

mononuclear cells in lymph nodes at both doses. Both

the doses increased IL-10 levels and decreased IL-17A

levels in MNCs. At high dose, 100 mg/kg/day,

enhanced the number of CD4 ? Foxp3 ? and CD25
? Foxp3 ? T cells and reduced the levels of IgG2b

anti-AChR antibodies in the serum (Xu et al. 2015). In

another in vivo study, ursolic acid (20 mg/kg, p.o)

suppressed ovalbumin-specific IgE production and

Fig. 5 Structure of pristimerin

Fig. 6 Structure of ursolic acid
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inhibited Th2 (IL-5, IL-13) and Th17 (IL-17) cytokine

production in an ovalbumin-induced asthma model

(Kim et al. 2013a, b, c). Contrary to this finding,

Ahmad et al. (2006) found that ursolic acid (10, 20, 40,

80, and 160 mg/kg, oral) dose-dependently induced

Th2 (IL4, IL5) cytokine expression in their adjuvant

arthritis model in rats (Ahmad et al. 2006). In vivo

studies revealed that ursolic acid reduces Th1 cytokine

expression (IL-2, IL-6, IL-12, IFN-c and TNF-a)
(Ahmad et al. 2006; Chun et al. 2014). Unlike these

studies, ursolic acid (0.05%w/w, 4 weeks) activated T

cells by significantly increasing IL-2 and IFN-c
production of T cells in response to Con A stimulation

in lymphocyte proliferation assay in type 1 diabetic

mice fed a high-fat diet. In this study, TNF-a
production was inhibited in response to LPS stimula-

tion in B cells, similar to the results of other studies.

CD4 ? , CD8 ? and CD19 ? numbers did not

change after treatment with ursolic acid (Jang et al.

2009).

Several clinical studies evaluated the effects of

ursolic acid on cytokine levels. In a randomized

controlled trial, ursolic acid (3 9 1 capsule, 8 weeks)

supplementation combined with High-Intensity Resis-

tance Training was administered to twenty-two

healthy and low-activity male volunteers. As a result,

it was determined that ursolic acid supplementation

significantly reduced plasma levels of CRP, IL-6 and

TNF-a compared to placebo (p\ 0.05) (Asghari et al.

2020). In a randomized, double-blind, placebo-con-

trolled clinical trial, 24 patients with a diagnosis of

metabolic syndrome were treated with ursolic acid

150 mg daily for 12 weeks. Consequently, ursolic

acid administration did not affect serum inflammation

parameter levels (IL-6, CRP) (Ramı́rez-Rodrı́guez

et al. 2017). Overall, though studies shows

immunoregulatory property of ursolic acid, subject

groups were small. Hence, more well-designed studies

with biger subject group should be conducted.

Ursolic acid inhibits the activation of NF-jB and

related signaling pathways in a range of human cell

lines (Shishodia et al. 2003; Chun et al. 2014; Kim

et al. 2013a; Jang et al. 2014). Ursolic acid inhibited

IjBa degradation, IjBa phosphorylation, IjBa kinase
activation, p65 phosphorylation, p65 nuclear translo-

cation, and NFjB-dependent reporter gene expres-

sion. It reduced the expression of NFkB-dependent

cyclin D1, COX-2, andMMP-9 (Shishodia et al. 2003;

Chun et al. 2014). In peritoneal macrophages, ursolic

acid (5, 10, and 20 lM) treatment significantly

blocked LPS-induced phosphorylation of interleukin

1 receptor-associated kinase 1 (IRAK1), IRAK4,

transforming growth factor-b-activated kinase 1 pro-

teins. In this study, ursolic acid inhibited ERK, JNK,

and p38 phosphorylation and suppressed MAPK

activation. In addition, it decreased the expression

levels of LPS-induced COX-2 and iNOS and reduced

the levels of PGE2 and NO (Jang et al. 2014). A

molecular docking study showed that ursolic acid

binds to the phosphorylation and catalytic sites of the

ERK protein, leading to ERK inhibition (Ki = 2.42

lM and 7.66 kcal/mol) (Pratap et al. 2016). Ursolic

acid (10–5 M, 1 h incubation) blocked the activation

of TLR4/MyD88 signaling pathway induced by LPS

and reduced the release of inflammatory cytokines

including TNF-a, IL-6, and IL-1b (Zhao et al. 2019).

Kim et al. (2013a, b, c) reported the inhibitory effect of

PPARc agonists on the expression of pro-inflamma-

tory cytokines such as TNF-a, IL-1b, and IL-6.

PPARcmRNA expression and PPARc protein expres-
sion were significantly increased in EL4 and RAW

264.7 cells treated with ursolic acid. It has been shown

that ursolic acid can decrease the production of Th2

(IL-5, IL-13) and Th17 (IL-17) cytokines by sup-

pressing the GATA-3 and STAT-6 pathways (Kim

et al. 2013a, b, c). Xu et al. (2011) demonstrated that

ursolic acid suppresses IL-17 production by selec-

tively antagonizing the function of RORct (IC50 =

0.68 ± 0.1 lM) (Xu et al. 2011). Contrary to these

findings, one in vitro study showed that preincubation

of RAW 264.7 mouse resting macrophage cells with

ursolic acid (1, 5 ve 10 lM) enhanced the concentra-

tion-dependent production of NO and TNF-a and

expression of iNOS mRNA and TNF-a mRNA via

NF-jB transactivation. The authors stated that ursolic

acid has a dual effect. Although it reduces LPS-

induced NO production and iNOS expression, it

induces basal (intrinsic) NO and TNF-a production

(You et al. 2001).

Ursolic acid (10, 25, and 50 lM) dose-dependently

inhibited IL-6-induced STAT3 and STAT3 phospho-

rylation in human liver cancer cell lines in vitro.

Simultaneously, ursolic acid suppressed the phospho-

rylation of JAK2 (a kinase involved in STAT3

activation) and decreased the expression of STAT3

downstream target genes such as Bcl-2, Bcl-xl,

survivin. Ursolic acid improved the expression levels

of cleaved caspase-3. It did not affect the
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phosphorylation of STAT3 and STAT3 induced by

leukemia inhibitory factors. In the continuation of this

study, ursolic acid was administered at a dose of

60 mg/kg/day in the HEPG2 mouse xenograft model.

The results of the in vivo study confirmed the in vitro

findings. Ursolic acid inhibited STAT3 phosphoryla-

tion, decreased Bcl-2 expression, and induced cleav-

age of caspase-3 (Liu et al. 2017).

In conclusion, ursolic acid exerts an immunomod-

ulatory effect by affecting different signaling path-

ways such as NF-jB, STAT, and GATA, and the

release of various mediators associated with these

pathways.

Boswellic acids

Boswellic acids are pentacyclic triterpenes (Fig. 7),

found in oleo gum resin of Boswellia serrata Roxb.

and Boswellia carteri Birdw. (Burseraceae). 3-O-

acetyl-11-keto- b-boswellic acid, 11-keto- b-boswel-
lic acid, 3-O-acetyl- b-boswellic acid, 3-O-acetyl- a-
boswellic acids, a and b -boswellic acids are major

triterpenes of these resins. Among boswellic acids,

especially 3-O-acetyl-11-keto- b-boswellic acid and

11-keto- b-boswellic acid were well studied. Boswel-

lic acids possess anti-inflammatory and immunoreg-

ulatory actions by different mechanisms (Roy et al.

2019).

A single oral dose of a mixture of boswellic acids

(50–200 mg/kg) on the day of sensitization produced a

dose-dependent decrease (10.4–32.8%) in primary

hemagglutinating antibody titers in the serum of mice

treated with sheep erythrocytes. Interestingly, the

same mixture increased secondary antibody titers at

50 mg/kg whereas, this response was lower in the

higher doses (100 and 200 mg/kg). The lowest dose,

25 mg/kg, enhanced primary antibody titers by more

than that of 50 and 100 mg/kg when given for 5 days

(starting 2 days before immunization and continued

for 2 days). Of note, this mixture increased primary

humoral response in a dose-dependent manner, it did

not alter secondary humoral response significantly

when it was given 7 days before immunization

(Sharma et al. 1996).

Boswellic acid mixture at the doses of

1.95–125.0 lg/ml did not exhibit any spontaneous

mitogenic activity in non-immunized mice spleen

cells. However, when the presence of mitogen stim-

ulating agents was used for the same test, it inhibited

the proliferation of T lymphocytes in a dose-depen-

dent manner (Sharma et al. 1996). Several studies have

also shown that different boswellic acids either alone

or as a mixture inhibited T lymphocyte proliferation at

non-cytotoxic concentrations (Wang et al. 2018;

Zimmermann-Klemd et al. 2020). On the contrary,

Badria et al. reported that some boswellic acids,

isolated from the gum resin of B. serrata induced

T-lymphocyte proliferation with EC50 values from

0.001 to 0.005 lM (Badria et al. 2003). Disputably,

some authors conclude that low concentrations of

boswellic acids increase the stimulated proliferation of

lymphocytes, but higher concentrations are inhibitory

although experimental conditions are not comparable.

This assumption is consistent with the study of Sharma

et al. (1996) as lower doses of boswellic acids

enhanced antibody titers whereas higher doses

decreased the antibody titers (Ammon 2010; Sharma

et al. 1996).

R: H 11-keto- β-boswellic acid R: H β-boswellic acid

R: Acetyl 3-acetyl-keto- β-boswellic acid R: Acetyl 3-acetyl- β-boswellic acid

Fig. 7 Structures of some

boswellic acids
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Pre-incubation of macrophages with 1.95–125 lg/
mL boswellic acids mixtures enhanced phagocytosis.

The highest effect was observed at 62.25 lg/mL, after

this concentration the enhancement reduced (Sharma

et al. 1996).

Antigen–antibody reactions take place on the

surface of mast cells leading to degranulation of mast

cells, in turn, mast cells release some mediators. Oleo

gum resin of B. serrata extract, containing 60% acetyl

11-keto b-boswellic acid along with other boswellic

acids like 11-keto b-boswellic acid, acetyl b-boswellic
acid, and b-boswellic acid inhibited granulation of

mast cells at 40 and 80 mg/kg doses in allergen-

induced passive anaphylaxis model (Pungle et al.

2003).

Acetyl 11-keto b-boswellic acid decreased the

activation of dendric cells, inhibited the mRNA

expression and secretion of IL-12 and IL-23. This

compound inhibited the maturation and differentiation

of DCs to promote T-cell differentiation and down-

regulated the activation of TLR7/8 and IRF signaling

pathways (Wang et al. 2018). Not only natural

boswellic acids but also some synthetic derivatives,

including a series of 3-acyl analogues including their

epimers and 4-amino analogs inhibited pro-inflamma-

tory cytokines, TNF-a and IL-6. Acyl analogs of

11-keto- b-boswellic acid with short carbon chain

enhanced TNF-a inhibition whereas higher acyl

homologs of b-boswellic acid exhibited better TNF-

a inhibition. Furthermore, epimerization at 3-OH in

both 11-keto- b-boswellic acids and b-boswellic acid
increased TNF- a inhibition. Higher acyl homologs

inhibited IL-6 better than lower acyl homologs

(Sharma et al. 2016).

Both the resin extracts of B. serrata (containing

boswellic acids mixture) and different boswellic acids

downregulated pro-inflammatory cytokines including

TNF-a, IL-1 b, IL-2, IL-4, IL-6, and IFN-c in vitro and
in vivo (Ammon 2019; Cuaz-Pérolin et al. 2008;

Gayathri et al. 2007; Syrovets et al. 2005). Several

studies showed that acetyl 11-keto b-boswellic acid,

acetyl a-boswellic acid inhibited the expression of

pro-inflammatory cytokines such as TNF-a, which is

associated with inhibition of NF-jB and MAPK

pathways (Sengupta et al. 2009; Syrovets et al. 2005;

Wang et al. 2018). There is also a clinical trial proving

that boswellic acids reduce plasma inflammatory

markers such as TNF-a, IL-1b, IL-6, IL-8, and

PGE2 compared to placebo (Baram et al. 2019).

Acetyl-11-keto-b-boswellic acid decreased the dif-

ferentiation of CD4 ? T cells to Th17 cells but

increased Th2- and Treg-cell differentiation. More-

over, it downregulated IL-1b-induced IRAK1 phos-

phorylation and IL-1b-induced STAT3

phosphorylation, which have an important role in

Th17 cell differentiation (Stürner et al. 2014).

Boswellic acids also altered leukotriene and

prostaglandin synthesis. Futhermore some boswellic

acids inhibited 5-lipoxygenase, COX-1, and COX-2

(Ammon et al. 1991). Apart from the other effects, the

glucocorticoid receptor regulatory actions of certain

boswellic acids also contribute to their immunoregu-

latory and anti-inflammatory potentials (Karra et al.

2020).

An in vitro immunohaemolysis assay showed that a

mixture of Boswellic acids inhibited the classical

complement system through inhibition of the conver-

sion of C3 into C3a and C3b (Kapil and Moza 1992).

In general, boswellic acids exert either an

immunostimulating or immunosuppressive effect,

depending on the doses and antigen presentation.

They altered cell-mediated and humoral immune

responses. Activity mechanisms generally associated

with their anti-inflammatory action.

Lupane type triterpenes:

Lupeol

Lupeol is a pentacyclic triterpene, which is the form of

lupan in which hydrogen at the 3b position is replaced

by a hydroxy group (Fig. 8). It exhibits anti-diabetic,

anti-inflammatory, anti-cancer, anti-microbial, anti-

protozoal effects. It found in many vegetables and

fruits including, pepper, cucumber, tomato, carrot,

Fig. 8 Structure of lupeol
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figs, strawberries, and grapes (Siddique and Saleem

2011).

Lupeol showed immunomodulatory activity by

increasing macrophage phagocytosis and stimulating

T-lymphocyte proliferation (Badria et al. 2003; Wah-

daningsih et al. 2020).

Lupeol increased the levels of T cells, Th1 cytoki-

nes, NF-jB, and nitric oxide synthase genes, as well as
elevated the production of reactive oxygen species and

nitric oxide in vitro and in vivo against Leishmania

donovani infection (Kaur et al. 2019). Similarly,

lupeol stimulated the generation of NO in Leishmania

donovani infected macrophages followed by up-reg-

ulation of pro-inflammatory cytokines and down-

regulation of anti-inflammatory cytokines (Das et al.

2017). In a different study, Bani et al. (2006) reported

that oral administration of lupeol at doses of

12.5–200 mg/kg p.o. inhibited CD4 ? T and CD8 ?

T cell counts and cytokines IL-2, IFN-c (Th1), and

IL-4 (Th2). When the efficacy of lupeol in the

treatment of bronchial asthma in BALB/c mice was

assessed, it was shoen to be associated with Th2

immune response. Lupeol reduced the levels of Th2

cytokines, including IL-4, IL-5, and IL-13 this effect

was similar to that observed at dexamethasone-treated

mice, contrarily, IgE level was not significantly

changed after treatment with lupeol (Vasconcelos

et al. 2008).

According to the literature, ursolic acid and lupeol

have been known to possess immunomodulatory and

anti-inflammatory activities, comparable to boswellic

acids, but were less active than levamisole. Structure

activity relationship has been represented by QSAR

model showing that their activity depends on high

binding affinity to human receptors viz., NF-jB p52

(- 50.549 kcal/mol), TNF-a (- 47.632 kcal/mol),

NF-jB P50 (- 16.798 kcal/mol) and COX-2

(- 55.244 kcal/mol). In vivo immunomodulatory

effect of the compounds was also undertaken with a

28 days oral administration study. In spite of not

observing significant changes in cell mediated

immune response/delayed type hypersensitivity test,

gain in body weight, total red blood cell counts, total

white blood cell counts and hemoglobin parameters, it

was stated that ursolic acid could be considered as a

potential immunomodulatory agent, since it displayed

higher antibody titer at a lower dose compared to

lupeol (Maurya et al. 2012).

The effect of lupeol of which anti-inflammatory

effect is known, on the NF-jB signaling pathway has

been the subject of many studies. Lupeol inhibited

latent infection membrane protein 1-induced NF-jB
activation in Epstein-Barr virus-transformed lym-

phoblastoid cell line (Kang et al. 2013). It strongly

suppressed pro-inflammatory cytokine production in

the human intestinal epithelial cells and murine

macrophages through NF-jB. It also inhibited the

DNA binding of NF-jB via the blockage of LPS-

induced IjBa phosphorylation in macrophages (Lee

et al. 2016).

Overall, lupeol modulates immunity mainly by

altering Th1/Th2 cytokines associated with NFjB.

Betulin and betulinic acid

Betulin and betulinic acid (Fig. 9) are lupane-type

triterpenes, present in Betula species and many other

plants. These triterpenes exhibit a wide range of

biological activities including anti-viral, anti-inflam-

matory, and anti-cancer effects. Notably, anti-cancer

effects of these compounds including their derivatives

became the subject of intense research due to promis-

ing findings (Hordyjewska et al. 2019).

Betulin stimulated the proliferation of human

lymphocytes (Ghannadian et al. 2013). Betulinic acid

stimulated the proliferation of thymocytes, spleno-

cytes, and human PBMC in a time and dose-dependent

manner. It stimulated higher production of mice

thymocytes than splenocytes. This showed that it

supports T and B lymphocytes, however, this promo-

tion is in favor of T lymphocytes (Mashitoh et al.

2012). This compound enhanced the percentage of

CD4 ? cells in the thymus as well as the percentage of

CD19 ? (total B cells) and the ratios of CD4 ? /

CD8 ? in the spleen whereas it decreased the per-

centage of CD8 ? in the spleen. Betulinic acid

increased TNF-a levels whereas decreased concentra-

tions of IL-2 and IL-6. These findings suggested that

betulinic acid exhibits a mixed, Th1 and Th2 adjuvant

activity in LPS or Con A induced test system (Yi et al.

2010; Zdzisińska et al. 2003). Similar to previous

findings, this compound increased CD4 ? level and

the ratios of CD4 ? /CD8 ? in tumor-bearing mice.

On the contrary to previous test models, it increased

IL-2 levels in tumor-bearing mice (Wang et al. 2012).

Betulin downregulated expressions of mRNA levels of

IL-6, MCP-1, and IL-1b. It also decreased pro-
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inflammatory cytokines including TNF-a, IL-6, and
IFN-c levels and reduced the IFN-c/IL-10 ratio. It

inhibited the activation of NF-jB signaling associated

with STAT3 activation. Betulin reduced NK and

conventional T cells activation by ameliorating

increased CD69 surface marker on these cells (Pfarr

et al. 2015; Zhang et al. 2015; Zhou et al. 2017). While

betulin strongly stimulated the IL-12p70 secretion of

DCs accompanied by a specific upregulation of the IL-

12p35 subunit mRNA expression, betulinic acid did

not exhibit this effect (Pfarr et al. 2015). Yi et al.

(2010) reported that betulinic acid decreased serum

IgG and IgM concentrations and increased the phago-

cytic activity of macrophages (Yi et al. 2010).

In addition to pro-inflammatory cytokines, betuli-

nic acid inhibited PGE2, nitric oxide production and

downregulated protein expression of iNOS and COX-

2.Furthermore it also inhibited COX-2 and MMP-9. It

increased dose-dependently heme oxygenase (HO)-1

expression, which inhibits the production of pro-

inflammatory cytokines. Betulinic acid treatment

enhanced nuclear Nrf2 levels and decreased cytoplas-

mic Nrf2 levels. This anti-inflamatory action was

mediated by NF-jB signaling. It suppressed of IjB
phosphorylation, p65 phosphorylation, and nuclear

translocation as well as the transcription of the related

NF-jB-dependent gene (Kim et al. 2016; Takada and

Aggarwal 2003; Yun et al. 2003). Nicotinamide

adenine dinucleotide phosphate diaphorase

(NADPH-d), an indirect indicator of NO synthase in

the thymus and spleen. Pang et al. (2018) suggested

that betulinic acid upregulated the expression of

NADPH-d activity and that NO signaling may be a

potential mechanism underlying betulinic acid-in-

duced immunomodulation in the thymus and spleen

(Pang et al. 2018).

Overall, betulin and betulinic acid exhibit

immunomodulatory action by enhancing cellular

immunity, humoral immunity, and the activity of

macrophages. Notably, these compounds are modula-

tors of Th1/Th2 cells cytokine production, suggesting

that they can be used for modulation of the immune

system and as anti-inflammatory agents.

Lanostane type triterpenes

Ganoderic acids

Ganoderic acids (Fig. 10) are lanostane triterpenoids

isolated from Ganoderma lucidum (Curtis) Karst.

(Polyporaceae), which is a medicinal mushroom that

has shown to have anti-inflammatory and immunoreg-

ulatory effects (Sheng et al. 2019). More than 130

ganoderic acid and related derivatives have been

isolated and identified (Radwan et al. 2011).

Many studies are conducting ganoderic acid’s

effects on the immune system. Ganoderic acid T

inhibited the nuclear translocation of NF-jB and the

Fig. 9 Structure of betulin and betulinic acid

R: H Ganoderic acid Me

R: OCOCH3 Ganoderic acid T

Fig. 10 Structures of some ganoderic acids
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degradation of IjB-a, which ultimately led to a

decrease of MMP-9, iNOS, and urokinase-type plas-

minogen activator (Radwan et al. 2011). Ganoderic

acid Me strengths the immune function by increasing

the expression of Th1 cytokines (IL-2 and IFN-c) and
enhancing NK activity via up-regulation of expression

of NF-jB (Wang et al. 2007; Radwan et al. 2011).

Deacetyl ganoderic acid F inhibited LPS-induced NO

production and iNOS expression and affected the

levels of pro-inflammatory cytokines, including TNF-

a and IL-6, as well as their mRNA levels in vitro in

murine microglial cell line BV-2 cells or in vivo in

mouse and zebrafish models. Lupeol induced anti-

inflammatory action was related to the suppression of

NF-jB activation (Sheng et al. 2019).

Indolamine 2,3-dioxygenase is a key enzyme in

T-cell suppression and the induction of immune

tolerance. This enzyme is preferably induced by

IFN-c. Gonaderic acid Me boosted the secretion of

IFN-c and then upregulated the expression of

indolamine 2,3-dioxygenase may be via the JAK-

STAT pathway. Gonaderic acid Me contributed to

indolamine 2,3-dioxygenase, enhancing Treg-medi-

ated immunosuppression by directly inducing T cell

apoptosis and restraining CD8 ? T cell activation

(Que et al. 2014). Liu et al. (2015) isolated ganoderic

acid C1 as the major TNF-a inhibitory compound in

ASHMITM which is an aqueous extract of three

medicinal plants -G. lucidum, Sophora flavescens Ait,

and Glycyrrhiza uralensis Fischer- and clinically used

in asthma patients. Ganoderic acid C1 significantly

reduced TNF-a production by RAW 264.7 cells and

PBMCs from asthma patients. Inhibition was associ-

ated with down-regulation of NF-jB expression, and

partial suppression of MAPK and AP-1 signaling

pathways (Liu et al. 2015). Ganoderic acid A signif-

icantly suppressed both the constitutively activated

and IL-6-induced STAT 3 phosphorylation in HepG2

cells. Inhibition of STAT3 tyrosine phosphorylation

was due to suppression of JAK1 and JAK2 (Yao et al.

2012).

Overall, modulation of the NF-jB pathway seems

to be the dominant mechanism of the immunomodu-

latory effect of ganoderic acids.

Cucumarioside

Cucumarosides (Fig. 11) are lanostane type triterpene

oligoglycosides found in an edible sea cucumber

Cucumaria japonica. The structure consist of carbo-

hydrate chains with five monosaccharide units linked

to C-3 of aglycons, which are represented by the

lanostane 18(20)-lactones, with one, two or three

sulfate groups linked with sugars (Avilov et al. 1990).

Cucumariosides increased macrophage activity

significantly in vivo. In contrast, they immediately

inhibited leukocyte phagocytosis by human granulo-

cytes and LPS-induced TNF-a production by human

monocyte/macrophages in vitro. As a result of in vivo

tests, a difference was found between the results of

monosulfated, disulfated, and trisulfated derivatives in

terms of enhancing macrophage lysosomal activity, as

a result, it has been suggested that the carbohydrate

chain is important in inducing the immune response

(Aminin et al. 2001). In addition, Aminin et al. (2006)

revealed that cumaside, a monosulfated cucumar-

ioside with cholesterol, stimulated phagocytosis, ROS

formation, IL-6 and TNF-a production in lympho-

cytes, increased the number of antibody producing

cells and supported the expression of several cell

surface molecules including CD3, CD4, CD8 without

proliferative activity of lymphocytes, cytotoxic activ-

ity of NK-cells and cytokine IFNc and IL12p70

release. An antigen carrier containing cucumarioside-

A2-2, cholesterol and monogalactosyldiacylglycerol

showed immunostimulatory effect by affecting syn-

thesis of IL-2, and c-interferon (IFN-c) (Li et al.

2008).

As lysomal activity is one of the important markers

of physiological and biochemical macrophage status,

the immunomodulatory activity of monosulfated gly-

cosides isolated from Cucumaria okhotensis was

investigated by their effects on the spreading and

lysosomal activity of mouse macrophages. Cucumar-

ioside A2-5, one of the isolated monosulfated glyco-

sides activated lysosomal activity approximately

1.5–2.5 times greater than that of control cells (Aminin

et al. 2010b). Cucumarioside A2-2 was found to

express immunostimulatory effect by increasing the

number, spreading reaction and motility velocity of

macrophages and enhancing immune cell adhesion on

an extracellular matrix (Aminin et al. 2011). Mem-

branotropic activity of the compound was also inves-

tigated by Pislyagin et al. (2012) and 0.001–0.1 lM
cucumarioside A2-2 was found to stimulate intact

macrophages as a rapid increase in fluorescence

intensity corresponding with depolarization of cells

and increases the lysosomal activity of immune cells at
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nanomolar concentrations, while higher concentra-

tions were found to suppress this cellular function. The

binding of cucumarioside A2-2 with cellular biomem-

branes triggers a series of intracellular reactions

leading the immunostimulatory response of which

first step is the activation of the Ca2? -signal pathway

through membrane Ca2? channels, which initiates the

increase in expression of intracellular target proteins

that are involved in key stages of immune cell

physiology. Changes in membrane potential and

transient [Ca2?]i were demonstrated by single macro-

phage cells in response to extracellular cucumarioside

A2-2 (Psilyagin et al. 2012). The intraperitoneal

administration of cucumarioside A2-2 activated the

cellular immunity by increasing the formation of

spleen macrophage activating markers iba-1, IL-1b,
iNOs, ROS and NO with additional change of

macrophage phenotype to M1 in vivo by microdis-

section method (Psilyagin et al. 2017). The

immunomodulatory action of cucumarioside A2-2

was also demonstrated with proteomic methods.

Aminin et al. (2009) stated that the mechanism of

the action on mouse splenocytes includes regulation of

expression of some proteins such as NSFL1, cofactor

p47 and hnRNPK (down-regulated), as well as Septin-

2, NADH dehydrogenase [ubiquinone] iron–sulfur

protein 3, and GRB2-related adaptor protein 2 (up-

regulated) involving into the processes of lysosome

maturation, activation and lysosome merging, phago-

cytosis, cytoskeletal reorganization, cell adhesion,

mobility and proliferation of immune cells.

Cucumarioside I2 which has disulfated branched

pentaoside structure, from a sea cucumber species,

Eupentacta fraudatrix, expressed immunostimulatory

activity by increasing the lysosomal activity (15 –

17%) of macrophages at the doses of 1-5 mg/mL

(Silchenko et al. 2013).

In a study examining the ability of cucumarioside

and holotoxin to form supramolecular complexes with

cholesterol or monogalactosyldiacylglycerol or phos-

phatidylcholine, the inclusion of pore-forming protein

YompF antigen in the complex caused an increase in

the diameter of tubular particles and the inclusion of

‘‘Influvac’’ antigens, which is also a commercial

vaccine, created ‘‘cap’’ formation at the end of the

tubules and supramolecular complex of monogalac-

tosyldiacylglycerol, cholesterol and cucumarioside

has been found to have the potential to be a carrier

for bacterial and viral antigens (Mazeika et al. 2013).

In general, it is stated that cucumariosides are noted

to have antiviral activity, possibly through the activa-

tion of T- and B-cell cooperation by affecting IL-2,

IFN-c, and TNF-a production. In addition, the afore-

mentioned compounds regulate the expression of

some proteins participating in the formation of the

cellular immune response, promote proliferation and

adhesion of lymphocytes, and activate the lysosomal

activity of macrophages (Aminin et al. 2010a).

Cycloartane-type triterpenes

Astragalosides

The astragalosides (Fig. 12), a series of chemical

compounds that have cycloartane-type saponin struc-

ture, are considered to be one of the major bioactive

ingredients of Astragalus L. species (Fabaceae). There

are many studies indicating broad range of pharma-

cological properties of these compounds, including

immunomodulatory effects, as well as anti-inflamma-

tory, anti-viral, and anti-tumor activities. In the

literature, they emphasized to have both immunoreg-

ulatory and immunostimulatory effects (Qi et al.

2017).

Cucumaroside A22 Cucumaroside I2

Fig. 11 Structures of some

cucumarosides
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Including astragalosides, 19 cycloartane-type sapo-

nins of Astragalus species were investigated in terms

of immunostimulant effects on macrophage activation

and expression of inflammatory cytokines. At low

concentrations (100 lg/ml), none of the compounds

were able to active on macrophage activation. Bedir

et al. (2000) showed that astragaloside I which

increased NF-jB, directed luciferase expression up

to 65% as compared with maximal stimulation by

E. coli LPS at 10 lg/ml. The compound also increased

mRNA expression of the inflammatory cytokines IL-

1b and TNF-a as evaluated by reverse transcriptase-

polymerase chain reaction (Bedir et al. 2000). Astra-

galoside I, astragaloside II, astragaloside IV, and

astragaloside VII showed significant IL-2 inducing

activity between 35.9% and 139.6%. Among them, the

activity of astragaloside VII was found as the most

remarkable (Yeşilada et al. 2005). Due to the

immunostimulatory capacity of astragaloside VII, its

adjuvant potential on the cellular and humoral immune

responses of Swiss albino mice was evaluated. Astra-

galoside VII significantly enhanced BSA-specific IgG,

IgG1 and IgG2b antibody titers in serum and stimu-

lated IFN-c production such as Freund’s adjuvant, two
weeks after the last immunization at doses of 120 lg
and 90 lg, respectively, as compared to the control

(Nalbantsoy et al. 2011). To investigate the effects of

astragaloside VII on immune response cytokines from

another perspective, an in vivo study was performed

using 6–8-week-old male Swiss albino mice. The

results showed that astragaloside VII had a positive

effect on Th1 cytokine release (IL-2 and IFN-c) and
suppression of Th2 cytokine production (IL-4). The

compound also induced potent immunomodulatory

effect in mice without inducing inflammatory cytoki-

nes and had no significant effect on inflammatory

cellular targets in vitro. Immunohistochemical results

demonstrated induction of both CD25 and CD69

surface receptors, justifying Th1 cytokine release. The

compound did not appear to affect NF-jB or NAG-1

activity (Nalbantsoy et al. 2012).

Astragaloside I, astragaloside II, and astragaloside

IV increased the antibody response against cancer

peptide antigen MUC1 and keyhole limpet hemo-

cyanin (KLH) in mice when injected together with

MUC1-KLH. The researchers concluded that astraga-

loside IV could be used as an immunological adjuvant

since astragalosides II and IV were the most active

compounds, whereas, astragaloside II is the most toxic

one (Hong et al. 2011).

Most of the activity studies were concentrated on

the astragaloside IV molecule. MTT assay was used to

determine the effect of astragaloside IV on T and B

lymphocyte proliferation. Astragaloside IV increased

T and B lymphocyte proliferation in vivo and in vitro

but inhibited the production of IL-1 and TNF-a in vitro
at the doses of 100–1000 nM. On the contrary, it

enhanced IL-1 production at low dose (1 nM) in vitro

(Wang et al. 2002).

The effect of astragaloside IV administration at the

experimental autoimmune encephalomyelitis animal

model was examined by suppressing the maturation

and function of DCs in mice. The maturation and the

antigen presentation of LPS-stimulated bone marrow

DCs in spleen of mice was inhibited by astragaloside

IV. The inhibition was evidenced by decreased

expressions of CD11c, CD86, CD40 and major

histocompatibility complex-II. DCs treated by Astra-

galoside IV found to secrete less IL-6 and IL-12 and

prevent the differentiation of CD4 ? T cells into Th1

and Th17 cells. It has been stated that this action may

occur by inhibiting the activation of NFjB andMAPK

signaling pathways (Yang et al. 2020). The same

group of researchers also conducted both in vitro and

in vivo studies using the same model in vivo, obtained

the similar outcome. They reported that astragaloside

IV suppresses the percentage of Th1 and Th17 cells,

R1 R2 R3 R4
Astragaloside I Ac Ac Glu H
Astragaloside II Ac H Glu H
Astragaloside III Glu H H H
Astragaloside IV H H Glu H
Astragaloside VII H H H Glu

Fig. 12 Structures of some astragalosides
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that are related with the inhibition of JAK/STAT and

NF-jB signaling pathways. On the other hand, in vitro

experiments revealed that the molecule can regulate

the differentiation of Th17 and regulatory T cells

(Tregs) cells but not Th1 cells and additionally it

induces the apoptosis of myelin oligodendrocytelyco-

protein-stimulated autoreactive CD4 ? T cells prob-

ably through modulating STAT3/Bcl-2/Bax signaling

pathways (Yang et al. 2019).

The anti-inflammatory potential of astragaloside IV

was correlated with its NF-jB inhibitory effect, also

shown by another study. Astragaloside IV deactivates

the expression of the endothelial cells E-selectin and

VCAM-1, in response to inflammatory mediators

(Zhang et al. 2003). Zhang and Deng (2019) investi-

gated the effects of astragaloside IV on inflammation

and immunity in rats with a periodontitis test model.

They reported that, comparing with the model group,

the general state of rats was improved in 40 mg/kg

astragaloside IV group, while the peripheral blood

CD4 ? T cell percentage and CD4 ? /CD8 ? ratio

and CD8 ? T cell percentage was considerably

reduced (p\ 0.05) and while the serum TNF-a, IL-
1b, IL-2 levels and serum Ig A and Ig G levels were

considerably reduced (p\ 0.05). Huang et al. (2012)

studied the antagonistic effects of different doses

(50 lg/ml and 100 lg/ml) of astragaloside IV on the

immune function of Tregs mediated by HMGB1,

in vitro. The researchers analyzed the cell phenotypes

of Tregs, and determined the contents of various

cytokines in the cell supernatants as a result of co-

culture and the proliferation of CD4?CD25- T cells.

They showed that HMGB1 stimulation resulted in

significantly down-regulation of expressions of Tregs

cell phenotypes. On the other hand, it has been stated

that astragaloside IV may rival the suppressive effect

of HMGB1 on the immune function of Tregs in a dose-

dependent manner in vitro (Huang et al. 2012).

Li et al. (2017) investigated the effects of astraga-

loside IV on the immune functions of RAW264.7

cells. Compared with the control group, the concen-

trations of IL-1b, TNF-a, and NO were increased by

astragaloside IV treatment. The IL-6 concentration

was found to be significantly higher in the 50 and

100 lg/mL astragaloside IV treatment groups. The

relative mRNA expression levels of IL-1b, TNF-a,
and iNOS were significantly higher in the 50 and

100 lg/mL astragaloside IV treatment groups and IL-

6 in the 100 lg/mL group. Astragaloside IV markedly

decreased the relative mRNA expression levels of IL-

4 and IL-6 and promoted the secretion of CD40 and

CD86 and increased the number of cells in the G2/M

phase. Apoptosis of RAW264.7 cells was reduced and

protein levels of cyclin D1, CDK4, and CDK6, p50,

and p-p65 increased in a dose-dependent manner by

the astragaloside IV treatment groups (Li et al. 2017).

Wan et al. (2013) analyzed the molecular mecha-

nisms underlying the immunomodulatory acitivity of

astragalosides, by focusing on CD45 protein tyrosine

phosphatase (CD45 PTPase), which plays a critical

role in T lymphocyte activation. Astragaloside I, II,

III, and IV increased CD45-mediated para-nitro-

phenylphosphate/3-O-methylfluoresceinphosphate

substrat hydrolysis in a concentration-dependent man-

ner, with EC50 values in the range of 3.33 to 10.42 lg/
mL. Astragaloside II significantly increased the pro-

liferation of primary splenocytes induced by Con A,

alloantigen or anti-CD3, when administered at doses

of 10 and 30 nM. It also increased IL-2 and IFN-c
secretion, upregulated the mRNA expression of IFN-c
and T-bet in primary splenocytes, and enhanced the

expression of CD25 and CD69 on primary CD4 ? T

cells upon TCR stimulation at 30 nM. Withal, the

compound promoted CD45-mediated dephosphoryla-

tion of LCK (Tyr505) in primary T cells, which could

be blocked by a specific CD45 PTPase inhibitor, at the

dose of 100 nM. In cyclophosphamide-induced

immunosuppressed mice, oral administration of astra-

galoside II restored the proliferation of splenic T cells

and the production of IFN-c and IL-2. However, it was
stated that astragaloside II did not have a clear effect

on B cell proliferation (Wan et al. 2013).

Considered in general, astragaloside I has been

found to be effective in increasing NF-jB-directed
luciferase expression and also the mRNA expression

of inflammatory cytokines, such as IL-1b and TNF-a
(Yeşilada et al. 2005). Astragaloside II exhibited

significant immunomodulatory effects, including a

remarkable enhancement of T lymphocyte prolifera-

tion (Wan et al. 2013). Astragaloside activates the NF-

jB/MAPK signaling pathway (Li et al. 2017). Since

astragaloside IV alleviates the inflammatory reaction

by activating immune function of regulatory T-cells,

studies on this compound have focused on diseases of

inflammatory origin. Astragaloside VII was reported

to show powerful immunoregulatory effects without

stimulating the inflammatory cytokines in mice (Nal-

bantsoy et al. 2012).
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Structure–activity relationship

The triterpenoids which derived from squalene or

related acyclic 30-carbon precursors can be classified

as 6-6-6-5 tetracyclic, 6-6-6-6-5 pentacyclic, or 6-6-6-

6-6 pentacyclic, but acyclic, monocyclic, bicyclic,

tricyclic, and hexacyclic triterpenoids have also been

isolated from natural sources. The reason for the

different results of the immunomodulatory activity in

the experiments on these compounds may be that they

have different substitutions in their basic skeleton.

Effects of betulinic acid, oleanolic acid, and ursolic

acid on T-cell proliferation were investigated. Oleano-

lic acid stimulated T-cell proliferation at a low

concentration (0.5 lg/mL) while betulinic acid and

ursolic acid inhibited T-cell proliferation (with IC50

values of 50 lg/mL and 3.01 lg/mL, respectively).

The structures of oleanolic acid and ursolic acid differ

only in the E ring. It has been stated that the different

position of the methyl group in the E ring may be

responsible for the difference observed in their activity

(Choi et al. 2001). T cell proliferation inhibitory

activities of betulinic acid with a five-membered

E-ring and ursolic acid with a six-membered E-ring

were compared. The stronger activity of ursolic acid

showed that the E ring of pentacyclic triterpene was

important for the inhibitory effect (Holanda Pinto et al.

2008). The immunomodulatory effect of lupeol,

betulinic acid, ethyl betulinate, and lupenyl acetate

was investigated by phagocyte chemiluminescence

and lymphocyte proliferation assays. The presence of

the esteric group at C-28 was found to play an

important role in enhancing the T-cell proliferation

inhibitory effect of ethyl betulinate (Shahlaei et al.

2013).

The immunomodulatory activities of oleanolic

acid, maslinic acid, erythrodiol, and uvaol compounds

on cytokine production of PBMCs were compared,

and it was found that erythrodiol with a five-

membered E-ring showed the most potent IL-1b
production and IL-6 production-reducing activity at

a dose of 100 lmol/L. When compared in terms of

their activities on TNF-a production, it was observed

that erythrodiol did not show activity, whereas uvaol

and oleanolic acid at a concentration of 100 lmol/L

significantly inhibited TNF-a production (Marquez-

Martin et al. 2006). The structure of uvaol and

oleanolic acid differs according to the presence of

carboxyl group and methanol in C-17. It has been

reported that a methanol group at C-17, carbonyl

group substitution at C-3 in the A ring along a methyl

group substitution at C-20 at the E ring are important

in terms of the inhibitory effect on pro-inflammatory

cytokine production (Harun et al. 2020).

Human neutrophil elastase is important for phago-

cytosis activity as it aids neutrophil migration towards

the infection side. The human neutrophil elastase

inhibitory activities of ursolic acid, oleanolic acid,

betulinic acid, and lupeol were evaluated. Substitution

of the carboxyl group in C-28 may be important for the

activity since ursolic acid is the molecule that most

potently inhibits the production of the serine protein

among others. It was confirmed by a molecular

docking study that 28-COOH and a double bond in

the triterpene skeleton made it possible to increase the

inhibitory activity (Feng et al. 2013).

Overall, studies suggest that the presence of an

oxygenated group at C-3 as well as a carboxyl group at

C-28 of the A ring may enhance immunosuppression

activity on radical oxygen species production and

chemotaxis of human neutrophils (Harun et al. 2020).

Conclusion

The reviewed studies indicate that triterpenes have the

potential to further development as immunomodula-

tory agents for different purposes. Triterpenes have a

multiple targeting role in immunomodulation. How-

ever, regulation of the Th1/Th2 balance seems to be

the most common phenomenon. Especially, suppres-

sion of Th1 pro-inflammatory cytokines which is

important to hamper the ‘cytokine storm’ and a range

of neurodegenerative diseases related to inflammation.

The high anti-inflammatory potential of triterpenes

also contributes to their immunomodulatory action.

Their anti-inflammatory potential not only stems from

the inhibition of pro-inflammatory cytokines but is

also related to a broad range of anti-inflammatory drug

targets including COX-2, PGE2, MMPs, iNOS,

HMGB1, ICAM-1.

Triterpenes target and ameliorate expression of

various accessory proteins associated with the TLR,

STAT3, NF-jB, MAPKs, PI3K/Akt. These proteins

and pathways can be given underlying mechanisms of

the immunoregulatory action of triterpenes.

In spite of many clinical trials were conducted on

triterpenes related to their immunoregulatory actions,

123

556 Phytochem Rev (2022) 21:537–563



some of studies have several limitations. Therefore,

more studies with optimal design, especially with

large subject group is essential.

Most of the triterpenes mentioned in this paper are

the main components of plants used in Traditional

Chinese Medicine related to the immune system. We

have reviewed oleanolic acid, glycyrrhizin, gly-

cyrrhetinic acid, pristimerin, ursolic acid, boswellic

acid, celastrol, lupeol, betulin, betulinic acid, gan-

oderic acid, cucumarioside, and astragalosides which

have important immunoregulatory properties, by this

study. According to current references, it seems that

immunoregulatory properties of aforementioned com-

pounds are all promising. Astragalosides are already

used as immunoadjuvant agents, which make them

one step further as immunoregulatory compounds.

Some triterpenes are already used in clinics as

western medicine for different purposes. For example,

glycyrrhizin is used for hepatitis, while glycyrrhetinic

acid (enoxolone) is used for peptic ulcer treatment.

Moreover, a triterpene semisynthetic derivative,

bevirimat (3-O-(3’,3’-dimethylsuccinyl)-betulinic

acid) is used for HIV treatment. Hence, the application

potential of these compounds in the clinic is already

proven. However, information on pharmacokinetics of

triterpenes after administration, systemic evaluation of

the bioactivities, derivatives, and metabolites products

are scarce and need to be clarified. Besides, in vitro

and in vivo studies with unrealistic doses should be

disregarded related to immunoregulatory actions of

triterpeneoids. Moreover, current promising results

should be further substantiated by more properly

designed clinical studies with a higher number of

patients enrolled.
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