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Abstract High-throughput plant phenotyping has

been advancing at an accelerated rate as a response to

the need to fill the gap between genomic information

and the plasticity of the plant phenome. During the

past decade, North America has seen a stark increase

in the number of phenotyping facilities, and these

groups are actively contributing to the generation of

high-dimensional, richly informative datasets about

the phenotype of model and crop plants. As both

phenomic datasets and analysis tools are made pub-

licly available, the key to engineering more resilient

crops to meet global demand is closer than ever.

However, there are a number of bottlenecks that must

yet be overcome before this can be achieved. In this

paper, we present an overview of the most commonly

used sensors that empower digital phenotyping and the

information they provide. We also describe modern

approaches to identify and characterize plants that are

resilient to common abiotic and biotic stresses that

limit growth and yield of crops. Of interest to

researchers working in plant biochemistry, we also

include a section discussing the potential of these

high-throughput approaches in linking phenotypic

data with chemical composition data. We conclude

by discussing the main bottlenecks that still remain in

the field and the importance of multidisciplinary teams

and collaboration to overcome those challenges.
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Introduction

Phenomics is an emergent research field that has

recently moved into the spotlight within the scientific

community. Plant phenomics relates an organism’s

phenotype, which is highly dependent on the environ-

ment, to the genotype through the collection of high-

dimensional phenotypic data (Houle et al. 2010).

High-throughput phenotyping systems, often defined

as being able to image hundreds or thousands of plants

a day, are paramount in furthering the understanding

of ‘‘phenomes’’ and the underlying genetics behind

them (Fahlgren et al. 2015b). Traditionally, plant

phenotypes have been recorded manually, which is a

very laborious and intensive process that often
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requires the destruction of the tissue for specific

readouts on overall plant health and growth. With

high-throughput technologies, on the other hand,

plants are able to be measured in a non-destructive

manner, providing useful temporal and spatial infor-

mation with accuracy and precision that manual

phenotyping cannot achieve and readouts that go

beyond the resolution of the human eye. Experiments

can be designed to span a number of hours, days,

weeks, or months, and novel information about early

germination, reproduction, and all developmental

stages between can now be teased out using powerful

sensors and commercial or open-source algorithms.

The robust datasets generated by these experiments

provide more information than ever before on plant

performance, and they are instrumental in enabling the

development of crops for the future.

A large portion of the published phenotyping

research has been done on model organisms in

laboratory settings, but as with any technology,

applicability to real-world conditions is necessary

(Fahlgren et al. 2015b).With the looming threat of

climate change and a rapidly growing world popula-

tion, traditional plant breeding techniques can no

longer keep pace with global food and feed demand,

and it is estimated that cereal grains alone must

increase by 70% by 2050 to meet future needs

(Furbank and Tester 2011). While sequencing tech-

nologies have grown exponentially allowing entire

genomes to be sequenced at low cost in a short period

of time, one of the current knowledge gaps in plant

science lies in relating this wealth of genomic data

with phenotypic data (Cobb et al. 2013). Therefore, it

is more necessary than ever to support laboratory,

greenhouse and field high-throughput phenotyping

studies.

In this paper, we present an overview of the most

commonly used sensors that empower digital pheno-

typing and the information they provide including the

visualization of traits that interest breeders, such as

increased biomass, yield, and tolerance to abiotic

stresses/resistance to biotic stresses. We also describe

modern approaches to identify and characterize plants

that are resilient to common abiotic stresses that limit

aforementioned growth and yield of crops. Of interest

to researchers working in plant biochemistry, we also

include a section discussing the potential of high-

throughput approaches and hyperspectral sensors in

linking phenotypic data with chemical composition

data. We conclude by discussing the main bottlenecks

that still remain in the field and the importance of

multidisciplinary teams and collaborative research

networks to overcome those challenges.

Available platforms that enable high-throughput

plant phenotyping

With continuous advances in sensor technologies,

high-throughput plant phenotyping (HTPP) has

become widespread. The first commercial HTTP

robots entered the market over 15 years ago, but since

then, the number of providers of these platforms has

grown significantly. Table 1 presents an up-to-date

summary of the HTTP systems available, as well as

recent papers describing their capabilities. These

systems can range from semi-automated platforms,

where users load and remove plants manually, to fully

automated conveyor platforms that pull in plants

growing in growth chambers, glass houses, and/or

greenhouses. More recently, Spidercam-based and

gantry-based systems have also become available for

phenotyping plants in the field (Andrade-Sanchez

et al. 2014; Kirchgessner et al. 2017).

Sensors and the information they can yield

There are numerous sensors to choose from when

planning an HTPP experiment, and much of the

selection of which ones to use depends on the goals of

each experiment. Table 2 summarizes the most com-

mon sensors currently used in HTTP platforms, as well

as the readouts and most useful information that can be

extracted from the images and data they acquire. Some

of these readouts on plant health include size, color

(indicative of chlorosis/necrosis), architecture, chloro-

phyll fluorescence/photosystem II efficiency, water

content, leaf/canopy temperature, and tolerance/resis-

tance to abiotic/biotic stresses, respectively.

Figure 1 presents illustrative examples of images

captured at the Plant Phenomics Facility at Arkansas

State University (A-State). Using a commercial plat-

form and the associated software, plants can be easily

extracted from the background for measurements of

size, color, and architecture using the RGB (a.k.a.

visible) camera. Also illustrated are images acquired

with a fluorescence (FLUO) camera that allows in
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Table 1 Commercial and published platforms for high-throughput plant phenotyping

Name

URL

Description References

GROWSCREEN

http://www.fz-juelich.de/ibg/ibg-2/EN/

methods_jppc/GROWSCREEN

This platform was developed to study plant leaf growth

fluorescence and root architecture from seedlings under

controlled conditions for visual phenotyping of large plant

populations

Walter et al. (2007)

and Jansen et al.

(2009)

HRPF

NA

High-throughput rice phenotyping facility (HRPF) designed

with two main sections: rice automatic phenotyping (RAP)

and yield trait scorer (YTS). This high-throughput platform

was developed for automatic screening of rice germplasm

and populations throughout the growth period and after

harvest

Yang et al. (2014)

PHENODYN

http://bioweb.supagro.inra.fr/phenodyn

This platform monitors plant growth and transpiration rate

with stressful environmental conditions

Rahaman et al.

(2015)

PHENOPSIS

http://bioweb.supagro.inra.fr/phenopsis

Represents specific setups for automated phenotyping,

allowing a culture of approximately 200–500 Arabidopsis

plants in individual pots with automatic watering and

imaging system

Granier and Vile

(2014)

PHENOSCOPE

http://www.observatoirevegetal.inra.fr/

observatoirevegetal_eng/Scientific-

platforms/Phenoscope

This automated phenotyping platform is an integrated device,

allowing simultaneous culture of 735 individual Arabidopsis

plants and high-throughput acquisition, storage and analysis

of quality phenotypes

Tisné et al. (2013)

PHENOSPEX

https://phenospex.com/

Offers a range of systems, including multispectral 3D

scanners, gravimetric weigh stations, and field/greenhouse

high-throughput phenotyping options

Vadez et al. (2015)

PlantScan

http://www.csiro.au/Outcomes/

FoodandAgriculture/HRPPC/PlatScan.

aspx

This is an automated high-resolution phenomic center which

provides non-invasive analysis of plant structure,

morphology and function by utilizing cutting-edge

information technology including high-resolution cameras

and 3D reconstruction software

Sirault et al. (2013)

Qubit Phenomics

http://qubitphenomics.com

Integrated conveyor and robotic high-throughput plant

imaging system for the laboratory, growth chamber, or field

phenotyping

De Diego et al.

(2017)

Scanalyzer PL, HT, 3D, Field

http://www.lemnatec.com

Captures and analyzes 2D/3D non-destructive high-

throughput images; monitor plant growth and behavior

under entirely controlled conditions in a robotic greenhouse

system. Growth chamber and field scale systems are also

available

Arvidsson et al.

(2011)

TraitMill

http://www.cropdesign.com

High-throughput gene engineering platform developed by

Crop Design. This is a versatile tool that enables large-scale

transgenesis and automated high-resolution phenotypic

plant evolution

Reuzeau et al.

(2010)

WIWAM

http://wiwam.be

Like PHENOPSIS, WIWAM is an automated imaging

platform simultaneously handling a large number of plants

and measuring a variety of plant growth parameters with

automatic watering and imaging systems at regular time

intervals

Skirycz et al. (2011)

Adapted from Rahaman et al. (2015). Manufacturers are constantly updating their websites to reflect newer models, sensors, and

capabilities. For user ease, this table provides links to the manufacturer’s websites, as well as references to papers describing some of

their phenotyping capabilities
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planta chlorophyll fluorescence assessment, as well as

images acquired with a near-infrared camera (NIR)

that allows monitoring in planta water content.

The maker movement

There is growing interest in the plant science com-

munity to develop cheaper andmore flexible platforms

for phenotyping. Dubbed the ‘‘maker movement’’, this

recent trend has been focused on using open-source,

homemade technology for plant phenotyping (Gehan

and Kellogg 2017). Some examples of these devices

are here described. The combination of a near-infrared

LED panel and a Raspberry Pi NoIR camera has been

shown to yield a 2D, automated imaging system that is

affordable and useful in extracting plant information

(Dobrescu et al. 2017). Cost-efficient, high-resolution

phenotyping systems for plant roots have also been

previously described as part of this movement (Slovak

et al. 2014). A hand held device that allows assessing

photosynthetic efficiency with results comparable to

those obtained with the Li-Cor system has been

recently developed. This sensor allows users to

visualize the acquired data using an Android tablet

or smartphone and to store this information in a portal

Fig. 1 Illustrative images captured with the visible, fluores-

cence, and near infrared sensors at the Arkansas State University

Phenomics Facility. a shows an example of an Arabidopsis

thaliana captured with a visible camera, and b shows the plant

after using the LemnaGrid algorithm to extract the object from

the background. c shows a fluorescence image of the same plant,

and d a color classified analysis of the plant indicating areas of

low, medium and high fluorescence. e shows an image captured

with the near-infrared camera, and f shows the analysis of in

planta water content

Table 2 Summary of the most common sensors used in HTPP experiments

Sensor Phenotype parameters

RGB Size, architecture, geometry, greenness and other colors

Quantum efficiency of photosystem II (PSII) Photosynthetic activity, non-photochemical quenching

Fluorescence (FLUO) Chlorophyll fluorescence, fluorescent proteins (used as signal markers, etc.)

Infrared (IR) Canopy or leaf temperature, insect/pathogen infestations

Near infrared/short wave infrared (NIR/SWIR) Water content

Thermal infrared/Long wave infrared (TIR/LWIR) Canopy or leaf temperature

Light detection and ranging (LIDAR) Location (GPS), plant height, aboveground biomass,

canopy cover and leaf area index

Hyperspectral (HIS) Leaf and canopy health, chemical profiling
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in the cloud where users can visualize, graph, analyze

and download the data (Kuhlgert et al. 2016).

Image acquisition is no longer the challenge, image

analysis is the true bottleneck

Acquiring images is the easiest part of any HTTP

experiment, the challenge is the analysis of the

thousands of images that can be acquired in a short

period of time. The Plant Image Analysis database is a

very useful resource that was launched in 2013 and is

continuously updated (Lobet et al. 2013). This

database summarizes most available software for

plant image analysis (http://www.plant-image-

analysis.org/). Its current listings include over 150

algorithms that can be used for this purpose, including

tools to analyze aerial tissue and also complex root

systems (e.g. Symonova et al. 2015; Knecht et al.

2016; Pound et al. 2017).

One of the potential issues users may encounter

with the analysis tools listed in the Plant Image

Analysis database is that, once developed, most of

these algorithms are never updated. An analysis tool

that undergoes constant updates is PlantCV (Fahlgren

et al. 2015b). The most current version, PlantCV2, that

includes modules developed by at least six research

teams was recently published (Gehan et al. 2017). The

leaders of this effort anticipate to release a new version

of this tool once a year.

Despite recent advances, the power of phenomics is

still limited by data analysis, and data analysis is

largely limited by ignorance of powerful resources

(Houle et al. 2010). Phenotyping experiments are still

undergoing massive amounts of standardization nec-

essary for creating reproducible studies that can be

publicly accessed, analyzed, and modeled. It is

currently the burden of the scientific community to

develop a more adaptable and less expensive frame-

work for analyzing high-dimensional phenotype

datasets (Rahaman et al. 2015).

Types of phenotyping assays

In plants, it is especially important to understand the

plasticity of the phenome, or how the phenotype

changes, when subjected to variable environmental

conditions (Tardieu et al. 2017). As climate change

and poor farming practices reduce arable land, agri-

culture faces more challenges than ever, since abiotic

stresses are the biggest factor in crop loss (Mahajan

and Tuteja 2005). For example, average yields usually

range somewhere between 20 and 50% of record

highs, with soil salinity and drought being cited as the

major contributors. In fact, increased soil salinity is

expected to reduce the amount of farming land

available by 30% in the next 25 years and up to 50%

by 2050 (Wang et al. 2003). Drought, on the other

hand, is expected to reduce crop yields by 50% in 2050

and almost 90% by 2100 (Li et al. 2009). Heat and

frost are also predicted to increase, and both events can

lead to yield reductions in crops such as wheat (Barlow

et al. 2015). Therefore, an increased knowledge of

how these stresses affect plants through high-through-

put phenotyping experiments must be obtained in

order to further breeding and other genetic, and

physiological tools to develop more resilient crops.

Although 2D and 3D platforms for above-ground

plant phenotyping are empowering new discoveries,

they provide only half of the story. A key aspect of

plant health and development is the root system, and

identifying the underlying root characteristics that

make a stronger plant is crucial as well. Root

architecture is key in a plant’s ability to survive

periods of water and nutrient deficit, as roots are

responsible for collecting all the water and nutrients

plants need from the soil (Malamy 2005). Phospho-

rous, an essential nutrient for plants, is largely

immobile, and it is the limiting factor for crop yield

in around 30% of arable land (Vance et al. 2003).

Given the focus of this review, root phenotyping is

outside of the scope of this paper, but we refer readers

interested in advances in root phenotyping to a recent

article (Tardieu et al. 2017).

Assessing size, architecture, and growth rate

With the utilization of HTTP platforms, assessing the

growth of a plant across its life cycle has never been

easier. While there is still room to grow and improve,

it is now possible to monitor every step from seed,

seedlings, early developmental stages, and beyond,

and this can be done in environment controlled

chambers, greenhouses, or field conditions. Figure 2

provides examples of the plant species that have been

extensively studied at the Arkansas State University

Plant Phenomics Facility.
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Abiotic stress tolerance assessment

As previously mentioned, understanding abiotic stress

tolerance is paramount in furthering the movement to

engineer heartier crops. Figure 3 provides illustrative

examples of how the A-State Phenomics Facility has

been using HTTP approaches to empower the screen-

ing of diversity panels and mutant collections to

identify and characterize plant varieties/cultivars that

display tolerance to key abiotic stresses. Many groups

have extensively screened valuable germplasm in an

effort to identify novel mechanisms and strategies to

develop crops better adapted to withstand harsh

environmental conditions. A list of key protocols

and platforms that have been used to study common

abiotic stresses in both model and crop plants using

HTPP approaches is presented in Table 3.

Biotic stress resistance assessment

Biotic stresses are another cause that limit growth and

yield of crops. Plants show evidence of the infective

agent(s) affecting them, and those symptoms can

include fungal growth, bacterial ooze, nematode cysts,

and presence of mites or insects (Flynn 2003). A vast

quantity of crops is lost every year due to pests. The

financial losses caused by just herbivores ranges from

5 to 30% globally (Thurau et al. 2009; Masler and

Chitwood 2016). These stress responses lead to

physiological, molecular, and cellular adaptation,

ultimately affecting phenotypic plasticity of plants

(Pandey et al. 2015).

The host plant’s resistance to biotic stressors is the

ability of the plant to reduce the growth, reproduction,

and development of biotic stressors. Tolerance refers

to ability of the plant to grow, develop, and produce

seed/fruit in the presence of biotic stressors. Herbivore

infestation directly impact plants. Among the effects

of herbivore infestation in plants are defoliation, cell

content feeding, leaf mining, oviposition scars, and

stem boring to name a few. On the other hand,

herbivores systematically damage plants, causing

signs of chlorophyll loss, discoloration, premature

senescence, and distortion of new growth (Smith and

Clement 2012; Goggin et al. 2015). Tolerance and

Fig. 2 Visible images of various plant species captured at the

Arkansas State University Phenomics Facility a Arabidopsis

thaliana, b common bean, c maize, d tobacco, e Marchantia

polymorpha, f tomato, g rice seeds and hmaize seeds. Assays on

these plants that have been performed in the facility include

water limitation stress, heat stress, cold stress, light stress,

assessment of seed chalkiness (rice), and comparison of embryo/

seed ratios (corn). Additionally, growth comparison assays have

been performed on several transgenic lines (Arabidopsis/to-

bacco) with elevated ascorbic acid content, revealing differ-

ences in biomass, yield, and senescence

123

1334 Phytochem Rev (2018) 17:1329–1343



resistance to biotic stresses have been assessed

manually for many decades. However, more and more

research teams are incorporating high-throughput

approaches to do this type of assessment. For example,

intracellular water level of plants, plant water balance,

photosynthetic efficiency, chlorophyll content, hyper-

spectral camera plant reflectance and fungal infection

lesion diameter have been used to assess tolerance and

resistance to biotic stresses (Nabity et al. 2009;

Backoulou et al. 2011; Kerchev et al. 2012; Nabity

et al. 2013; Angulo et al. 2015). Additionally, the

effect of biotic agents on plant health and growth have

been used to assess the fitness of mutant plants

comparing with wild type controls for biotic stress

effects (Avila et al. 2012). Similarly, tolerance to

lepidopteran infestation has been assessed using traits

such as projected leaf surface area, photosynthetic

efficiency, and seed yield (Chen et al. 2007).

Figure 4 illustrates the power of HTPP to assess

tolerance to biotic stresses in crops. Hyperspectral

images have been used for identification of blotch

disease, rust disease, and powdery mildew disease in

Barley (Hordeum vulgare L.), sugar beet rust disease;

Cercospora leaf spot disease and powdery mildew

disease in sugar beet, and Alternaria alternata, Al-

ternaria brassicae, and Alternaria brassicicola in

oilseed rape (Brassica napus L.) (Rumpf et al. 2010;

Baranowski et al. 2015; Wahabzada et al. 2015). RGB

images, on the other hand, have been used for

identification of apple scab disease in apple (Malus

domestica Borkh), southern green stink bug infesta-

tion, Ascochyta blight disease and insect infestation in

cotton (Gossypium hirsutum L.), tomato yellow leaf

curl disease in tomato, bacterial soft rot disease, black

rot disease, and brown spot disease in Orchid (Pha-

laenopsis), wheat streak mosaic virus disease in wheat

(Triticum aestivum L.), powdery mildew disease in

tomato, and yellow vein virus disease in chili pepper

(Huang 2007; Camargo and Smith 2009; González-

Pérez et al. 2013; Casanova et al. 2014; Hernández-

Rabadán et al. 2014; Mokhtar et al. 2015). A

combination of RGB and multispectral images have

been used for identification of Uromyces betae and

Cercospora beticola disease in sugar beet (Bauer et al.

2011), while damage caused by leaf miner has been

identified using RGB images and spectral reflectance

Fig. 3 Abiotic stress conditions regularly applied to plants for

study in HTPP experiments. Whether its salinity (pictured in

rice) (a), drought (pictured in Arabidopsis thaliana) (b), cold or
heat (heat stress pictured in maize) (c), HTPP can greatly

improve our knowledge of how plants respond to abiotic

stresses, especially in the early developmental stages. Due to

speed and accuracy, HTTP empowers the screening of large

collections of lines (either diversity panels or mutant collec-

tions) to identify those with tolerance to stresses allowing to

close the gap between genotype and phenotype. C control and

S stress
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in tomato (Wu and Xie 2008). Fluorescence images

have been also used for identification of huanglong-

bing disease in Citrus (Citrus sinesis (L.) Osbeck)

(Wetterich et al. 2013). For comprehensive reviews of

how HTTP approaches can be used to develop crops

that are resistant to biotic stresses, we refer readers to

other review papers (Goggin et al. 2015).

Hyperspectral sensors allow tracking of chemicals

As discussed in previous sections the employment of

new sensors to assess plant dynamics in a fast and non-

destructive way is increasing. Hyperspectral imaging

(HSI) has become an alternative technology that has

been applied in a wide variety of research areas,

including microbiology (Gowen et al. 2015), the food

industry (Mishra et al. 2016), pharmaceutical sciences

(Gendrin et al. 2008), remote sensing (Blackburn

2007), and plant sciences.

Hyperspectral imaging involves a spectrograph that

accounts for the reflectance over a large range of the

light spectrum into a digital sensor (Bock et al. 2010).

This system consists of an integration of two modal-

ities: point spectroscopy and imaging technology.

Information about plant physiology is gathered by the

first modality, while the imaging technology is then

used to understand structural dynamics. The data

Table 3 Common stress assays in HTPP experiments

Stress

tested

Species Sensors platforms utilized Scale Main focus References

Salinity Wheat LemnaTec Scanalyzer 3D Hydroponics

Greenhouse

Salinity tolerance in cereals Rajendran

et al. (2009)

Wheat,

barley

Infrared camera Growth

chamber

Osmotic component of salinity

tolerance in cereals

Sirault et al.

(2009)

Wheat LemnaTec Scanalyzer 3D Greenhouse Shoot biomass in cereals Golzarian et al.

(2011)

Rice LemnaTec Scanalyzer 3D Greenhouse Salinity tolerance in rice Hairmansis

et al. (2014)

Rice LemnaTec Scanalyzer 3D Greenhouse Imaging and genetics of

salinity responses in rice

Campbell et al.

(2015)

Rice LemnaTec Scanalyzer 3D Greenhouse Salinity tolerance loci revealed

in rice

Al-Tamimi

et al. (2016)

Arabidopsis

thaliana

RGB, Fluorescence Growth

chamber

Salinity tolerance in

Arabidopsis thaliana

Awlia et al.

(2016)

Drought Arabidopsis

thaliana

PHENOPSIS Growth

chamber

Soil water deficit in

Arabidopsis thaliana

Granier et al.

(2006)

Barley LemnaTec Scanalyzer 3D Greenhouse Drought

tolerance in wild barley

introgression lines

Honsdorf et al.

(2014)

Cotton Sonar proximity sensor, infrared

radiometer, multispectral crop canopy

sensor

Field Drought tolerance in cotton Andrade-

Sanchez et al.

(2014)

Barley LemnaTec Scanalyzer 3D Greenhouse Drought based responses in

barley

Chen et al.

(2014)

Setaria LemnaTec Scanalyzer 3D Greenhouse Responses to water limitation

in Setaria

Fahlgren et al.

(2015a)

Arabidopsis

thaliana

LemnaTec Scanalyzer HTS Growth

chamber

Effects on the phenome and

ionome of Arabidopsis

thaliana

Acosta-

Gamboa

et al. (2017)

Heat Wheat Phenocart Field Stress-adaptive traits in wheat Crain et al.

(2017)

Cold Pea RGB, Fluorescence Growth

chamber

Cold tolerance in peas Humplı́k et al.

(2015)
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generated by this type of imaging comes out as a 3D

spatial map of spatial variation also called a 3D

hypercube, where the first two dimensions give the

spatial information and the third dimension corre-

sponds to the spectral information (Mishra et al. 2017).

Recent applications of HSI in plant sciences are

related with foliar chemical content estimation, dis-

ease detection, variety identification, stress studies,

and plant phenotyping. The estimation of the foliar

biochemistry allows a better understanding of the

overall plant health. With the use of HSI, it is possible

to link phenotypic data with biochemical processes.

One example would be looking into chemicals present

in plant leaves during photosynthesis, such as water,

nitrogen, lignin, chlorophyll, and cellulose (Mishra

et al. 2017). Most of the HSI systems use a regression

method called Partial Least Squares Regression

(PLSR) to estimate the concentration of these com-

pounds. This method uses selected spectra with known

values for the biochemicals of interest to estimate the

model parameters. These parameters are then used to

generate ‘‘maps’’ of the compound of interest and

obtained its distribution either in the leaf or the plant

(Pandey et al. 2017). PLSR has high collinearity when

independent variables are numerous. This regression

algorithm has strong predicting ability, it can prevent

over-fitting and it can be used to process multivariate

data in one test. However, there are some disadvan-

tages to this algorithm such as inability to predict the

distribution characteristics of unknown parameters,

low computational speed, and complex calculations

(Pan et al. 2016).

Some examples of the application of this new

technology include the use of HSI to asses leaf

nitrogen content in wheat leaves in field conditions

(Vigneau et al. 2011), analysis of plant pigments such

as chlorophyll a and b, carotenoids, and anthocyanins

(Blackburn 2007), and analysis of characteristic

symptoms of Cercospora leaf spot, powdery mildew,

and sugar beet rust in sugar beet leaves (Mahlein et al.

2012).

This new non-destructive methodology can also be

used to determine concentration of macronutrients

such as nitrogen, phosphorus, potassium, magnesium,

Fig. 4 Assessment of biotic stresses tolerance and resistance

using phenomic approaches. Visible (VIS, RGB) cameras can be

used to assess reduction in biomass, growth rate, and color

changes. Fluorescence (FLUO) cameras can be used to assess

chlorophyll fluorescence. Near-infrared (NIR) cameras can be

used to measure changes in water content. Infrared (IR) cameras

provide data on leaf temperature changes, while hyperspectral

(HS) sensors can provide information about chemical compo-

sition changes in plant tissues. Visible, fluorescence, thermal,

and hyperspectral images can also be used to identify symptoms

of disease and insect invasion
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Table 4 High-throughput phenotyping facilities available in North America

Location Facility name Available

platforms

Manufacturer

Scale

Sensors Facility

director or

manager

Contact

Website

Canada

McGill

University

McGill Plant

Phenomics

Platform (MP3)

Scanalyzer HTS

LemnaTec

Growth chamber

RGB, IR, FLUO,

NIR, laser

scanner

M.Sc.

Emilio

Vello

emilio.vello@mcgill.ca

http://mp3.biol.mcgill.ca/

mcgill_mp3_summary.html

McGill Plant

Phenomics

Platform (MP3)

Scanalyzer 3D

LemnaTec

Greenhouse

RGB top and side

views, IR, NIR

M.Sc.

Emilio

Vello

emilio.vello@mcgill.ca

http://mp3.biol.mcgill.ca/

mcgill_mp3_summary.html

University of

Saskatchewan

Plant Phenotyping

and Imaging

Research Centre

(P2IRC)

Various vendors PET, PCI, FLUO,

K-Edge

Subtraction

imaging

Dr. Maurice

Moloney

gifs.director@gifs.ca

http://p2irc.usask.ca/

USA

Arkansas State

University

Plant Phenomics

Facility

Scanalyzer HTS

LemnaTec

Growth chamber

RGB, IR, FLUO,

NIR

Dr. Argelia

Lorence

alorence@astate.edu

http://plantimaging.cast.uark.

edu

Donald

Danforth

Plant Science

Center, St.

Louis

Bellwether

Phenotyping

Facility

Scanalyzer 3D

LemnaTec and

Conviron

Growth House

RGB top and side

views, NIR

Mindy

Darnell

mdarnell@danforthcenter.org

https://www.danforthcenter.

org/scientists-research/core-

technologies/phenotyping

Bellwether

Phenotyping

Facility

Fluorescence

PhenoVation

PSII Mindy

Darnell

mdarnell@danforthcenter.org

PhenoPiSight Camera array for

3D

reconstructions

Raspberry Pi

Greenhouse

RGB Dr. Nadia

Shakoor

nshakoor@danforthcenter.org,

https://github.com/calizarr/

PhenoPiSight

Iowa State

University

ENVIRATRON Rover

In-house design

Growth chamber

RGB, IR, NIR,

FLUO,

holographic,

hyperspectral,

Raman Scattering

Spectrometer

Dr. Steven

Whitham

swhitham@iastate.edu

https://enviratron.iastate.edu/

Purdue

University

Controlled

Environment

Phenotyping

Facility

Aris, PhenoKey,

Bosman van

Zaal,

AgriNomix,

Conviron, in

house design

Greenhouse

RGB top and side

views, PSII,

hyperspectral,

RGB hybrid

Dr. Yang

Yang

yang1527@purdue.edu

https://ag.purdue.edu/cepf/

Texas A&M AgriLife Research

Facility, Dallas

DroughtSpotter

Phenospex

Greenhouse

Gravimetric

transpiration

monitoring

Dr.

Jeanmarie

Verchot

jm.verchot@ag.tamu.edu

https://agriliferesearch.tamu.

edu/
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calcium, and sulfur; and micronutrients such as

sodium, iron, manganese, boron, copper, and zinc.

Pandey et al. 2017 for example recently showed how

HSI can be used in maize and soybean plants subjected

to detect different levels of water deficiencies and

nutrient limitation and determined the variation in the

chemical properties (macro–micro nutrients) of plant

leaves.

Table 4 continued

Location Facility name Available

platforms

Manufacturer

Scale

Sensors Facility

director or

manager

Contact

Website

University of

Arizona-

Maricopa

Maricopa

Agricultural Center

and USDA Arid

Land Research

Station

Field Scanalyzer

LemnaTec

Field

RGB, IR, PSII

hyperspectral,

multispectral

radiometer, PRI,

PAR,

spectrometer

Dr. Nadia

Shakoor

nshakoor@danforthcenter.org

http://terraref.org/

#phenotyping-field-scanner-

system

University of

Nebraska-

Lincoln

Beadle Center Scanalyzer HTS

LemnaTec

Growth chamber

RGB, IR, FLUO,

NIR

Mr. Richard

Perk

rperk1@unl.edu

https://ard.unl.edu/

phenotyping/beadle-hts-

chamber

Greenhouse

Innovation

Complex

Scanalyzer 3D

LemnaTec

Greenhouse

RGB top and side

views, IR, FLUO,

hyperspectral

Dr. Vincent

Stoerger

vstoerger2@unl.edu

https://ard.unl.edu/

phenotyping/nebraska-

innovation-campus-

greenhouse

Agricultural Research

and Development

Center

Spidercam

Spidercam

Field

RGB, NIR, LIDAR,

multispectral

Dr. Geng

‘‘Frank’’

Bai

gbai2@unl.edu

https://ard.unl.edu/

phenotyping/field-

phenotyping-facility

USDA ARS USDA South

Carolina

PlantEye F500

Phenospex

Growth chamber

3D multispectral

scanner

Phillip Wadl phillip.wadl@ars.usda.gov

https://www.ars.usda.gov/

southeast-area/charleston-sc/

vegetable-research/

Washington

State

University

WSU Pullman

Phenomics Center

FluorCam

Photon Systems

Instruments

Greenhouse

PSII Dr. Helmut

Kirchhoff

kirchhh@wsu.edu

http://phenomics.cahnrs.wsu.

edu

WSU Pullman

Phenomics Center

PlantEye F400

Phenospex

Greenhouse

3D laser scanner Dr. Arron

Carter

ahcarter@wsu.edu

Washington

University in

St. Louis

Radiological

Chemistry and

Imaging Laboratory

Plant PET system

In house design

Growth chamber

PET Dr. Yuan

Chuan Tai

taiy@mir.wustl.edu

Mexico

Colegio de

Postgraduados

Padilla-Chacón

Laboratory

Scanalyzer PL

LemnaTec

Growth chamber

RGB top and side

views

Dr. Daniel

Padilla-

Chacón

daniel.padilla@colpos.mx

http://danielpadillachaco.

wixsite.com/fotosintatos

IR Infrared, LIDAR light detection and ranging, NIR near-infrared, PAR photosynthetically active radiation, PCI phase-contrast

X-ray imaging, PET positron emission tomography, PRI Photochemical Reflectance Index, PSII Photosystem II fluorescence,

RGB visible camera
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The importance of collaboration and coordination

Collaboration is paramount when considering the

advancement of high-throughput phenotyping tech-

nologies, especially when factoring in what a truly

interdisciplinary area of research this is. The expertise

involved in HTTP research ranges from the actual

engineering and manufacturing of the sensors and

platforms, to the design and implementation of images

analysis schemes by computer scientists, data aggre-

gation, visualization, statistical analysis, and model-

ing, as well as deep knowledge of plant biology,

genetics and biochemistry needed to interpret the

meaning of all these data.

Established in 2011 the A-State Phenomics Facility

currently functions as an academic research facility as

well as a cost recovery-center. A summary of the

HTTP facilities available in North America is pre-

sented in Table 4. We include relevant information

about each platform including manufacturer(s), avail-

able sensors, website, and contact information of

director and/or manager of each facility.

Recognizing the multidisciplinary needed for the

success of HTTP approaches multiple countries have

established national facilities that serve a large group

of users, these include Australia, France, the UK,

India, and China. To foster further interaction,

collaboration, and coordination phenotyping networks

have formed. Table 5 presents a summary of the

regional and international plant phenotyping networks

currently operating.

Conclusions and perspectives

Recent advances in high-throughput phenotyping

technologies have offered a much more detailed look

into plant growth and health. As these technologies

improve, the link between genotypes and phenotypes

will be further solidified, allowing researchers to

engineer crops that can sustain our increasingly

populated and over changing world. However, there

are still many issues that need to be addressed.

With the advent of the high-throughput phenotyp-

ing movement, there remains a need for standardizing

publication guidelines. Minimum requirements for

published works and for experimental designs are still

being fleshed out by North American and European

Phenotyping Networks. Additionally, while there has

been a great deal of advancement in the public sector

regarding data repositories and open-source software,

the bulk of phenotyping data accumulation is being

done by corporate entities and is therefore not

publically accessible. It is important to expand the

amount of publically available data in searchable

depositories in order to avoid redundancy and improve

collaborative efforts.

As has also been discussed, there is a need to further

reduce the entry cost into the phenotyping market to

help fledgling laboratories and startups begin to make

their own contributions.
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Table 5 International plant phenotyping networks currently operating

Acronym Name Website

APPF Australian Plant Phenomics Facility https://www.plantphenomics.org.au/about-us/

CPPN China Plant Phenotyping Network http://www.appp-con.org/

EPPN2020 European Plant Phenotyping Network 2020 https://eppn2020.plant-phenotyping.eu/EPPN2020_home

IPPN International Plant Phenotyping Network https://www.plant-phenotyping.org/

LatPPN Latin American Plant Phenomics Network Not available; Camargo and Lobos (2016)

NAPPN North American Plant Phenotyping Network http://nappn.plant-phenotyping.org/
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