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Abstract Cereals are considered to be a major

source of carbohydrates and proteins as well as minor

micronutrients such as minerals, vitamins and antiox-

idants, including carotenoids. Carotenoids are natural

lipophilic pigments biosynthesized mainly by plants,

and certain bacteria and fungi. Cereals, although

having a low carotenoid content when compared with

the majority of fruits and vegetables, may have an

important impact in the nutritional status of con-

sumers. The daily consumption of cereals, and prod-

ucts derived from them, by a large part of the

population, especially in under-developed and devel-

oping countries, makes cereals a contributor of

carotenoids which should not be overlooked and must

be taken into consideration in biofortification strate-

gies. In the present manuscript, we revise the existing

information about the composition and distribution of

carotenoids in cereals, highlighting factors which alter

their profile, such as domestication of wild varieties,

genotype, storage, milling and processing techniques.

Strategies for stimulating the carotenoid content in

cereals, either by means of traditional breeding

methods or by genetic manipulation, are also

discussed.
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Abbreviations

AMD Age-related macular degeneration

MAS Marker assisted selection

PSY Phytoene synthase gene

QTL Quantitative trait locus

ROS Reactive oxygen species

XAT Xanthophyll acyltransferase

YPC Yellow pigment content

Introduction

Carotenoid pigments aremolecules of lipophilic nature

and are responsible for some of the yellow, orange and

red colour of a wide range of fruits and some animal

teguments (Britton and Hornero-Méndez 1997). Ani-

mals are not able to synthesize them de novo and so

theymust be acquired through the diet. Carotenoids are

located in oil droplets, crystalloids and membrane

structures within specialized vegetable organelles, the

so-called plastids, being the most common the chloro-

plasts (in green tissues) and the chromoplasts (yellow,

orange and red tissues), and are found in all parts of the

plant: roots, leaves, flowers, fruits and seeds (Howitt

and Pogson 2006). Carotenoids carry out their most

basic functions in vegetables as pigment collectors of

light in the photosynthetic apparatus, and preventing

oxidative damage acting as antioxidants.
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When carotenoids are ingested, they exert impor-

tant biological activities; antioxidant, inhibition of

carcinogenesis, enhancement of the immune response

and cell defence against reactive oxygen species

(ROS) and free radicals, and the reduction on the risk

of developing cardiovascular and other degenerative

diseases (Nishino 1997; recently reviewed by Britton

et al. 2009). In addition some carotenoids (b-carotene,
a-carotene, b-cryptoxanthin, etc.) have provitamin A

activity (Baker and Günter 2004; Olson 1989). Of

particular interest are the epidemiological studies

showing an inverse correlation between the progres-

sion of age-related macular degeneration (AMD) and

cataracts and the high intake of lutein and zeaxanthin

rich-vegetables, being both pigments present in high

concentration at the macula in the retina humans and

primates (Ahmed et al. 2005; Alves-Rodrigues and

Shao 2004; Calvo 2005; Landrum and Bone 2001).

Cereals are basic food stuffs of vegetable origin,

also known as staple food, which are characterised

mainly as sources of carbohydrates and proteins, and

contain a relatively small amount of carotenoids

compared to the majority of fruits and vegetables.

However, the daily consumption of cereals and

products derived from them by a large part of the

population, especially in under-developed and devel-

oping countries, makes cereals a contributor of

carotenoids which must be taken into consideration

(Graham and Rosser 2000). Therefore, cereals can be

considered ideal elements for use in biofortification

strategies (Bai et al. 2011).

An essential step for the development of carotenoid

biofortified crops is the complete characterization of

the carotenoid profile contained in the vegetables,

allowing this an adequate knowledge of their metabo-

lism, which can be used for the selection and breeding

of new cultivars. The success of such processes lies in

the existence of a more or less extensive variation of

carotenoid contents among different cereals. This

variability is mainly due to three factors: (a) the

genotype of the cereal, (b) the varietal selection, the

pressure exerted by man and its domestication, and

(c) the growing conditions and post-harvest storage

and processing (industrial and domestic) practices.

Regarding the last factor, the evaluation of such

changes is an active area of study in food science

research, which allows the prediction and selection of

the optimal conditions for preserving these phyto-

chemicals, driven by their nutritional properties as well

as the applications derived from their natural role as

being responsible for the colour of foods. Thermal

treatments and others which include homogenisation

and modification of the food matrix are factors which

have a beneficial effect on the bioaccessibility of

carotenoids since it facilitates their solubility. The term

bioaccessibility is used to evaluate the amount of a

nutrient that is released from a food during the

digestion process. The bioaccessibility of lipophilic

compounds, such as carotenoids, in natural foods is

frequently fairly low and is constrained by various

factors, particularly the degree of food processing and

matrix composition. There are evidences suggesting

that homogenisation and thermal treatment have

positive effects on the bioaccessibility of these com-

pounds. Therefore, foods such as cereals, which are

normally consumed as processed foods, could present

some advantages in comparison to fresh food.

Up to now, there have been several studies regard-

ing the qualitative and quantitative composition of

carotenoids in fruits and vegetables, but very few with

respect to cereals and therefore studies which deter-

mine the carotenoid profile of these foodstuffs are

necessary. Undoubtedly, investigations aimed at

improving the bioaccessibility of carotenoids in cere-

als will benefit from such knowledge and it will aid in

the information and recommendation provided to the

consumer about the way of processing and consump-

tion of these basic elements.

In the present manuscript, we revise the existing

information about the composition and distribution of

carotenoids present in cereals, highlighting factors

which alter their profile, such as storage and process-

ing. At the same time, the strategies for stimulating the

carotenoid content in cereals, either by means of

traditional breeding methods or by genetic manipula-

tion, are also discussed.

Composition and distribution of carotenoids

in cereals

Cereals and their derivatives are good examples of

foods that contain a complex mixture of minor

components such as phenols, folates, vitamin E, phytic

acid, sterols and carotenoids, some of them with

antioxidants properties (McKevith 2004). In general,

the content of bioactive compounds in cereals is

mainly concentrated in the germ and bran portions and

874 Phytochem Rev (2015) 14:873–890

123



most of them are located in the aleurone layer. At the

same time, the content in phytochemicals is subjected

to important variations due to factors such as the type

of cereal, the cultivar, cultivation conditions, stage in

development, and storage and processing conditions

(Fardet et al. 2008; Liu 2007;), with the greatest

importance lying in the interactions between the

genotype and the environment (Hidalgo et al. 2009;

Lv et al. 2013; Van Hung and Hatcher 2011). The

carotenoid profile in cereals is mainly composed of

xanthophylls, with lutein as the most abundant,

followed by zeaxanthin and b-cryptoxanthin in addi-

tion to carotenes such as a- and b-carotene in small

amounts (Fig. 1). The largest concentration of car-

otenoids can be found in the embryo, although this part

of the seed only represents 3–5 % of its total weight.

On the contrary, the contribution of the endosperm,

around 80–85 % of the cereal grain, is the most

influential in the total content of carotenoids in the

grain. The distribution of this carotenoid profile seems

to vary among genotypes of the same type of cereal

(Siebenhandl et al. 2007) and within the same grain

since a-, b-carotene and zeaxanthin are concentrated

in the bran and the germ, while lutein is distributed

more homogeneously (Borrelli et al. 2008; Konopka

et al. 2004; Ndolo and Beta 2013; Panfili et al. 2004).

In relation to the composition of carotenoids in

cereals, the bibliography is fairly scarce, especially

for barley (Hordeum vulgare), rye (Secale cereale)

and millet (Panicum miliaceum) (Choi et al. 2007;

Kandlakunta et al. 2008; Mamatha et al. 2011).

In light of the fact that the level of carotenoids in

cereals is low in comparison to fruits and vegetables,

corn (Zea mays) of the yellow genotype may be cited

as the cereal which presents the greatest levels (up to

63 lg/g) of these phytochemicals. Most of the culti-

vars present zeaxanthin as the major pigment but also

show small amounts of b-cryptoxanthin a-carotene
and b-carotene (Moros et al. 2002; Panfili et al. 2004).

From the quantitative studies carried out on this cereal,

a large variation in the contents of carotenoids has

been determined among varieties (Berardo et al. 2004,

2009; Egesel et al. 2003; Kurilich and Juvik 1999;

Quanckenbush et al. 1961), which serves as proof that

genotype is the determining factor for this variety

(Ibrahim and Juvik 2009; Menkir and Maziya-Dixon

2004), followed by storage and processing conditions

(Burt et al. 2010; De Oliveira and Rodriguez-Amaya

2007; Scott and Eldridge 2005).

In the case of rice (Oryza sativa), it is obvious that

the pigmented varieties are the ones which result in

some interest from a quantitative point of view. In the

grains of conventional rice the carotenoid content is

concentrated almost exclusively in the bran and

therefore the common practices of milling and strip-

ping of the grain result in a drastic reduction in this

component in the final product (Tan et al. 2005).

Similar to most cereals, lutein is the main pigment

(Belefant-Miller and Grace 2010), followed by zeax-

anthin and b-carotene in crops with dark or black

pigmentation (Frei and Becker 2005; Kim et al. 2010;

Lamberts and Delcour 2008; Nakornriab et al. 2008).

In some varieties of black rice from Thailand, the

concentration of b-carotene found in its bran is

significant (up to 40 lg/g) (Nakornriab et al. 2008).

A recent study carried out on glabrous canary seed

(Phalaris canariensis L.) has shown a content of b-
carotene ranging from 5.2 to 6.3 lg/g, which is the

major pigment in this cereal (Li and Beta 2012).

Although sorghum (Sorghum bicolor) has been con-

sidered one of the cereals with the least amount of

carotenoids, the pioneer findings of Blessin et al.

(1958) and Suryanarayana Rao et al. (1968) concern-

ing varieties of yellow endosperm, as well as the

recent studies of Kean et al. (2007, 2011), offer better

perspectives for this cereal. These authors found a

carotenoid content between 0.11 and 0.32 mg/kg,

which although lower than the content corresponding

to yellow corn, these data must not be overlooked,

given the importance of this cereal in the diet of some

populations (mainly in Asia and Africa).

Oats (Avena sativa) are also cited in the literature as

one of the cereals with the lowest level of carotenoids,

with contents of lutein and carotenes (a- and b-
carotene) in the order of 0.20 mg/kg and 0.01 mg/kg,

respectively (Panfili et al. 2004). Wheat (genus

Triticum), along with corn and rice, are the most

popular cereals due to their generalised consumption.

This is the most consistently seen aspect in the

literature, with special interest being paid to the study

of their antioxidant profile and contents of healthy

phytochemicals as well as their inter- and intra-

varietal distribution (Adom et al. 2003, 2005; Di

Silvestro et al. 2012; Lier and Lacroix 1974; Okarter

et al. 2010; Velioglu et al. 1998; Zhou et al. 2004a, b;

Zhou and Yu 2004a, b). Similar to the case of corn, the

genetic variability among wheat genotypes concern-

ing the contents of carotenoids, offers an interesting
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tool which can be effectively used in programs aimed

at augmenting the contents of bioactive compounds

with properties which are beneficial to health (Digesù

et al. 2009; Leenhardt et al. 2006a).

Wheat varieties with diploid genome (AA), in

particular the Einkorn wheat (Triticum monococcum),

are considered those presenting the highest levels, in

the order of approximately 2–4 times higher with

respect to other wheat varieties. Einkorn also stands

out as possessing the greatest antioxidant activity

(Lavelli et al. 2009). Followed by these, tetraploid

wheats (AABB) can be found and has been determined

to contain the highest levels of carotenoids (around

5–6 lg/g) among the durum wheat cultivars (Triticum

turgidum conv. durum), although others have been

mentioned such as the ancestral Emmer (T. turgidum

subsp. dicoccoides) with similar levels (approximately

3–5 lg/g). Finally, wheat varieties belonging to the

hexaploid genome (AABBDD) are considered to have

the lowest carotenoid content, with almost exclusive

attention paid to the common bread wheat (T.

aestivum), which shows an average content around

2 lg/g (Abdel-Aal et al. 2007; Hidalgo et al. 2006;

Hidalgo and Brandolini 2008a; Serpen et al. 2008).

OH

OH

OH

OH

all-trans-Luteín (3,3’-diol-β,ε-carotene)

all-trans-Zeaxanthin (3,3’-diol-β,β-carotene)

all-trans-β-Carotene (β,β-carotene)

all-trans-α-Carotene (β,ε-carotene)

OH

all-trans-β-Cryptoxanthin (3-ol-β,β-carotene)

Fig. 1 Chemical structures

of the most common

carotenoid pigment

(carotenes and

xanthophylls) present in

cereal grains
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These quantitative data indicate that the selection

and domestication of cereal species carried out by man

has derived in a wide variation of their carotenoid

levels (both low and high) (Digesù et al. 2009). The

case of durum wheat constitutes an example which has

been extensively analysed due to the fact that the

yellow colour of its semolina (also referred to as

yellow pigment content; YPC, determined as lutein

equivalents by the official method 125 of the Interna-

tional Association for Cereal Science and Technology

and method 14–50 of the American Association of

Cereal Chemists) is considered one of the principal

criteria of quality of processed derived foods, mainly

pasta (Blanco et al. 2011; Fratianni et al. 2005;

Hentschel et al. 2002; Humphries et al. 2004). An

inverse situation occurs with bread wheat destined to

flour production, which presents lower levels of

carotenoids due to the pressure exerted by industries

motivated by a consumer preference for whiter flour

for the further preparation of flour-containing products

according to market demand.

TheTriticeae tribe, which includeswheat, barley and

rye species, is a series of polyploids which are closely

related, being possible to generate fertile hybrid

amphiploids among the different cultivated members

of this tribe and its wild parents. Among the hybrid

cereals, tritordeum, an innovative cerealwith interesting

properties and applications, must be pointed out.

Tritordeum is a cereal which has been obtained from

the cross-breeding between a wild barley, Hordeum

chilense, with diploid genome (HchHch), and diploid and

polyploid wheats (Martı́n and Chapman 1977). In

addition to the development of amphiploids such as

tritordeum, the use of H. chilense in the enhancement

programs has also been focused on the inclusion of

wheat with new characteristics of interest. Among the

highlighted attributes, a high content of carotenoids,

determined by 7Hch chromosome, stands out. The first

fertile hybrids with the optimal characteristics for

becoming a possible crop were only obtained following

to the crossing of H. chilense with T. turgidum (a

tetraploid durum wheat, with genomic denotation

AABB), generating those denominated hexaploid tri-

tordeums (2n = 6x = 42, HchHchAABB) which

showed a low frequency of aneuploids, a wide variation

in growth rate and an optimal level of fertility (Martı́n

and Sanchez-Monge Laguna 1982).

Most of the estimations on the carotenoid content

made on tritordeum did not provide detailed

information about the individual composition of the

pigment profile due to the lack of specificity of the

traditional analytical methods employed for the char-

acterisation of carotenoids in cereals. By means of

estimations such as YPC, levels of carotenoids in the

order of 5–6 times higher (in the range of 11–13 lg/g)
have been found in tritordeumwith respect to common

wheat (2 lg/g) and 2–3 times higher with respect to

durum wheat (5–6 lg/g) (Álvarez et al. 1995; Martı́n

et al. 1999), which is comparable to the levels reported

for Einkorn wheat. In an extensive study which

evaluated a total of 35 primary lines of tritordeum

together with their respective parental lineage, 27 H.

chilense accessions and 19 durum wheat cultivars, the

average levels of carotenes (lg/g of b-carotene equiv-
alents, determined as YPC) for the amphiploid contin-

ued to be in the order of 2 times higher than durum

wheat parent, but 3 times lower than the average of H.

chilense (Álvarez et al. 1999). Among the advanced

lines of tritordeum, HT621 was registered as an elite

germplasm line due to its high content of carotenoid

pigments (19 lg of b-carotene equivalents/g, YPC)

(Ballesteros et al. 2005). Recent studies carried out in

our laboratory (Atienza et al. 2007a; Mellado-Ortega

and Hornero-Méndez 2012) have contributed substan-

tially to the characterisation and quantification of

individual carotenoid pigments in tritordeum. Similar

to most cereals, lutein is also the major pigment

([85 %), with a high esterification degree (monoesters

and diesters), alongwithminor quantities ofb-carotene
(Fig. 2). On average, the total carotenoid content of

tritordeum (6.5 lg/g of fresh weight) was significantly
higher, approximately eight times higher, when com-

pared to durum wheat (0.7 lg/g of fresh weight). For

the first time, the regioisomers of the monoesters and

diesters of lutein in a cereals, in this case in tritordeum,

have been isolated and characterized (Mellado-Ortega

and Hornero-Méndez 2012) (Fig. 3). The fraction of

monoesters is made up of the regioisomers, namely

lutein-30-O-linoleate, lutein-3-O-linoleate, lutein-30-
O-palmitate and lutein-3-O-palmitate, while the frac-

tion of diesters is composed of two homoesters, lutein

dilinoleate and lutein dipalmitate, and by the two

regioisomers of a heterodiester, lutein-30-O-linoleate-
3-O-palmitate and lutein-30-O-palmitate-3-O-li-

noleate. The esterification of lutein with only two

different fatty acids (linoleic and palmitic acids)

suggests a high-specificity degree for the in vivo

process, which should be further investigated. The
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ability to distinguishing the regioisomers of mono- and

diesters of lutein provides a powerful tool contributing

to a better deciphering of this poorly known biochem-

ical pathway, for which tritordeum grains could be

used as an excellent plant model. Evidences for a

preferential xanthophyll acyltransferase activity

regarding the position (3 or 30) and the acyl moiety

are discussed. Further studies should be carried out in

order to identify the acyltransferase enzymes (XAT)

and the acyl donor molecules involved in the xantho-

phylls esterification process.

Tritordeum is currently the subject of an intense

breeding program being developed at the Institute of

Sustainable Agriculture (CSIC; Cordoba, Spain) in

order to optimise its use as a new cereal and its

incorporation into the formulation of functional foods.

Its cultivation areas are concentrated in Spain (An-

dalusia, Castilla and Catalonia), the south of Italy and

the south of Portugal. In 2008 it was registered, under

the name Aucan, the first line of tritordeum in the

European Union Plant Variety Registration (CPVO),

with other advanced lines in their final phases of

development and evaluation. As a result of these

efforts, at the beginning of 2013, the Spanish company

Agrasys (www.agrasys.es) began to commercialise

tritordeum flour under the brand name Vivagran�.

Cereal technology and its influence

on the carotenoid contents in grains and derived

products

Conservation and storage conditions, as well as

different processing treatments, result in overall

changes in the composition of foods, being this the

main reason for the numerous studies carried out in the

field of food technology which are crucial for deter-

mining some important sensorial and nutritional

quality attributes (Kalt 2005; Mı́nguez-Mosquera

et al. 1997; Nicoli et al. 1999; Rodrı́guez-Amaya

2003). In this way, it is important to distinguish

between the effects of processing itself, and other

environmental factors such as partial oxygen pressure,

temperature, exposure to light and humidity as well as

the interactions with other antioxidant and pro-oxi-

dant molecules which are present (Lindley 1998;

Nicoli et al. 1999). In the case of the carotenoids

occurring in cereals, the storage of the natural and

processed grain normally results in a decrease in the

pigment contents, which is directly proportional to the

processing time and the increase in the intensity of

other variables such as temperature or the degradation

process (Cristobal 1965; Weber 1987). It is interesting

to note that the literature concerning this aspect is

especially scarce since cereals are characterised as

undergoing prolonged storage periods as part of their

industrial and technological treatments. On the other

hand, it is not easy to define a set of general guidelines

in the behaviour of pigments in processes such as

pealing, grinding, drying, roasting, fermentation, etc.,

2

3

4 5
6

9 10 118

1

2

3
4

7 8

Retention time (min)
0 5 10 15 20 25 30

Tritordeum

Durum wheat

Fig. 2 HPLC chromatograms corresponding to direct carote-

noid extracts obtained from tritordeum and durum wheat. Peaks

identity: 1 all-trans-zeaxanthin, 2 all-trans-lutein, 3 9-cis-lutein,

4 13-cis-lutein, 5 lutein monolinoleate, 6 lutein monopalmitate,

7 all-trans-a-carotene, 8 all-trans-b-carotene, 9 lutein dili-

noleate, 10 lutein linoleatopalmitate, 11 lutein dipalmitate
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CH3(CH2)14

O

OH

O

Lutein-3-O-palmitate

(CH2)14CH3

O

OH

O

Lutein-3’-O-palmitate

CH3(CH=CH)2(CH2)12

O

OH

O

Lutein-3-O-linoleate

(CH2)12(CH=CH)2CH3

O

OH

O

Lutein-3’-O-linoleate

(CH2)14CH3

O

CH3(CH2)14

O

O

O

Lutein dipalmitate

(CH2)12(CH=CH)2CH3

O

CH3(CH=CH)2(CH2)12

O

O

O

Lutein dilinoleate

(CH2)12(CH=CH)2CH3

O

CH3(CH2)14

O

O

O

Lutein-3’-O-linoleate-3-O-palmitate

(CH2)14CH3

O

CH3(CH=CH)2(CH2)12

O

O

O

Lutein-3’-O-palmitate-3-O-linoleate

Fig. 3 Chemical structure

of the monoesters and

diesters, including the

regioisomers, of lutein with

fatty acids identified in

grains of tritordeum

(9Tritordeum Ascherson et

Graebner)
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due to the fact that positive, negative and even

indifferent results can be found in the literature

regarding the level of carotenoids present. In general,

these processes would affect the internal structure of

the cereal matrix and the processed product with

substantial implications regarding accessibility and

further bio-availability of the carotenoids.

The rate at which these changes occur has been a

generalised subject of food science. The bibliography

concerning the kinetics of carotenoid degradation and/

or retention in foods is abundant as well as the

disparity of the results which have often been contra-

dictory (Mı́nguez-Mosquera et al. 1997). The profu-

sion of such studies reflects the importance of

carotenoid pigments for the food industry, not only

from a nutritional point of view, but from a techno-

logical standpoint, with interest in not just quantifying

losses in carotenoids but also analysing the conditions

which provide their greater stability and subsequent

retention. Colour is considered one of the main

consumer acceptance criteria for processed foods. As

mentioned before, in the flour and bread as well as the

semolina and pasta this factor is important, especially

for products derived from durum wheat. Therefore the

research efforts in this field try to reproduce the

processing and storage conditions of food, including

cereals, with the aim of comparing different industrial

treatments and monitoring the incidences of individual

or joint factors such as water, temperature, light,

oxygen and pH activities along with pro-oxidants and

antioxidants (Fish and Davis 2003; Mı́nguez-Mos-

quera and Gandul-Rojas 1994; Ouchi et al. 2010;

Saxena et al. 2012; Selim et al. 2000; Tsimidou 1997),

allowing for an estimate of the shelf-life of foods and

their bioactive compounds. Most of the studies have

been carried out on vegetables such as carrots (Koca

et al. 2007; Lemmens et al. 2010; Wagner and

Warthesen 1995), tomato (Sharma and Le Maguer

1996; Tonon et al. 2007); peppers and pepper derived

products (Carbonell et al. 1986), potatoes (Bechoff

et al. 2010), and citrus fruit juices (Dhuique-Mayer

et al. 2007; Zepka et al. 2009) where the authors

commonly describe a degradation reaction which

occurs according to zero or first order kinetics.

However, the literature is quite limited in the partic-

ular case of cereals, probably due to the low level of

pigments that these foods present and there are very

few studies which carry out a detailed kinetic evalu-

ation (Guzman-Tello and Cheftel 1990; Hidalgo and

Brandolini 2008b; Mellado-Ortega 2013). Neverthe-

less, although such alterations have not been quanti-

fied, most authors agree in the fact that changes

generally occur more rapidly at the beginning of

processing and storage and as they progress the rate at

which they are occurring diminishes (Burt et al. 2010;

Quackenbush 1963).

Stability of carotenoids during the post-harvest

storage of grains and flours

The storage process produces a loss in carotenoids

mainly caused by oxidation, either of an enzymatic or

non-enzymatic nature. The oxygen present in the

medium is considered the major factor affecting the

stability of carotenoids (Britton and Khachik 2009).

Other modifications of the carotenoid molecule asso-

ciated with these processes are the geometric isomeri-

sation (cis/trans) produced by temperature and/or light

and cause alterations in the composition rather than net

losses in the pigments. The mechanisms of both

processes have been extensively studied (El-Agamey

and Mcgarvey 2008; Liaaen-Jensen and Lutnaes

2008).

While the oxidation of pigments in the storage of

cereal grains comes mainly from oxygen, in processed

foods such as flour the alteration of the matrix

produces direct oxidative processes as well as those

caused by enzymes which come into contact with

carotenoids (Doblado-Maldonado et al. 2012). As

previously mentioned, the results obtained in these

studies depend on the conditions applied, mostly

evaluating the effects of time and temperature applied

during the treatments. The literature contains exam-

ples in which the effects of these two variables are

clearly observed, which allow for the prediction of the

consequences of these variables in the stability of the

carotenoids present (Arya and Parihar 1981; Calucci

et al. 2004; Farrington et al. 1981; Hidalgo and

Brandolini 2008b; Nghia et al. 2006; Pinzino et al.

1999).

On occasion, in addition to storage, the experimen-

tal designs additionaly cover another factors corre-

sponding to common practices in cereal technology

(such as drying, grinding, shelling, etc.). This widens

the study but at the same time difficult the analysis of

the obtained results. Belefant-Miller and Grace (2010)

evaluate the behaviour of carotenoids during the
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prolonged storage of rice which was previously

shelled. A common practice in cereals prior to storage

is the drying of the grains since the reduction in

humidity prevents deterioration due to mould, acarus,

etc., as well as a premature germination of the grain

(Chelowski 1994; Jood and Kapoor 1994). Some

authors, such as Burt et al. (2010) did not obtain a

significant reduction in pigment content when com-

paring drying at a high temperature (90 �C) to the

corresponding ambient temperature while maintain

the rest of the storage conditions for corn. On the

contrary, other studies have found significant differ-

ences in the pigment content which are attributed not

only to the drying of the grain but also to duration of

the process (Quackenbush 1963). In spite of this

controversy, the optimal conditions for the preserva-

tion of cereals, and particularly to preserve the

carotenoids present in them are always reached by

employing an exhaustive method of water removal

(dehydration) and/or storage at low temperatures.

Studies on the storage of grains and processed

grains also allow for the evaluation of aspects relating

to the post-carotenogenic metabolism such as esteri-

fication with fatty acids which mediate its accumula-

tion and stability in these foods (Kaneko and Oyanagi

1995; Kaneko et al. 1995). The increase in the

esterification of lutein as the storage of grain pro-

gresses, including storage under controlled tempera-

ture, is one aspect that has been characterised by

several authors (Ahmad et al. 2013; Mellado-Ortega

et al. 2015). This provides information about the ideal

conditions for the storage of cereals which preserves

the contribution of these phytochemicals. In addition,

a specific evaluation has been applied in order to

characterise the enzymatic systems involved in ester-

ification of the xanthophylls during the storage of

grains and flours of tritordeum and durum wheat. This

has resulted in important differences attributed not

only to the nature of esterification in each case, but

also to the enzymatic regional selectivity of the lutein

and fatty acid molecules participating in such reac-

tions (Mellado-Ortega 2013). Regardless of the type of

plant material, either grain or flour, the stability of the

esterified and free pigment has been studied and it has

been found that the degradation rate is always greater

for the latter case. This provides valuable information

which could be used in crop enhancement programs of

cereals. In agreement with these results the studies

aimed to increase the cereal contents in carotenoids

should be based on the selection of varieties with

greater concentrations of esterified xanthophylls with

the objective of increasing their ability to store them

within the grain tissues, along with improving their

stability in the seeds.

On the other hand, the influence of thermal pre-

treatments on the storage of flour has been studied to

evaluate the generation of free radicals and their

impact on endogenous antioxidants (Andersen et al.

2011), as well as the possible intervention of degrad-

ing enzymes (Rodriguez-Amaya 1997).

Effect of processing on the carotenoid contents

of cereals

As explained above, the different processing tech-

niques undoubtedly modify the carotenoid content

present in the final product of processed cereals, due

to, among other factors, an uneven distribution of the

pigments in the different parts of the grain (Konopka

et al. 2004; Zhou et al. 2004a, b). This has led to the

modification and development of new processing

techniques with the aim of preserving or stimulating

the carotenoid contents along with other phytochem-

icals of nutritional importance. These emerging tech-

niques are being incorporated into the traditional

enhancement programs and genetic manipulation for

obtaining bio-fortified grain crops (Fardet 2010;

Hemery et al. 2007). Cereals are generally processed

in two ways: dry fractioning followed by baking (at

different temperature conditions, water contents and

pressure) to produce product such as pasta, biscuits,

breakfast cereal, etc., and fermentation, which pro-

duce alcoholic beverages. The production of the most

popular cereal-derived products such as bread and

baked goods include both treatments.

The fractionation and grinding processes of the

cereal grains have allowed for the detailed analysis of

carotenoids in the different layers and industrial

fractions of the seeds (Ndolo and Beta 2013). The

analyses of whole-grain products and those containing

the germ (Kean et al. 2008), flour without bran and its

formulations (Žilić et al. 2012), whole and shelled

grains (Kean et al. 2011), grains, flour and semolina

(Fares et al. 2008; Luterotti and Kljak 2010), are

among the most common comparisons. One of the first

studies carried out in this way was done by Blessin

et al. (1963) on corn. These authors analysed the effect
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of manual and industrial processing on the pigment

content found in different layers of the grain. Recently,

Sellappan et al. (2009) has described the losses in b-
carotene, iron and zinc in genetically modified rice

varieties subjected to polishing and have estimated

them to be higher than 70 %. Polishing is a common

industrial practice for rice grains, which involves the

near complete elimination of the aleurone layer and

the embryo (Juliano 1994). The classification of the

genotype of cereals, by means of the characterisation

of its pigment contents due to specific formulations of

the grains can be a good example of the use of these

crop enhancement techniques. Descriptive analyses

like those of Siebenhandl et al. (2007) contribute to

this aspect, evaluating formulations of different bran

particle sizes and flour for the classification and

selection of diverse genotypes of wheat and barley.

The size of the particle generated in these processes

has a great influence from the technical and nutritional

viewpoints. A reduction in the particle size facilitates

the liberation of vitamins and other compounds from

the outer layers of the grain (Fratianni et al. 2005;

Kahlon et al. 1986; Zhou et al. 2004a, b). Zhou

et al. (2004a, b) showed that micronizing the

aleurone layer resulted in greater antioxidant activity

compared to the non-micronized aleurone layers of

bran and grain, possibly due to a greater availability

of antioxidants.

The diverse thermal treatments which are applied

with the objective of prolonging the shelf-life of

processed cereal products have also been reproduced

in the laboratory to determine their effect on

carotenoid contents. Toasting the cereal seems to have

a rather pronounced repercussion which causes a

significant reduction in pigment contents. This was

reported by De Oliveira and Rodriguez-Amaya

(2007), who analysed a series of fresh and processed

corn products and estimated the loss in zeaxanthin to

be about 53 % after toasting the corn flour. Similar

results have been described as a result of cooking rice

(Lamberts and Delcour 2008). Scott and Eldridge

(2005) performed a comparison of diverse thermal

treatments and their effects on the carotenoid profiles

of fresh, frozen and canned corn and found that the

thermal treatments applied to corn prior to canning did

not produce a relevant decrease in its carotenoid

content. The freezing and scalding pre-treatments

applied to cereals and vegetables in general may result

in an increase in the bioavailability of carotenoids

(Selman 1994). The heating by microwave of rice bran

produced similar results without a reduction in the

pigment levels which makes it a good alternative for

favouring the stability of this cereal formulation

(Abdul-Hamid et al. 2007). Amore complex treatment

consists of an extrusion, a multi-step treatment which

is widely applied in the breakfast cereal industry. The

mild conditions applied during the extrusion (high

moisture content, short treatment time and low

temperature) have a clearly positive effect on the

retention of vitamins and carotenoids and the decrease

in lipid peroxidation, among others (Cheftel 1986;

Singh et al. 2007). Guzman-Tello and Cheftel (1990)

studied the changes in the concentration of b-carotene
under the most severe extrusion conditions of wheat

flour and estimated losses ranging from 38 to 73 % for

an applied temperature interval of 125–200 �C. Other
treatments such as those involved in the malting

process of barley are characterised for generating

contradictory results concerning their effect on pig-

ment levels. For example, Goupy et al. (1999)

registered losses (of approximately 76 %) as well as

gains in carotenoid contents in a study with different

varieties of barley.

The analyses carried out during the different steps

involved in the processing of semolina and making of

pasta indicate that it is during the kneading phase when

the greatest decrease in carotenoid content is regis-

tered while the subsequent drying and maturation

periods turn out to be the least aggressive (Fratianni

et al. 2012; Hidalgo et al. 2010; Panfili et al. 2005). At

the same time, important losses (up to 66 %) in

carotenoids during the kneading phase are associated

with the production of bread, biscuits and baked goods

(Leenhardt et al. 2006b). Other authors, however,

point out different production phases, especially the

baking step as being influential in the reduction in

pigments. In a study of the evolution of pigments

during the production of bread from wheat flour and

einkorn, Hidalgo et al. (2010) registered averaged

losses of 47 % for the crust compared to 21 % for the

centre of the bread. After comparing the two types of

flour, einkorn was found to suffer the greatest loss in

pigments. Degradation during kneading is governed

by an enzymatic oxidation of the pigments which has

led some authors to relate both aspects (degradative

enzymatic activity and carotenoid loss) in the

enhancement programs for the selection of optimal

cereal genotypes for the bread making industry
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(Borrelli et al. 2003; Fu et al. 2013; Leenhardt et al.

2006a, b; Trono et al. 1999).

In the case of tritordeum, the properties of this new

cereal make it one of the most suitable for bread

applications, similar to common wheat, but on the

contrary, less appropriate for formulations of semo-

lina. As mentioned before, tritordeum flour has

recently began to be commercialised with the aim of

several applications such as bread, sandwich bread,

biscuits, muffins and other cereal products (www.

agrasys.es). In the sense, even though the elaboration

process of bread and other products results in losses in

carotenoid contents, as in any other cereal, tritordeum

bread presents superior levels of lutein (6 times

greater) than bread made from traditional wheat (ac-

cording to the analyses carried out in our laboratory for

the Agrasys company).

Applications of the biotechnology of carotenoids

to cereal selection and breeding

Biotechnology, as a vegetable enhancement tech-

nique, applied to the increase in the carotenoid content

in cereals has been used fundamentally on three

species: corn, wheat and sorghum. In the case of rice

the grains do not produce any carotenoid in the

endosperm, however a new rice variety, Golden Rice,

was developed at the beginning of this century by

engineering grains to produce b-carotene (provitamin

A) in order to help combating vitamin A deficiency in

populations with rice-based traditional diets (this

applies to countries such as India, Vietnam, Bangla-

desh, the Philippines, and Indonesia) (Paine et al.

2005; Ye et al. 2000). The relevance of these cereals

and their impact on the nutrition of the populations of

under-developed countries is reflected in biofortifica-

tion programs such as the one of Harvestplus,

belonging to the Consultive Group on International

Agricultural Research (CGIAR) which is focused on

the augmentation of zinc, iron and provitamin A

contents in basic crops producing staple foods (http://

www.harvestplus.org/).

The last developments in the exploration of the

genomes of the main cereals such as wheat has been

recently reported (Eversole et al. 2014), and has been

made thanks to the existence of genomic models such

as rice and sorghum (Mace and Jordan 2011; Paterson

et al. 2009). A large part of the investigations has been

based, in the first instance, on the study of the

variability in the feature of being susceptible to

traditional selection and breeding, in this case, for

the enhancement of carotenoid content in a given

population and in the second place on the ability to

inherit such a trait (Clarke et al. 2006; Santra et al.

2005). Rice, sorghum and wheat genomes have shown

diverse genetic importance for this characteristic as

reflected in the existence of elite germplasm in these

species (Chander et al. 2008; Ibrahim and Juvik 2009).

Up to now, the study has been focused on the

identification of QTLs (Quantitative Trait Loci) whose

allelic variation is associated with a variation of

quantitative trait such as the carotenoid content, which

varies continuously. Numerous studies can be found

which describe such locus and their relation to the

phenotypic variation in the carotenoid contents of the

endosperm of cereals (Chander et al. 2008; Patil et al.

2008; Pozniak et al. 2007; Salas-Fernandez et al. 2008;

Wong et al. 2004). Studies at this level go beyond the

justification of the overall carotenoid content and

identify specific QTLs for certain carotenoids such as

lutein and b-carotene. Salas-Fernandez et al. (2008)

detected up to five QTLs for b-carotene content in

sorghum located at the 1, 2, and 10 chromosomes.

Howitt et al. (2009) identified three QTLs for lutein

contents in the 3B, 5B and 7A chromosomes of durum

wheat. More recently, Blanco et al. (2011) have

mapped QTLs for b- and a-carotene in the chromo-

somes 2A, 3B and 7A.

In wheat, the most determinant QTLs for the

pigment contents have been repeatedly mapped onto

the 7A and 7B chromosomes, both on durum wheat

and common wheat. The PSY1 codifying genes

(phytoene synthase, EC 2.5.1.32) generally co-segre-

gate with these QLTs. The allelic variations of these

genes are numerous and their continuous appearance

is very probable. This demonstrates a large number of

genetic polymorphisms as well as many genomes to be

explored (Ravel et al. 2013). One of the strategies in

crop improvement is the search for new variation

sources in related wild species such as Lophopyrum

ponticum (Zhang et al. 2005) and H. chilense

(Rodrı́guez-Suárez et al. 2011; Rodrı́guez-Suárez

and Atienza 2012). The small grains of H. chilense

are characterised as having a large amount of

carotenoids and present at least two loci for the

content of pigments located in the 2Hch and 7Hch

chromosomes (Álvarez et al. 1998, 1999; Atienza
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et al. 2004, 2008). Knowledge about the chromosomal

location was first studied by Álvarez et al. (1998) using

additional lines of H. chilense in wheat. These authors

located genes responsible for the level of pigments

(determined as YPC) in H. chilense at chromosome 7

and mapped this feature onto the a arm of this

chromosome. However, the possibility of an interac-

tion between H. chilense genes and the durum wheat

genes of tritordeum promoted a search for new locus.

Subsequently, by means of the construction of the first

genetic map ofH. chilense, a new QTL entitled carot 1

was identified at chromosome 2 (Atienza et al. 2004;

Hernández et al. 2001). Currently, the generation of

maps of a wider range for these purposes is now

available, and therefore there is a greater chance of

finding genomic regions of interest in H. chilense

(Rodrı́guez-Suárez et al. 2012).

This information constitute the first steps towards

the development of a ‘‘Marker Assisted Selection’’

(MAS) program for the content of carotenoids in

tritordeum, which is interesting for the identification

and further transference of particular genes related

with the carotenoid content from tritordeum to wheat

lines subjected to improvement programs. In this way,

the amphiploid tritordeum will also become a useful

species for the enhancement of cereals acting as a

bridge species between barley and wheat (Atienza

et al. 2005, 2007a, b; Martı́n et al. 1999). The

tritordeum lines, regardless of their ploidy level, show

carotenoid contents which are higher than their wheat

relatives (Atienza et al. 2007a). Therefore, the study of

the genetic variation of this feature in tritordeum and

its relation to the level of pigments of the parental

species H. chilense and durum wheat has become a

very active research topic. From these studies it

appears that even though the genome Hch is clearly

responsible for the level of pigments in tritordeum

there can be interactions between the genetic back-

grounds of both parental species that may not be

obvious (Álvarez et al. 1999). Recently the first

exhaustive analysis of the carotenoid profile of H.

chilense was carried out, discovering that more than

half of the lutein was esterified, with a similar

esterification pattern to tritordeum. This corroborates

the previous results and indicates that the esterification

pattern of tritordeum should result from the genetic

background of this wild barley (Mellado-Ortega and

Hornero-Méndez 2015). Recent studies have demon-

strated that lutein esterification in wheat and H.

chilense is controlled by a loci located at the chromo-

somes 7D and 7Hch, respectively (Ahmad et al. 2015;

Mattera et al. 2015).

The utility of the metabolic engineering to improve

human nutrition reaches its best objectives in the basic

foods field (staple foods) which have an important

impact on the nutrition of under-developed popula-

tions. The new generation of crops with the Golden

label such as Golden Potato or Golden Canola are

increasing with time leading up to the well-known

Golden Rice (Bai et al. 2011; Beyer 2010). The

success of last case is encouraging similar studies and

improvement programs with other species. The

intense investigation from the first attempts made in

rice by Burkhardt et al. (1997) to the most recent ones

with the Golden Rice 2 generation (Paine et al. 2005)

have provided stimulating ideas for this purpose.

Another example is the introduction and expression of

the y1 gene (gene coding for phytoene synthase in

yellow endosperm corn) from corn into the hexaploid

commonwheat and its positive effect on increasing the

carotenoid content in the endosperm (Cong et al.

2009). In the case of corn, the improved use of the c-
zein promotor (Marzábal et al. 1998), highly specific

for the expression in endospermic tissue (super c-
zein), derived into an increase in carotenoids of up to

34 times with a preferential accumulation of b-
carotene (Aluru et al. 2008). A more complex strategy

was the one designed by Zhu et al. (2008) with the

generation of an entire transgenic corn plant battery

that resulted from the multiple combinations possible

derived from a multi-gene transformation. More

recently, the simultaneous increase in the vitamin

contents (vitamins A, B and C) involving the simul-

taneous manipulation of three different metabolic

routes (Naqvi et al. 2009), establishes corn as a likely

crop to maximise carotenoid provitamin A contents,

showing less restrictions than others such as rice or

wheat (Wurtzel et al. 2012). The most recent Golden

Rice investigations focus now on the study of the

stability and transference of the transgenes for the

selection and breeding of rice crops with a higher

efficiency through introgression and other enhance-

ment techniques (Datta et al. 2006, 2007). Other less

studied grains such as sorghum and millet, but having

a great impact on under-developed populations such as

the African, are increasingly adapting to these tech-

niques making its way into the biofortification medi-

ated by genetic manipulation (O’Kennedy et al. 2006;
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ges/NutrientRichPlants/Pages/Sorghum.aspx).
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Digesù AM, Platani C, Cattivelli L et al (2009) Genetic vari-

ability in yellow pigment components in cultivated and

wild tetraploid wheats. J Cereal Sci 50:210–218

Doblado-Maldonado AF, Pike OA, Sweley JC et al (2012) Key

issues and challenges in whole wheat flour milling and

storage. J Cereal Sci 56:119–126

Egesel CO, Wong JC, Lambert RJ et al (2003) Combining

ability of maize inbreds for carotenoids and tocopherols.

Crop Sci 43:818–823

El-Agamey A, McGarvey DJ (2008) Carotenoid radicals and

radical ions. In: Britton G, Liaaen-Jensen S, Pfander H

(eds) Carotenoids, vol 4: natural functions. Birkhäuser
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Martı́n A, Álvarez JA, Martı́n LM et al (1999) The development

of tritordeum: a novel cereal for food processing. J Cereal

Sci 30:85–95
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