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Abstract Camptothecin (CPT) is a kind of modified

monoterpene indole alkaloid firstly identified from

woody plant Camptotheca acuminata, and its

semisynthetic CPT analogs irinothecan and topothe-

can are clinically used for the treatment of various

cancers throughout the world. However, the extraction

of CPT from limited natural CPT-producing plant

resources couldn’t meet the rapidly increasing market

need. The development of plant metabolic engineering

provides one alternative way to increase CPT yield by

genetic manipulation, which relies on in-depth under-

standing of the CPT biosynthesis pathway. Several

attempts have been also made to obtain CPT by

biotechnological approaches such as cell suspensions,

endophytic fungi, hairy roots, elicitation as well as

metabolic engineering in the past decade. Here, recent

advances in knowledge of biosynthesis of CPT, gene

isolation, molecular regulation, production improve-

ment and biotechnological methods are summarized

and future perspectives are also discussed in this

review.
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Introduction

Camptothecin (CPT) is a kind of modified monoter-

pene indole alkaloid (Fig. 1), which was firstly

isolated from endemic Chinese happy tree Camp-

totheca acuminata (Nyssaceae) (Wall et al. 1966).

CPT was discovered to own one specific anti-cancer

mechanism by inhibition of DNA topoisomerase I to

kill cancer cells, which is different from other famous

anticancer agents such as Taxol�, and it attracted

considerable attention for clinical trials (Hsiang et al.

1985). Due to its quite low water solubility and severe

side effects, CPT itself was not suitable for clinical

application (Lorence et al. 2004). However, some

semisynthetic water-soluble CPT derivatives such as

topotecan and irinotecan (Fig. 1) were approved by

the US Food and Drug Administration (FDA) in 1994

and were successfully used for the treatment of various

cancers such as ovarian, lung, colorectal cancers and

so on throughout the world (Kai et al. 2008; Lu et al.

2009).

Because of their excellent anti-cancer activity and

extensive clinical use, the combined sales of irinote-

can and topotecan had reached 1.5 billion US dollars

in 2002 and rose to 2.2 billion US dollars in 2008 with
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the tendency of increase (Lorence and Nessler 2004;

Kai et al. 2014). Currently, these CPT analogs

mentioned above are all synthesized from natural

camptothecin which is mainly extracted from plants

such as C. acuminata (Beegum et al. 2007). Till now,

Camptothecin has been also found the existence in

other distantly related plants such as Ervatamia

heyneana (Apocynaceae) (Gunasekera et al. 1979),

Merrilliodendron megacarpum (Icacinaceae) (Ari-

sawa et al. 1981), Nothapodytes foetida (Icacinaceae)

(Govindachari and Viswanathan 1972) and some

Ophiorrhiza species (Rubiaceae) (Tafur et al. 1976;

Aimi et al. 1989; Beegum et al. 2007). However, the

extraction of CPT from limited natural CPT-produc-

ing plant resources, which may result in environmental

concerns, wouldn’t meet the expanding need of the

market (Lorence and Nessler 2004; Sirikantaramas

et al. 2007; Yamazaki et al. 2010; Kai et al. 2008,

2013, 2014). Due to low content of CPT in plants

(about 1 mg/g dry weight (DW), Lopez-Meyer et al.

1994), it is very important to increase CPT production

and develop sustainable methods to obtain CPT for

clinical applications (Ni et al. 2011; Cui et al. 2015).

The rapid development of plant biotechnology

alternatively provides one promising approach to

enhance CPT production by transferring key CPT

biosynthetic genes (and/or transcript factor) into CPT-

producing plant cell, and then large scale culture of

transgenic cell lines, hairy roots or regenerated plants

to obtain CPT (Lu et al. 2009; Cui et al. 2015). This,

however, significantly relies upon the in-depth under-

standing of CPT biosynthetic pathway and molecular

regulation mechanism (Ni et al. 2011; Kai et al. 2013).

In the past decade, much progress has been made in

CPT biosynthesis and biotechnological production of

CPT. This review is to summarize the recent advances

in the understanding of CPT biosynthesis pathway,

molecular regulations and various biotechnological

ways for increasing CPT production and the future

prospects.

Fig. 1 Chemical structures

of Camptothecin and its two

derivatives as anticancer

drugs. a Camptothecin,

b topotecan, c irinotecan
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Isolation, biosynthesis and regulation of CPT

in plants

Isolation of CPT from natural resource plants

Early in 1966, extraction of Camptothecin was firstly

reported from dried C. acuminata stems using so-

called standard fractionation method, which consists

of continuous and hot hexane-heptane extraction

followed by similar extraction with 95 % ethanol,

and Camptothecin was then isolated by silica column

chromatography followed by recrystallization (Wall

et al. 1966). Until 1992, methanol was not attempted

as alternative solvent to extract Camptothecin (van

Hengel et al. 1992), and later methanol with concen-

trations of 70 % was found to display optimal effect

for the CPT extraction (Zhang et al. 2007).

Normally, there are three drying methods including

oven-drying, air-drying, and freeze-drying was used to

dry natural CPT-producing plant resources such as C.

acuminata. Freeze-drying method showed a 27 %

higher CPT concentration than oven- or air-dried

ways, implied that oven- and air-drying caused some

degree of degradation of CPT (Liu et al. 1998). Among

different extraction methods such as stirring extrac-

tion, Soxhlet extraction, ultrasonic extraction and

microwave-assisted extraction (MAE), MAE was

testified more efficient in short time (only need

3 min) than the other extraction techniques at least

in N. foetida (Fulzele and Satdive 2005).

Biosynthetic pathway of CPT

CPT belonging to one kind of monoterpenoid indole

alkaloids (TIA), its biosynthesis pathway is a very

complicated process consisted of many distinct enzy-

matic steps (Fig. 2), which is not completely defined

especially in later specific stage to form CPT (Lorence

and Nessler 2004). CPT as well as other TIAs, are

derived from the common precursor strictosidine,

which is condensed product by the monoterpenoid

secologanin and the amino acid derivative indole

tryptamine catalyzed by the enzyme strictosidine

synthase (Kutchan 1995; Lu et al. 2009). Tryptamine

is synthesized via the shikimate pathway and secolo-

ganin comes from the terpene biosyntheis pathway

(Yamazaki et al. 2004; Kai et al. 2014).

In higher plants, there are two different isoprenoids

biosynthesis pathways (MVA occurring in the cytosol

and MEP pathway in the plastids) responsible for the

synthesis of universal five-carbon precursor isopen-

tenyl pyrophosphate (IPP) to form various isoprenoids

including tanshinone, Taxol and CPT (Liao et al.

2009; Kai et al. 2011a, 2013; Shi et al. 2014). More

and more studies revealed that some degree of

crosstalk between the above two pathways (Aule

et al. 2003; Kai et al. 2011a, 2014), which means that

both MVA and MEP pathway provide common

terpene precursor for CPT biosynthesis and the latter

is main resource (Kai et al. 2011a, 2014). Then

strictosidine is transformed into strictosamide, and the

remaining steps and precise intermediates between

strictosamide and CPT still remains to be identified

now (Lorence and Nessler 2004). Recently several

genes involved in CPT biosynthesis have been isolated

and characterized from CPT-producing plants such as

C. acuminata and Ophiorrhiza pumila by various

research groups as describe below (Table 1).

Cloning and characterization of CPT biosynthetic

genes

Genes in early stage

3-hydroxy-3-methylglutaryl-CoAreductase (HMGR)

The 3-hydroxy-3-methylglutaryl-CoA reductase

(HMGR), which catalyzes the conversion of

3-hydroxy-methylglutaryl-CoA (HMG-CoA) to

MVA, has been considered as the first key step in

the MVA pathway in plants (Liao et al. 2009). A small

gene family of HMGR is found and three alleles,

HMGR1, HMGR 2, HMGR 3 have been isolated from

C. acuminata with different expression profiles

(Maldonado-Mendoza et al. 1997). HMGR 1 is only

be detected in seedling but not nutritive organs of

veteran, whose expression could be induced by the

development and damage and suppressed by MeJA in

transgenic tobacco (Burnett et al. 1993). Interestingly,

HMGR 2 and HMGR 3 can express normally without

being affected by damage or MeJA addition

(Maldonado-Mendoza et al. 1997), implying the

diverse role of each HMGR gene member in C.

acuminata.

3-hydroxy-3-methylglutaryl-CoA synthase (HMGS)

3-hydroxy-3-methylglutaryl-CoA synthase (HMGS)

catalyzes the condensation of acetyl CoA and ace-

toacetyl CoA to form 3-hydroxy-3-methylglutaryl-CoA
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as an early step in the MVA pathway (Kai et al. 2006;

Zhang et al. 2011). Based on homology-cloning

strategy by rapid amplification of cDNA ends

(RACE) (Kai et al. 2012a), a full-length cDNA of

HMGS (EU677841) was successfully isolated from

young leaves of C. acuminatawhich consists of

1801 bp with a 1413 bp open reading frame (ORF)

encoding a 471 amino acid protein (Kai et al. 2013).

As revealed by southern blotting, at least two HMGS

gene members existed in the C. acuminata genome,

HMGS expressed strong in hypocotyls and cotyledons

but undetectable in roots, in accordance with CPT

distribution in these tissues (Kai et al. 2013).

DXP reductoisomerase (DXR) DXP reductoiso-

merase (DXR, EC: 1.1.1.267) which converts DXP

to MEP, is the second enzyme of MEP pathway and

has been regarded as a committed step (Lois et al.

2000). For example, overexpression of DXR in

Peppermint can lead to increased production of

monoterpenes essential oil (Mahmoud and Croteau

2001) and MEP-derived plastid diterpenoids such as

tanshinone in Slavia miltiorrhiza (Shi et al. 2014). The

full-length DXR cDNA sequence was isolated from C.

acuminata, and CaDXR expressed strongly in stem,

weak in leaf and root while it is significantly induced

by exogenous elicitor methyl jasmonate (Yao et al.

2008).

1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate

reductase (HDR) 1-hydroxy-2-methyl-2-(E)-

butenyl 4-diphosphate reductase (HDR) is the last

catalytic enzyme of the MEP pathway (Hsieh and

Goodman 2005). A full-length cDNA of HDR was

successfully isolated from C. acuminata and

functionally identified in Escherichia coli, which

consists of 1686 bp with a 1377 bp open reading

frame (ORF) encoding a 459 amino acid protein

(Wang et al. 2008a). As revealed by southern blotting,

HDR of C. acuminata belonged to a low-copy gene

family, which expressed constitutively in all tested

plant organs with the highest level in flowers and it is

induced by methyl-jasmonate (MeJA) but not salicylic

acid (SA) (Wang et al. 2008a).

Isopentenyl diphosphate isomerase (IPI) Isopentenyl

diphosphate isomerase (IPI) catalyzes the revisable

conversion of isopentenyl diphosphate (IPP) and its

isomer dimethylallyl diphosphate (DMAPP), which

are the essential common precursors for biosynthesis

of isoprenoids including CPT (Pan et al. 2008). A full-

length cDNA of IPI (DQ839416) was successfully

isolated from C. acuminata and functionally identified

in E. coli, which consists of 930 bp open reading

frame (ORF) encoding a 309 amino acid protein (Pan

et al. 2008). Tissue expression analysis results showed

that IPI expressed high in stems, moderate in roots and

tender in leaves but not in mature leaves and fruits

(Pan et al. 2008).

Anthranilate synthase (ASA) Anthranilate synthase

catalyzes the conversion of chorismate into

anthranilate, is the first committed step in the indole

pathway (Herrmann and Weaver 1999). In plants,

anthranilate synthases are commonly composed of two

non-identical subunits, namely alpha (ASA) and beta

subunit (ASB) (Crawford 1989). The beta subunit of

tryptophan synthase (TSB) whose expression parallels

CPT production in seedlings, was isolated from

Camptotheca early (Lu and McKnight 1999). The

two ASA genes were isolated from C. acuminata (asa

1 and asa 2) (Lu et al. 2005). Expression of ASA2 is

constitutively low in C. acuminata while asa1

expressed in all the tested organs with varying

levels, whose spatial and developmental regulation

of ASA 1 is consistent with TSB as well as CPT

accumulation, suggesting that ASA 1 other than ASA 2

is involved in CPT biosynthesis.

bFig. 2 Proposed Camptothecin biosynthetic pathway in plants.

Dotted line arrows indicate multiple steps between intermediates.

CMS, 4-(cytidine 5-diphospho)-2-C-methylerythritol synthase;

CMK, 4-(cytidine 5-diphospho)-2-C-methylerythritolkinase;

MECS, 2-C-methylerythritol-2,4-cyclodiphosphate synthase;

HDS, hydroxymethylbutenyl 4-diphosphate synthase; IDS, IPP/

DMAPP synthase; IPI, IPP isomerase;PTS, isopreny-ltransferase;

GPPS, geranyl pyrophosphate synthase; TPS, terpene synthase;

G10H, Geraniol-10-hydroxylase; CPR, NADPH-Cytochrome

P450 reductase; 10-HGO, 10-hydroxy-geraniol oxidoreductase;

8-HGO, 8-hydroxy-geraniol oxidoreductase; IS, iridoid syn-

thase(IS); IO, iridoid oxidase (CYP76A26); DLGT, 7-deoxylo-

ganetic acid UDP-glucosyltransferase;DLH, 7-deoxyloganic acid

hydroxylase (CYP72A224); LAMT, loganic acid O-methyltrans-

ferase; SLS, Secologanin synthetase; AACT, acetyl-CoA: acetyl-

CoA C-acetyltransferase; HMGS, 3-hydroxy-3-methylglutaryl-

CoA synthase; HMGR, 3-hydroxy-3-methylglutaryl-CoA reduc-

tase; MK, mevalonate kinase; PMK, phosphomevalonate kinase;

MDC, mevalonate 5-diphosphate decarboxylase; AS, anthranilic

acid synthetase; PAT, 5-phosphoribosylanthranilate transferase;

PAI, 5-phosphoribosylanthranilate isomerase; IGS, indole glyc-

erol phosphate synthase; TSB, tryptophan synthase beta; TDC,

tryptophan decarboxylase; STR, strictosidine synthase; SGD,

Strictosidine beta-glucosidase (Kai et al. 2014; Cui et al. 2015)
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Genes in late stage

Tryptophan decarboxylase (TDC) During the

process of CPT biosynthesis, tryptophan

decarboxylase (TDC) catalyzes tryptophan into

tryptamine which is necessary for indole ring

formation of CPT and its derivate (De Luca et al.

1989). Since this reaction represents a branching point

from primary into a secondary metabolism, TDC is

looked as one key enzyme in biosynthesis of

monoterpene indole alkaloids including CPT. The

cDNA clone encoding TDC has been firstly isolated

from Catharanthus roseus (De Luca et al. 1989), then

from C. acuminata (López-Meyer and Nessler 1997).

The TDC 1 gene is regulated by developmental stage

and expressed highest in the stem tip, caulicle and

bark, consistent with the distribution of CPT, which is

associated with CPT accumulation (López-Meyer and

Nessler 1997). Whereas TDC 2 expression cannot be

detected in undisposed organs or buds of development

period and it could be induced by fungal elicitor or

methyl jasmonic acid but not for tdc1, demonstrating

TDC 2 is part of the defense system (López-Meyer and

Nessler 1997). CPT accumulation was detected in

epidermal idioblasts, some glandular trichomes, and

groups of idioblast cells localized in parenchyma

tissues and CPT accumulation could be increased by

drought-stress (Valletta et al. 2010). Gene TDC was

also isolated from O. pumila, the highest TDC

expression occurred in hairy roots, followed by roots

and stems, and undetected in leaves of plant

(Yamazaki et al. 2003).

Geraniol-10-hydroxylase (G10H) Geraniol-10-

hydroxylase (G10H), being a cytochrome P450

monooxygenase, can hydroxylate geraniol at the

C-10 position to generate 10-hydroxy-geraniol,

which is also considered to be a committed step in

the biosynthesis of secologanin and even TIAs (Collu

et al. 2002). G10H has been reported to be a rate-

limiting enzyme in the biosynthesis of terpenoid

indole alkaloids in transgenic C. roseus (van der Fits

and Memelink 2000; Wang et al. 2010; Pan et al.

2012). The G10H gene was firstly cloned from C.

roseus (Collu et al. 2002) and then from C. acuminata

recently (Sun et al. 2011). G10H were regulated in a

waveform manner by MJ treatment, including two

expression peaks during 24 h and constitutively

expressed in young leaves, old leaves, petioles,T
a
b
le
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stems, root bark and root but with highest level in

petioles (Sun et al. 2011).

Strictosidine synthase (STR) Strictosidine synthase

(STR) catalyses tryptamine and the secologanin into

the important TIA intermediate Strictosidine (Lu et al.

2009), has been identified as a key enzyme for

biosynthesis of TIA including CPT. The STR gene

was firstly isolated from Rauvolfia serpentina

(Kutchan 1989) and then from C. roseus (McKnight

et al. 1990). In transgenic C. roseus, over-expression

of STR showed tenfold higher STR activity than wild-

type, which exhibited great enhancement effect on

TIA biosynthesis (Canel et al. 1998). The first STR

gene isolated from CPT-producing plant comes from

O. pumila (Yamazaki et al. 2003). Using RACE-PCR,

we successfully isolate a full-length str cDNA from

young leaves of O. japonica and STR constitutively

expressed in all the tested tissues including flower,

leaf, root and stem (from high to low expression level)

and responsive to methyl jasmonate and salicylic acid

(Lu et al. 2009). Due to low activity of STR in C.

acuminata plants and suspension culture cells, it is not

easy to obtain this gene using forward genetics

method. Recently, by employing transcriptomic

sequencing a STR gene was successfully identified in

C. acuminata (Sun et al. 2011).

Secologanin synthase (SLS) Secologanin synthase

(SLS), the second CYP450, is the last enzyme in the

biosynthesis of secologanin (Sun et al. 2011). The

precursor, secologanin, is biosynthesized from loganin

by secologanin synthase (SLS) (Yamamoto et al. 2000).

ThegeneCYP72A1 fromC. roseuswasfirstly identified

to encode SLS (Irmler et al. 2000). One putative SLS

gene in C. acuminata was cloned (GenBank ID:

HQ605982) by transcriptomic sequencing and was

likely targeted to the endoplasmic reticulum (ER)

membrane by subcellular localization prediction (Sun

et al. 2011). The SLS gene were also MJ-responsive but

with much weaker level than G10H and expression of

SLS is highest inyoung leaves and thenpetioles, but very

weak in old leaves, stems, root bark and root n (Sun et al.

2011).

CPT is one of the most promising plant anti-tumor

drugs and much progress has made in gene isolation,

but yet several gaps existed in the whole CPT

biosynthetic pathway and very little is known about

molecular regulatory mechanism of production, for

example no any related functional transcription factor

was identified from CPT-producing plants until now.

Metabolic engineering of CPT biosynthesis

Due to the shortage of natural resources for CPT

extraction and related environmental concerns, it has

become a keen issue to produce CPT by genetically

engineered plant cell cultures (Yamazaki et al. 2003;

Sirikantaramas et al. 2007; Asano et al. 2013).

Isolation of the above CPT biosynthetic genes provide

possibility to genetic modification of pathway in CPT-

producing plants but with very slow advances (Ni et al.

2011; Asano et al. 2013; Cui et al. 2015).

Since most of CPT-producing plants are woody, it

is difficult to establish a stable transformation system

for woody plant C. acuminata and led to few

successful reports on introducing a CPT biosynthetic

gene into C. acuminata by metabolic engineering in

the past two decades (Ni et al. 2011), although much

effort was put into optimization of transformation

procedures and conditions for C. acuminata (Wang

et al. 2008a, b).

As mentioned above, successful establishment of

hairy root culture system for O. pumila, which

provided an alternative experimental model system

for CPT biosynthesis and production (Saito et al.

2001). In most TDC- and SLS-suppressed O. pumila

hairy root lines by RNA interference (RNAi), accu-

mulation of CPT and related alkaloids, strictosidine,

strictosamide, pumiloside, and deoxypumiloside was

reduced, suggesting they was possibly involved in

CPT biosynthesis (Asano et al. 2013). Based on our

optimizedO. pumila hairy root culture system STR and

G10H genes from C. roseus were separately and

simultaneously introduced into O. pumila hairy roots

and co-overexpression ofG10H and STR genes caused

a 56 % increase on the yields of CPT (1.77 mg/g) with

respect to the control hairy root culture (Cui et al.

2015). Furthermore, ORCA3 is a jasmonate respon-

sive APETALA2-domain transcript factor isolated

from C. roseus, with strong ability to up-regulate

expression of several key genes involved in TIA

biosynthetic pathway (van der Fits and Memelink

2000). Overexpression of ORCA3 in transgenic C.

acuminata hairy root lines can effectively enhance the

production of CPT with 1.5-fold compared with the

control (1.12 mg/g dw) (Ni et al. 2011). The above

results revealed that metabolic engineering is an
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effective strategy for improving CPT biosynthesis in

the future.

Biotechnological production of CPT

In vitro culture system

Plant cell suspension culture technology is an effective

way for production of valuable secondary metabolites

such as taxol (Kai et al. 2006, 2014). The first callus

induction and culture study of C. acuminata was

performed 40 years before, which only produced

2.5 ug/g CPT DW (Sakato et al. 1974). Later reports

showed that from 4 to 41 lg/g CPT DW could be

produced in cell suspensions of C. acuminata (van

Hengel et al. 1992; Zhang et al. 2002; Ma 2007). The

above results implied that too lower content of CPT

(2.5–41 lg/g) was produced in vitro callus or cell

cultures of CPT-producing plants than soil-grown

plant such as C. acuminata (about 0.2–1 mg/g). Even

no CPT was produced in cell cultures of O. pumila

(Kitajima et al. 1998), which reflected complicated

situations between different plants and limited cell

suspension culture to obtain CPT further.

Hairy root, which is caused by Agrobacterium

rhizogenes, owns some advantages such as rapid

growth rate, unlimited branching, and biochemical

and genetic stability and is considered as an effective

means to produce high-value secondary metabolites

(Li et al. 2008; Georgiev et al. 2012; Kai et al. 2011a,

b, 2012b, c, d; Hao et al. 2015; Shi et al. 2014). Hairy

root was induced from C. acuminata by A. rhizogenes

strains ATCC 15834 and R-1000, and were able to

synthesize about 1.0 and 0.15 mg/g dry weight for

CPT and the HCPT similar to roots of plants (Lorence

et al. 2004). We also optimized hairy root induction

conditions and established hairy root system of C.

acuminata, but they generally grew slowly with very

limited branching (Wang et al. 2008a, b).

Excitingly, a hairy root culture of O. pumila

transformed by A. rhizogenes strain 15,834 was

established by Japan scientist and the hairy root culture

grew well with rapid biomass increase and produced

high level of CPT (reached up to 0.1 % per dry weight),

which provides an alternative experimental model

system for CPT biosynthesis and production (Saito

et al. 2001). Recently hairy root induction conditions of

O. pumila were also optimized with much more

induction efficiency in our group (Cui et al. 2015).

Indeed, O. pumila, O. liukiuensis, and O. kuroiwai

hairy root cultures have shown good results for CPT

production (Saito et al. 2001; Sudo et al. 2002; Asano

et al. 2004). Hairy roots was also induced fromO. alata

infected by A. rhizogenes TISTR 1450 and accumu-

lated CPT at level of 785 mg/g dry weight which was

twice that of roots of soil-grown plants and similar to

O. pumila hairy roots (Ya-ut et al. 2011). All the above

resulted suggested that hairy root systems of some

CPT-producing Ophiorrhiza weedy plant are a promis-

ing way to obtain CPT in the future.

Elicitors treatment

Elicitation by treatment of plant cell or tissue with

elicitors, is one kind of effective strategy for enhanc-

ing plant secondary metabolite accumulation (Luo

et al. 2012; Wang and Wu 2013; Kai et al. 2014; Hao

et al. 2015). Abiotic elicitors such as metal ions and

inorganic compounds and biotic elicitors as fungi,

bacteria and viruses have been widely used with good

effects (Zhao et al. 2005; Zabala et al. 2010; Luo et al.

2012; Kai et al. 2012b, c). The most common elicitors

used in plant tissue cultures include yeast extract (Kai

et al. 2012b, c), and some important plant hormones

molecules such as jasmonic acid (JA) and salicylic

acid (SA) (Liao et al. 2009; Fujimoto et al. 2011; Hao

et al. 2015; Kai et al. 2014).

The addition of yeast extract, jasmonic acid and

methyl jasmonic acid could significantly enhance the

content of CPT (Song and Byun 1998). However, in

the hairy roots of O. pumila, elicitors and signal

compounds did not significantly increase CPT pro-

duction (Saito et al. 2001). Addition of CuCl2 with

optimum concentration of 0.008 mg/mL, increased

CPT production for 30 times (1.17 mg/g fresh weight,

FW) than control (0.04 mg/g FW) with no inhibitive

effects on cell growth (Gu et al. 2006). Among various

tested treatments, UV-B showed the most notable

effects for CPT (11-fold increase, 0.00115 mg/g dw)

while salicylic acid showed a 25-fold increase

(0.00056 mg/g dw) for 10-hydroxycamptothecin (Pi

et al. 2010). Abscisic acid (ABA, 100 lM), methyl

jasmonate (MJ, 100 lM) and salicylic acid (SA,

1 mM) were used to treat C. acuminata seedlings

and the results showed that all three elicitors enhanced

both CPT and 10-hydroxycamptothecin accumulation,

among which abscisic acid (ABA) exhibited the most
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effective elicitation with the increment of 1.44-fold for

CPT (1.81 mg/g DW) and 1.21-fold for HCPT

(2.6 mg/g DW), respectively (Kai et al. 2014).

Expression profiles results indicated that there is a

positive correlation between gene expression and

alkaloid accumulation, suggesting that CPT is accu-

mulated by synchronous up-regulation of several CPT

biosynthetic genes such as HMGR, DXR and TDC

(Kai et al. 2014).

Endophytic fungi

Endophytes are the microorganisms that reside in the

tissues of living host plants without causing apparent

disease symptoms and are considered as a potential

resource to produce natural bioactive compounds

(Chandra 2012). Being a kind of readily renewable,

reproducible, and inexhaustible source (Chandra

2012), plant endophytic fungi is much easier for

mass-production by fermentation in bioreactors which

is different from plant cell or tissues.

The first taxol-producing endophytic fungus Tax-

omyces andreanae was isolated in 1993 (Stierle et al.

1993), reflecting that endophytic fungi own the ability

to produce some important native product as dose in

the plant host during long coexistence process. After

more than 10 years, the first CPT-producing endo-

phytic fungus Entrophospora infrequens, belonging to

the family Phycomycetes, was obtained from the inner

bark of Nothapodytes foetida from India (Puri et al.

2005). When it was grown in a synthetic liquid

medium (Sabouraud broth) under shake flask and

bench scale fermentation conditions, CPT could be

produced as identification by means of chromato-

graphic and spectroscopic methods as well as anti-

cancer activity, providing an easily accessible source

for the production of CPT (Puri et al. 2005). Amna

et al. (2006) investigated the growth and CPT

production of E. infrequens isolated from N. foetida

in bioreactor, which was testified to have the potential

to produce CPT. CPT and two of its analogues,

9-methoxycamptothecin and 10-hydroxycamp-

tothecin could be produced by a novel endophytic

fungus isolated from the inner bark ofC. acuminata, in

rich mycological medium under shake-flask fermen-

tation conditions (Kusari et al. 2009). CPT and

10-hydroxycamptothecin was discovered in endophyt-

ic fungi Fusarium solani from Apodytes dimidiata

(Icacinaceae) in India (Shweta et al. 2010). Shweta

et al. (2010) reported the production of CPT,

9-methoxycamptothecin and 10-hydroxycamp-

tothecin by endophytic fungi strains isolated from

Apodytes dimidiata (Icacinaceae). Interestingly, the

production of CPT and 9-methoxy CPT (9-MeO-CPT)

in culture was firstly reported by endophytic bacteria

isolated from Miquelia dentate Bedd. (Icacinaceae),

independent of the host tissue (Shweta et al. 2013).

The above studies indicated that CPT and its

derivatives could be produced by endophytes isolated

from CPT-producing host plants (Table 2), provide an

alternative method to obtain CPT and other new drugs.

However, the CPT yield of all the above endophytic

fungi is very low than that in host plants and is

genetically unstable (the ability of CPT production

would frequently be attenuated or even lost over sub-

culture generations), which is one of the major

challenges that needs to be conquered for in vitro

production by CPT-producing endophytes (Pu et al.

2013).

Conclusion and future prospects

Despite of excellent anti-cancer active of CPT

derivatives such as irinothecan and topothecan and

rapid increasing market need, CPT is still obtained by

the extraction from natural plant resources such as C.

acuminata, which cannot meet the heavy demand from

the global market. Therefore, it is of significance to

increase CPT production and develop sustainable

methods to obtain CPT to meet the rapidly increasing

market need by biotechnological approaches in the

future. The rapid development of mordern biotech-

nology provides a new promising way to improve CPT

production by genetic manipulation of CPT producing

plants, however which depended on in-depth under-

standing of the CPT biosynthesis pathway and its

molecular regulation mechanism (Lu et al. 2009).

Much progress has been made to understanding the

CPT biosynthesis pathway in the past decade, how-

ever, the precise steps between strictosidine and CPT

are not very clear in CPT-producing plants, which

involves a series of oxidation and hydroxylation

reactions. Much more attention should be paid to

dissect the CPT biosynthetic pathway to identify those

rate-limiting steps by metabolic flux analysis and

isolate the genes encoding key enzymes, as well as

regulatory gene such as upstream transcription factors.
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Quick development and application of combined new

omics-based approaches such as transcriptomics,

proteomics and metabolomics would greatly speed

up the dissection of CPT biosynthesis pathway and

unveiled those unknown steps.

Biotechnological approaches such as plant cell

suspension, hairy root and endophytic fungi as alter-

native platforms to produce CPT, appeared to exhibit

the potential of fulfill the increasing market demand,

independent of natural CPT-producing plant.

Recently, hairy root culture system of CPT-producing

plants such as O. pumila has showed good application

potential to study CPT biosynthesis and produce CPT

by coupling with associated bioreactor mass produc-

tion technology. The special morphology of hairy

roots normally hampers the scale-up processes, so

modifications of the existing bioreactors and even re-

design of suitable bioreactors to overcome shear stress

problems, are still needed for further mass-production

of CPT. The combination of metabolic engineering

Table 2 A list of CPT-producing endophytic fungi

Host Endophytic fungi Fungal strain Accession

no.

CPT yield CPT analogues

yield

References

N. foetida Entrophospora

infrequens

– – ? – Puri et al. (2005)

N. foetida Entrophospora

infrequens

MTCC 5121 – 49.6 lg/g – Amna et al. (2006)

N. foetida Neurospora sp. ZP5SE – 5.5 lg/g – Rehman et al.

(2008)

N. foetida Nodulisporium sp. – – 5.5 lg/g – Rehman et al.

(2009)

C. acuminata Fusarium solani INFU/CA/

KF/3

FM179605 6.0 lg/g ? (9-MeOCPT and

10-OHCPT)

Kusari et al. (2009)

C. acuminata Unidentified XK001 – ? – Min and Wang

(2009)

C. acuminata Xylaria sp. M20 GQ414524 – 5.4 mg/L(10-

OHCPT)

Liu et al. (2010)

A. dimidiata Fusarium solani MTCC 9667 GQ465774 0.37 lg/g ? (9-MeOCPT) Shweta et al. (2010)

A. dimidiata Fusarium solani MTCC 9668 GQ465775 0.53 lg/g ? (9-MeOCPT and

10-OHCPT)

N. nimmoniana Unidentified UAS001 FJ158119 ? – Gurudatt et al.

(2010)

N. nimmoniana Fusarium sacchari UAS013 FJ158129 ? –

N. nimmoniana Phomopsis sp. UAS014 FJ158130 21.7 lg/
g(2nd*)

–

N. nimmoniana Botryosphaeria Parva UAS015 FJ158131 ? –

N. nimmoniana Fusarium subglutinans UAS017 FJ158133 ? –

M. dentata Fomitopsis sp. MTCC 10177 – ? – Shweta et al. (2013)

M. dentata Alternaria alternata MTCC 5477 – ? –

M. dentata Phomposis sp. – – ? –

C. acuminata Botryosphaeria

dothidea

X4 HQ416954 – ? Ding et al. (2013)

C. acuminata Aspergillus sp. LY341 – 7.93 lg/l – Pu et al. (2013)

C. acuminata Aspergillus sp. LY355 – 42.92 lg/l –

C. acuminata Trichoderma

atroviride

LY357 KC469612 197.82 lg/l –

N. foetida, Nothapodytes foetida; A. dimidiata, Apodytes dimidiata; N. Nimmoniana, Nothapodytes nimmoniana; M. dentata,

Miquelia dentata; C. acuminata, Camptotheca acuminata. *2nd, generation 2
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with those in vitro CPT-production and enhancement

approaches, may be the most promising way to

produce CPT and its derivatives via biological

approaches in the future.
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