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Abstract Sessile marine animals like sponges,

tunicates, and bryozoans are a rich source of bioac-

tive natural products, many of which exhibit potent

anticancer activities. However, most of these sub-

stances are available in very limited amounts only,

which has prohibited further drug development.

Recent evidence suggests that symbiotic bacteria

might be the true producers of many animal-derived

metabolites. In addition to revealing fascinating

perspectives for research in marine chemical ecology,

these findings suggest new solutions to the supply

problem. Although most symbionts remain unculti-

vated, bacterial production systems might be created

by isolating biosynthetic genes from marine metage-

nomes, and expressing them in culturable bacterial

hosts. This review discusses cell-sorting, natural

product visualization, and phylogenetic approaches

to identify symbiotic producers. In addition, strate-

gies to isolate genes and gene clusters from marine

species consortia are described. These techniques

have provided insights into the bacterial origin and

biosynthesis of polyketides like the onnamides,

swinholides, and bryostatins, of peptides including

the patellamides, chlorinated dipeptides, and theop-

alauamide as well as of brominated biphenylethers.
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Abbreviations

BAC Bacterial artificial chromosome

CARD-FISH Catalyzed reporter deposition

fluorescence in situ

hybridization

CMF-ASW Calcium–magnesium-free

artificial sea water

CoA Coenzyme A

DGGE Denaturing gradient gel

electrophoresis

FACS Fluorescence-activated

cell-sorting

FISH Fluorescence in situ

hybridization

HRP Horseradish peroxidase

MALDI-TOF MS Matrix-assisted laser desorption

ionization–time of flight mass
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NRPS Nonribosomal peptide

synthetase

PAC P1-derived artificial

chromosome

PKS Polyketide synthase

SSCP Single-strand conformation

polymorphism analysis

YAC Yeast artificial chromosome
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Introduction

Nature has served as a source of medicinal treatment

for thousands of years (Butler 2004). Today, about

50% of the clinically used anticancer agents are based

on natural products (Newman and Cragg 2007).

These drugs are well represented among the world-

wide top-selling medicines and account for 30% of

international drug sales (Grabley and Thiericke

1999). Marine animals have been identified as a

particularly rich source of natural products with

diverse and unique structures (Munro et al. 1999;

Faulkner 2000). Over 17,000 biologically active

compounds have been identified from marine

sources, mainly isolated from sessile animals, such

as sponges, tunicates, corals, mollusks, and bryozo-

ans (Newman and Cragg 2004; Lebar et al. 2007).

Many of these substances are potent cytotoxins that

are of great interest for anticancer drug development.

The discovery of new marine drug candidates is a

highly efficient process due to the availability of

sophisticated screening, dereplication, and character-

ization techniques. In contrast, the development into

clinically useful drugs has been slow. One of the most

common reasons is the restricted access to sufficient

amounts of material. Generally, only low quantities

can be obtained from the natural habitat, and few

cases exist where alternative supplies, such as

mariculture, semi- or total synthesis or the synthesis

of structurally simplified analogs, have been created

(Wender et al. 1998; Munro et al. 1999; Cuevas et al.

2000; Proksch et al. 2002; Zheng et al. 2004). Mainly

because of this issue, the number of marine-derived

substances in clinical use remains low: these include

AraA (1) and AraC (2) (synthetic analogs of sponge-

derived natural products) (Newman and Cragg 2004),

the analgetic oligopeptide ziconotide from cone

snails (provided synthetically) (Williams et al.

2008) and the recently approved anticancer agent

ET-743 (3) from a tunicate (semisynthesis from a

bacterially produced analog) (Cuevas et al. 2000).

This number can be expected to rise significantly if

general solutions to the supply problem can be found.

A frequent phenomenon in marine natural product

research is the discovery of invertebrate-derived

substances that are structurally closely related to

bacterial secondary metabolites (Bewley and Faulk-

ner 1998; Moore 1999; Piel 2004; König et al. 2006;

Moore 2006). In addition, it has been noted that

numerous marine animals harbor complex polyke-

tides and structurally modified peptides. These

natural product families are common in bacteria,

but the biosynthetic enzymes are extremely rare in

animals. These observations suggest that symbiotic

bacteria could be the true producers of many marine

drug candidates. If the microorganisms could be

cultivated outside their hosts, fermentation might

facilitate the sustainable production of natural prod-

ucts at the industrial scale. However, growth of

marine symbionts in pure culture has been successful

in only few cases (Hill et al. 2005; Hill and Peraud

2005). A study on the Great Barrier Reef sponge

Rhopaloides odorabile resulted in the cultivation of

only 0.1% of the total bacterial community (Webster

and Hill 2001). Even if cultivation conditions can be

identified, the desired compound might not be

produced due to the absence of required environ-

mental signals.
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Recent advances in cultivation-independent tech-

niques and DNA sequencing methodology have

provided the intriguing perspective to study natural

product biosynthesis in complex microbial commu-

nities without the need to cultivate the producer

(Hildebrand et al. 2004a; Piel 2004; Salomon et al.

2004; Schmidt 2008). Particular promising are

approaches at the genetic level. The identification

of entire biosynthetic routes is simplified by the fact

that in bacteria all genes for the production of a

secondary metabolite are commonly organized in a

cluster. Subsequent gene expression in culturable

microbes might then not only reveal fundamental

insights into the chemistry and ecology of uncultured

symbionts, but also provide access to sustainable

production systems. Moreover, with the genes in

hand, pathways could be genetically altered to

produce structurally novel analogs with improved

pharmacological profiles. In the following sections

we give an overview about the techniques that have

been used to investigate the biosynthetic origin of

marine natural products.

Localization of natural products

The first natural product studies on uncultivated

symbionts employed mechanical separation of cell

types from their host tissues, followed by a chemical

analysis of each cell fraction (Müller et al. 1986;

Garson et al. 1992; Unson and Faulkner 1993; Unson

et al. 1994). A subsequent phylogenetic analysis (see

below) can reveal the taxonomic status of the

organisms present. There are several ways to achieve

cell separation, including fluorescence-activated cell-

sorting (FACS) (Unson and Faulkner 1993; Unson

et al. 1994), centrifugation-based methods (Bewley

et al. 1996; Flowers et al. 1998; Laroche et al. 2007),

or simple squeezing as in the case of didemnid

tunicates containing Prochloron spp. cyanobacteria

(Schmidt et al. 2005). With sponges, cell separation is

usually carried out in calcium and magnesium-free

artificial sea water (CMF-ASW), since sponge cells

reassociate rapidly in the presence of Ca2? and Mg2?

(Fernandez-Busquets and Burger 1999). Cell separa-

tion by FACS for the localization of secondary

metabolites was demonstrated for the sponge Dysidea

herbacea (Unson and Faulkner 1993; Unson et al.

1994). The sponge mesohyl (extracellular matrix) is

densely populated by the filamentous cyanobacterium

Oscillatoria spongeliae (up to 50% of the tissue

volume). For separation of the filaments, homoge-

nized sponge tissue was passed through a series of

sieves with decreasing mesh sizes to remove large

particles. The dissociated cellular material was

filtered onto a 1.2 lm mesh sieve and fixed with

glutaraldehyde. After removal from the filters, the

cellular material was resuspended, and cyanobacterial

cells were separated by flow-cytometry on the basis

of phycoerythrin fluorescence. Extracts of the sepa-

rated cells were then analyzed by GC-MS and NMR.

A study of two D. herbacea chemotypes containing

either brominated biphenyl ethers, such as (4) and (5),

or chlorinated dipeptides, e.g., dysidenin (6) and

dihydrodysamide C (7), showed that the compounds

were present in the cyanobacterial fraction and not in

the sponge cells or heterotrophic bacteria (Unson and

Faulkner 1993; Unson et al. 1994).

Various researchers used differential centrifugation

as an alternative method for compound localization in

sponges (Bewley et al. 1996; Laroche et al. 2007).

After homogenization in CMF-ASW, the material is

usually filtered through a nylon sieve to remove larger

particles. The filtrate is subjected to repeated centri-

fugation at increasing speed (typical range between

200 and 4,500 9g), which results in the sedimentation

of cell types with different densities. This method was

applied to the localization of swinholide A (8) and the

antifungal theopalauamide (9) in Palauan specimens

of the sponge Theonella swinhoei (Bewley et al. 1996).

The sponge harbors three different bacterial cell

populations: filamentous heterotrophic bacteria that

are only found in the sponge endosome (interior
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tissue), unicellular cyanobacteria (identified as

Aphanocapsa feldmanni) present only in the ectosome

(exterior tissue), and unicellular heterotropic bacteria

which are distributed throughout the sponge. Chemical

analysis of separated cell types showed that 9 was

mainly located in the filamentous bacteria, later

identified as the d-proteobacterium Candidatus Ento-

theonella palauensis (Schmidt et al. 2000). In contrast,

concentration of 8 was highest in the unicellular

bacterial preparation. In a more recent study, lipids and

the antimalarial polyketide plakortin (10) were dem-

onstrated to be exclusively or mainly associated with

the bacterial fraction (Laroche et al. 2007). Differen-

tial centrifugation can also be used to obtain enriched

DNA of uncultivated producers for gene isolation

studies. This method was applied to the symbiont

Candidatus Endobugula sertula from the bryozoan

Bugula neritina (Hildebrand et al. 2004b). The animal

contains anticancer compounds of the bryostatin

series, with bryostatin 1 (11) having reached phase II

clinical trials for combination therapy (Singh et al.

2008). From the DNA of the enriched cells a library

was prepared that served to isolate the putative

bryostatin biosynthesis gene cluster (see below)

(Sudek et al. 2007).

Cell types can also be separated by density-

gradient centrifugation. After dissociation of tissues

by homogenization, the mixture is centrifuged over a

Percoll or Ficoll gradient. This procedure results in

the accumulation of cells at gradient positions that

have the same density. In this way, evidence was

obtained for the association of chlorinated diketopi-

perazines like 7 with O. spongeliae in the sponge

D. herbacea (Flowers et al. 1998). Several other

marine natural products from sponges (Müller et al.

1986; Garson et al. 1992; Garson et al. 1994; Uriz et al.

1996a, 1996b; Richelle-Maurer et al. 2001; Salomon

et al. 2001) and tunicates (Steffan et al. 1993;

Seleghim et al. 2007) were examined by this method,

but these were usually detected in the host cells.

Localization of natural products in intact tissues is

a third approach to identify producer candidates.
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Turon and coworkers visualized brominated com-

pounds, such as 4 and 5, in cryofixed D. dysidea

sections by X-ray microanalysis (Turon et al. 2000).

By this method, the energy emission spectrum of the

bromine substituents was exploited to localize the

metabolites to O. spongeliae. An immunolocalization

technique using gold-labeled antibodies was applied

to visualize the polyketide latrunculin B (12) in the

sponge Negombata magnifica, which revealed its

association with vacuoles of sponge cells (Gillor et al.

2000). Dorrestein and coworkers demonstrated the

potential of mass spectrometric imaging for symbi-

osis research (Esquenazi et al. 2008). By MALDI-

TOF MS, the spatial distribution of various metab-

olites in cell mixtures was analyzed. The method

provided resolution down to individual cyanobacte-

rial filaments in microbial mixtures. For the sponge

D. herbacea, a non-homogeneous distribution of

natural products was detected.

When using the localization approach, the possi-

bility should be considered that a high concentration

of a particular compound is not necessarily due to a

biosynthesis at the same site. Transport of natural

products across cellular membranes and whole tissues

is a common phenomenon that could provide mis-

leading information about the biosynthetic source. An

illustrative example is provided by a series of studies

on cyclic peptides, such as patellamide A (13), from

the ascidian Lissoclinum patella. While initially the

highest peptide concentration was reported for

mechanically isolated Prochloron spp. cells (Degnan

et al. 1989), an independent study concluded that the

compounds are localized in the animal tunic rather

than the symbiont (Salomon and Faulkner 2002).

Ultimately, isolation of the biosynthetic gene cluster

and heterologous expression identified Prochloron as

true source (Long et al. 2005; Schmidt et al. 2005).

Phylogenetic analysis

The identification of uncultivated bacteria is usually

not possible by analyzing morphological features

alone. However, molecular methods measuring the

divergence of nucleotide sequences between organ-

isms provide a fairly accurate way to determine the

taxonomic position. Commonly used for bacteria is

the 16S rRNA gene (Rappé and Giovannoni 2003). In

16S rRNA analysis, the DNA of an invertebrate

sample or a target microbial cell type is used as the

template for amplifying the 16S rRNA gene by PCR.

With primers based on universally conserved gene

regions, 16S rRNA gene fragments from all bacteria

present in a sample can in principle be obtained.

Alternatively, specific primers can be designed for

the detection of individual taxa or even single

ribotypes. In most of the cases the analysis of an

environmental sample yields complex amplicon

mixtures due to the presence of multiple ribotypes.

These can be separated either by cloning, dilution or

electrophoretic methods, such as denaturing gradient

gel electrophoresis (DGGE) (Muyzer 1999; Schmidt

et al. 2000) or single-strand conformation polymor-

phism analysis (SSCP) (Hayashi 1992). DGGE or

SSCP are valuable tools for the rapid comparative

analysis of microbial communities in different sam-

ples, although resolution limits can complicate the

study of complex assemblages. In DGGE, electro-

phoresis is conducted in gradient polyacrylamide gels

containing urea and formamide as denaturing agents.

As the DNA fragments migrate through the gel, the

concentration of the denaturing agents increases until

it is sufficiently high to separate the DNA strands,

which prevents further migration. Separation of

amplicons can be achieved because the denaturation

point is sequence-specific. In SSCP, the DNA is

denatured first and then subjected to polyacrylamide

gel electrophoresis. Here, variation in the migration

behavior results from conformational differences in

single-stranded DNA species.

After separation of amplicons, their sequence can

provide taxonomic information. This is retrieved by

sequence homology searches and the application of

evolutionary algorithms to reconstruct phylogenetic
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trees from multiple sequences (Gutell et al. 1994;

Rappé and Giovannoni 2003; Yarza et al. 2008). In

these trees, the grouping of the candidate sequence

with sequences of known species will provide

information about the taxonomic position. In this

way, microbial communities have been analyzed in

numerous marine animals, including sponges (Taylor

et al. 2007), tunicates (Moss et al. 2003; Schuett et al.

2005; Martinez-Garcia et al. 2007; Perez-Matos et al.

2007), and bryozoans (Haygood and Davidson 1997;

Lim and Haygood 2004; Kittelmann and Harder

2005; Anderson and Haygood 2007). An example is

the identification of the uncultivated putative

producer of the bryostatins in B. neritina as the

c-proteobacterium ‘‘E. sertula’’ (Haygood and David-

son 1997). In the sponge T. swinhoei, the filamentous

bacterium that is the likely source of theopalauamide

(9) was described as d-proteobacterium Candidatus

E. palauensis (Schmidt et al. 2000).

Fluorescence in situ hybridization (FISH) of whole

cells using 16S rRNA-targeted oligonucleotide probes

allows for a direct observation of microorganisms at

the species, genus, or higher taxon level in an

environmental sample (Amann and Fuchs 2008). The

method relies on fluorescently labeled probes that

hybridize to regions of the 16S rRNA molecule. The

probes are applied to cells that have been fixed on a

microscopic slide and hybridize to their complemen-

tary target sequence in the ribosomes. The labeled cells

can be directly observed by epifluorescence micros-

copy, which provides insights into cell morphology,

abundance, and location in the tissue. An example

from natural product research is the detection of the

putative bryostatin producer ‘‘E. sertula’’ in various

developmental stages of B. neritina (Haygood and

Davidson 1997; Sharp et al. 2007). FISH can also be

applied to the mRNA of biosynthetic genes. However,

since the copy number of mRNA in the cell is usually

lower than that of rRNA, the standard method is more

difficult to conduct as it is less sensitive. One of the few

reported cases is the localization of mRNA belonging

to the putative bryostatin pathway. The FISH probes

were shown to bind to ‘‘E. sertula’’ present in bryozoan

larvae (Davidson et al. 2001). The sensitivity can be

significantly increased by modified FISH protocols.

One of the most useful techniques is Catalyzed

Reporter Deposition (CARD)-FISH (Raap et al.

1995; Pernthaler et al. 2002). Here, the RNA probe

is labeled with horseradish peroxidase (HRP) that

serves to amplify the signal. The tissue is also

incubated with fluorescein-labeled tyramine, which

enters the cells and is cross-linked by HRP. The

technique has been applied to detect the mRNA of

gene candidates involved in chlorination of com-

pounds like 6 present in the sponge D. herbacea (Flatt

et al. 2005). In accordance with previous cell separa-

tion experiments (see above), the probe was found to

bind to the filamentous cyanobacterium O. spongeliae.

Analysis of biosynthetic genes in symbionts

Many marine invertebrates harbor large amounts of

highly diverse symbiotic bacteria in their tissues. In

sponges for instance, microbes can account for up to

60% of the animal biomass (Schmitt et al. 2007;

Taylor et al. 2007). The microbial cell density can

surpass 109 microbial cells per gram of sponge tissue,

exceeding that of seawater by two to four orders of

magnitude (Schmitt et al. 2007; Taylor et al. 2007).

To successfully localize and clone a pathway of

interest in such complex communities, effective

metagenomic (encompassing multiple genomes)

strategies are required. Several technically challeng-

ing steps have to be performed: (i) One has to enrich

for the DNA of the producer by cell separation

techniques or, if the producer is unknown or insep-

arable, the total genetic material has to be captured,

(ii) candidate sequences of the gene cluster have to be

identified among multiple homologous genes, and

(iii) gene clusters must be isolated from often

extremely complex DNA mixtures. In the following

sections, these steps are described in more detail.

DNA isolation

Isolation of an entire biosynthetic gene cluster

requires the construction and screening of a DNA

library, i.e., collections of recombinant bacterial

clones, each of which harbors a fragment of the

metagenomic DNA. To minimize the numbers of

clones that have to be screened, it is desirable to keep

the size of the foreign DNA fragments as large as

possible. The isolation of high-molecular weight

DNA from marine animals is often difficult due to

rapid degradation after collection or the presence of

enzyme inhibitors or polysaccharides that are
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coisolated and can affect downstream steps. The

storage condition, animal type and isolation protocol

can dramatically influence the quality of the isolated

DNA. In general, storage in RNAlater immediately

after collection has in our hands consistently produced

the best results. In contrast, the same DNA isolation

protocol might not be applicable equally well to even

chemotypes of the same animal species (K. M. Fisch

et al., unpublished observations). Variations that can

be tested include the addition of cetyltrimethylam-

monium bromide to remove polysaccarides and other

contaminants (Jobes et al. 1995; Piel et al. 2004b), the

performance of an initial cell separation step (Hilde-

brand et al. 2004b), or cell lysis in agarose plugs to

reduce shearing forces (Yu et al. 2008).

DNA cloning

To construct a representative library that covers the

genome of interest, a variety of cloning vectors are

available. The selection of an appropriate vector

depends on the average size of DNA fragments to be

cloned. High-capacity vectors can accommodate large

DNA fragments, thereby increasing the frequency of

positive clones harboring the target genes (Monaco

and Larin 1994). These include cosmids or fosmids

with an insert capacity range of 35–40 kb, bacterial

artificial chromosomes (BACs) for inserts up to around

300 kb, and yeast artificial chromosomes (YACs) with

a capacity of 800 kb or even larger. In addition, P1-

derived artificial chromosomes (PACs) exist that

contain up to 300 kb fragments. PACs combine the

features of cosmid-type vectors based on P1 and

BACs. In general, the construction of very large insert

libraries is more difficult than for smaller inserts due to

decreasing cloning efficiencies and the challenge to

prepare metagenomic DNA of suitable size. Cosmid or

fosmid libraries provide a good balance of efforts that

have to be invested in cloning versus screening. The

advantage of fosmid vectors over cosmids is the lower

copy number, which sometimes allows one to stably

maintain clones expressing proteins that are toxic at

high concentration.

To clone DNA fragments into vectors, a number of

strategies exist. If blunt-end vectors are used, 30 and

50-overhangs of the isolated DNA have to be

converted to ends that can be ligated. This is achieved

enzymatically, e.g., by T4 DNA polymerase that

removes the nucleotide overhang at the 30-termini and

fills in the 50-overhangs. In contrast to the protocols

recommended by some manufacturers it is usually of

advantage if DNA fragments of desired size are first

isolated by electrophoretic separation before the end-

repair step is performed (Brady 2007). The ligation

efficiency might be improved if A overhangs are

attached to the 30-termini of the repaired metage-

nomic DNA by using Taq DNA polymerase and

ATP. These can then be joined with the linearized

vector to which a 30-T overhang has been added.

After ligation, the product is introduced into E. coli or

more seldom into other cells to generate a library.

Library screening

Libraries can principally be screened in a number of

ways. If a useful hypothesis exists about the nature of

biosynthetic genes encoding the pathway, screening

can be performed by a search for similar sequences

present in the clones. On the other hand, screening by

function relies on the possibility that biosynthetic

pathways are expressed in the host and can be

phenotypically detected. Sequence-based screening

may first involve transferring individual clones from

agar plates into microtiter wells. These clone copies

can then be screened by PCR (Schmidt et al. 2005) or

by hybridization (Hildebrand et al. 2004b; Schirmer

et al. 2005; Sudek et al. 2007). The microtiter format

has the advantage that the plates can be easily stored

in the freezer and can serve as master plates for later

screening. Libraries can also be screened by directly

blotting colonies from agar plates onto Nylon mem-

branes, which are then analyzed by hybridization.

This method was applied for the isolation of the

bryostatin gene cluster from enriched libraries con-

taining several tens of thousands of clones (Sudek

et al. 2007). Often the clone numbers that have to be

screened are very large due to small insert sizes or

very complex source DNA. For example, a 860,000

and a 410,000 clone fosmid library contained only a

single copy of the gene cluster for the biosynthesis of

onnamide A (14) (Piel et al. 2004a, b; J. Piel et al.

unpublished) and psymberin (15) by sponge symbi-

onts (Fisch et al. 2009), respectively. In both the plate

and microtiter format, clones can been pooled to

expedite screening (Piel 2002; Piel et al. 2004b;

Schmidt et al. 2005; Hrvatin and Piel 2007; Banik and
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Brady 2008). In a recent study on uncultivated soil

bacteria, the pooling approach has been used to isolate

a glycopeptide biosynthetic gene cluster from a

10 million clone library (Banik and Brady 2008). A

major disadvantage of using petri dishes or arrayed

library formats is the large space needed for storage,

and in the case of microtiter plates, the need of

expensive robotic equipment to transfer the clones

into wells. An economic solution to this problem

consists of growing clones not on plates but in tubes

containing a semi-liquid medium (Hrvatin and Piel

2007). In this three-dimensional format clones can be

grown at high density (up to ca. 1,000 clones per ml)

as suspended colonies. Screening is rapidly performed

in an iterative fashion by mixing the contents of each

tube and using 1 ll directly for a PCR analysis.

Positive pools are then re-screened at successively

higher dilutons. In addition to fast screening, another

advantage is that libraries can be conveniently stored

by simply adding glycerol to the tubes before freezing.

An alternative to targeting gene sequences is

screening for function. An advantage of this

approach, which has so far rarely been applied to

symbiont research, is that metabolites might be

discovered that were previously unknown or for

which the biosynthetic pathway remains obscure. A

disadvantage consists of the prerequisite that only

relatively small gene clusters that fit on a single

cloned fragment and are expressed in the host

bacterium can be detected. Consequently, many

compounds discovered in this way exhibit rather

simple chemical structures. An example of functional

screening is the inspection of clones for new color-

ation due to the presence of pigmented metabolites

(Brady et al. 2001; Gillespie et al. 2002). In the case

of colorless substances, screening can be performed

by chemical analysis. This method has been success-

fully applied to the isolation of genes for the

biosynthesis of patellamide D (16) and ascidiacycla-

mide (17) in the Prochloron symbiont of the tunicate

L. patella (Long et al. 2005). In this study a BAC

library prepared from the DNA of the mechanically

isolated symbiont was first deposited in 96-well

microtiter plates. All 96 clones from each plate were

combined and grown in liquid medium. After

removal of cells by centrifugation and absorption of

metabolites by solid-phase extraction, eluants were

analyzed by HPLC-MSn after further purification.

Positive clones were then identified by first testing

pools derived from plate colums and rows and finally

by analyzing individual bacteria. In addition to

chemical screening, libraries have also been screened

for activity (Brady 2007). For example, antibiotics

can be discovered by overlaying clones on plates with

top agar containing a test bacterium. Producers of

antibacterial activities can then be identified by an

inhibition zone in the bacterial lawn surrounding the

clone. This approach has been used extensively for

nonsymbiotic environmental libraries (Brady and

Clardy 2000, 2004, 2005).
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Correlation of gene sequences with natural

product structures

A common task during genetic studies on unculti-

vated producers is to translate chemical information

to the gene level or vice versa. If a gene cluster of

a known metabolite is to be isolated by sequence-

based screening, the first step is usually to develop

a working hypothesis on the biosynthetic enzymes

involved. A comparison of the sequences of known

enzyme homologs might then allow one to design

specific hybridization probes or PCR primers for

screening. After isolation of a candidate gene

cluster, its DNA sequence can then be used to

verify whether its genes convincingly match to the

structure of the natural product. A bioinformatic

analysis can often provide valuable clues whether

the correct gene cluster has been obtained and

might thus streamline subsequent functional exper-

iments. This approach is particularly useful for non-

ribosomal peptides and complex polyketides. Both

compound classes are synthesized from simple

building blocks (amino acids and short acyl-CoA

species) on multimodular enzymes called non-

ribosomal peptide synthetases (NRPSs) and polyke-

tide synthases (PKSs), respectively (Fischbach and

Walsh 2006; Donadio et al. 2007). Both are

composed of modules, each of which is subdivided

into functional domains. Each module usually

incorporates one building block into the growing

peptide or polyketide chain in an assembly line-like

fashion, and the module order and domain archi-

tecture is in general colinear with the structure of

the natural product. Due to this colinearity princi-

ple, one can fairly accurately predict at least the

core structure of a metabolite. Various automated

tools and bioinformatic approaches exist for domain

analysis and structure prediction (Yadav et al. 2003,

2004; Ansari et al. 2004; Kamra et al. 2005; Rausch

et al. 2005; Khurana et al. 2007; Nguyen et al.

2008; Starcevic et al. 2008) that can be used for in

silico pathway analysis as well as for genome

mining, i.e., the discovery of new natural products

by sequence-based structure prediction (Zazopoulos

et al. 2003; Lautru et al. 2005; McAlpine et al.

2005; Banskota et al. 2006; Scherlach and Hert-

weck 2006; Sudek et al. 2006; Bergmann et al.

2007; Brendel et al. 2007; Gross 2007; Gross et al.

2007; Wilkinson and Micklefield 2007; Challis

2008a, b; Corre et al. 2008; Dimise et al. 2008;

Loper et al. 2008; Nguyen et al. 2008; Smid and

Gross 2008).

In many cases a functional proof for isolated genes

is hard to obtain because the gene cluster is very large

or substrates for enzymatic analyses are not readily

available. In such cases, sequence-based structure

prediction is particularly useful. An example is the

isolation of gene candidates for the biosynthesis of

onnamide A (14) from the metagenome of the sponge

T. swinhoei. Previously, 88 kb containing PKS genes

involved in the production of the structurally similar

polyketide pederin (18) were obtained from an

uncultivated Pseudomonas sp. symbiont of the rove

beetle Paederus fuscipes (Piel 2002; Piel et al.

2004c). A domain analysis revealed that the cluster

was colinear with the structure of 18. Exploiting this

sequence information, the onnamide genes were next

obtained from a T. swinhoei library by phylogeny-

based PCR screening. These were attributed to a

bacterial symbiont (Piel et al. 2004a; Piel et al.

2004b). Both clusters exhibited an almost identical

domain architecture, strongly suggesting a role in the

production of pederin/onnamide-type compounds.

This was later proven by biochemical analysis of

enzymes encoded by the pederin cluster (Zimmer-

mann et al. 2009). In silico analysis of PKS domains

also provided strong evidence that a giant PKS gene

cluster isolated from the metagenome of the bryozoan

B. neritina is responsible for the production of the

bryostatin 1 (11) and related polyketides (Hildebrand

et al. 2004b; Sudek et al. 2007).

Sequencing of uncultivated bacteria

Sequencing of microbial genomes is usually per-

formed by shotgun methods. In the Sanger approach,

this involves mechanical shearing of the genomic

DNA into smaller pieces, cloning of the end-repaired

fragments into a vector, and generating end-sequences

of the clone inserts. Identical stretches of overlapping

sequences are then aligned to assemble contiguous

segments called contigs. A recent significant technical

advance in genomics is the development of high-

throughput DNA sequencing technologies. The 454

pyrosequencing method allows one to sequence

25 million base pairs without prior cloning in one

4 h run with the accuracy of 99.96% (Margulies et al.
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2005; Droege and Hill 2008; Rothberg and Leamon

2008). In combination with new algorithms for

sequence assembly and analysis this has provided

unprecedented access to uncultured microbial com-

munities (Fraser-Liggett 2005). In the case of the

mechanically isolable Prochloron symbiont of the

didemnid ascidian L. patella, sequencing of the entire

genome and bioinformatic prediction has enabled

Schmidt and coworkers to clone a gene cluster for the

biosynthesis of the cyclic peptides patellamide A (13)

and C (19) (Schmidt et al. 2005). The cluster, which

encodes a microcin-like ribosomal peptide pathway,

was subsequently expressed in E. coli to achieve

production of the compounds. In addition, the novel

cyclic peptide eptidemnamide (20) was generated by

modification of the patellamide genes (Donia et al.

2006). In contrast to sequencing of individual symbi-

ont species, sequencing of entire communities has to

our knowledge not been applied to marine natural

product research, but it can be predicted that this

situation will change soon. The recent development of

single-cell techniques, such as the use of microfluidic

devices (Ottesen et al. 2006) or sequencing of DNA

amplified from one cell by multiple displacement

amplification (MDA) (Lasken 2007), will provide

further opportunities to unlock the hidden chemistry of

uncultivated symbiotic bacteria.
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